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Variational methods

1. Introduction and preliminaries

Consider the following nonlinear fourth-order elliptic equations

{Azu—Au+AV(x)u=f(x, u), inR" (1.1)

u € H2(RY).

There are a number of papers concerned with the Egs. (1.1). For example, see [1-12]. In [2], An and Liu use the Mountain
Pass Theorem to get the existence results for the following problem
Au+cAu=g(x u), ing, (12)

u= Au=0, onds2, i

where 2 C R¥(N > 4) is a smooth bounded domain, ¢ € R. In [10], Wang et al. use linking approaches to obtain at least

three nontrivial solutions for (1.2). In [11], Yang and Zhang consider the existence of positive, negative and sign-changing

solutions for (1.2). In [6], Chabrowski and Marcos do O studied the existence of two solutions for the following fourth-order

elliptic problems

Aru—agxu=f&)uP?u, inRY

2.2/ pN (1.3)
u € D>*(R") \ {0},

wherel > 0,p = %. In [12], Yin and Wu use variational methods to get the high energy solutions and nontrivial solutions
for Egs. (1.1), where A = 1, V(x) is satisfying the following condition
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(V1) V e CRV,R), inf gy V(x) > a > 0 and for each M > 0, meas{x € RY : V(x) < M} < oo, where a is a constant and
meas denote Lebesgue measure in RV,

In the present paper, we will research the existence and multiplicity of nontrivial solutions for problem (1.1) under large
A > 0 and the condition

(V) V € CRV,R), inf,pv V(%) > ag > 0, where g is a constant. Moreover, there exists a constant b > 0 such that the set
{x € RN : V(x) < b} is nonempty and meas{x € R : V(x) < b} < oo, where meas denote the Lebesgue measure in RV.
Remark 1.1. It is obvious that (V;) is weaker than (V;). There is a function V (x) = arctan |x| 4 % which satisfies (V,) but
does not satisfy (V7).
We need the following preliminaries. Let
H=H*R") = {u e I2(R") : |Vul, Au € [*(R")}
with the inner product and norm
(u,v)y = / (AulAv + Vu - Vv + uv)dx, ||u||,2, = (u, u)y.
RN
By || - ||, we denote [P-norm. Set
E, = {u €H: / (lAu)? + |Vul> + AV (x)u)dx < oo} )
RN
Then E,, is a Hilbert space with the following inner product and the norm
(U, v)g, = (Audv + Vu - Vo + AV (x)uv)dx, ||u||§ﬂ = (u, u)g, .
RN -
We use C to denote various positive constants. In order to deduce our statements, we need the following assumptions

(f1) f € CRY x R,R),F(x,u) = [, f(x,5)ds > 0and |f(x,u)| < C(1+ |u[P~") for some p € (2,2,),2, = 22 ifN > 4;
2, =oc0if N < 4.

(f) f&x,u) = o(|u|) as |u| — 0 uniformly for x € RV.

(f3) There exists i > 2 such that uF(x, u) < uf (x, u), V(x,u) € RN x R.

(fa) ¢1 = infyep yj=1 F(x, u) > 0.

(fs) There exists > 2 such that u — ";(";3)1

(fo) f(x, —u) = —f(x,u), V(x,u) € RN x R.

Now we are ready to state our main result.

is increasing on (—o0, 0) and (0, +00).

Theorem 1.1. If (V) and (f;)-(fs4) hold, then problem (1.1) has at least one nontrivial solution for large . > 0. Further, if the
condition (fg) is added, then the problem (1.1) has infinitely many distinct pairs of nontrivial solutions.

Theorem 1.2. If (V5), (f1)-(f2) and (f4)-(fs) hold, then problem (1.1) has at least one nontrivial solution for large A > 0. Further,
if the condition (fg) is added, then the problem (1.1) has infinitely many distinct pairs of nontrivial solutions.

Remark 1.2. Under the assumption (V;), motivated by Lemma 3.4 in [13], we can prove the embedding E; < L*(RV) is
compact forany s € [2, 2,), where Ey = {u € H : [y (|Aul?> + |Vul? + V(x)u?)dx < co}. Hence, the corresponding results
have been obtained by using the variational techniques in a standard way. But (V) is weaker than (V;), the embedding lacks
the compactness, we have to overcome the difficulty.

Remark 1.3. Obviously, it follows from (V5) that the embedding E, < L*(RV) is continuous for each's € [2,2,) if L > 1.
Hence, for any s € [2, 2,), there is a constant a; > 0 independent on A such that |lul|s < as|lullg, forallu € E,.

It is well known that a weak of problem (1.1) is a critical point of the following functional
1
I(u) = f/ (lAuf? + |[Vul? + 2V (x)u?)dx —/ F(x, u)dx.
2 RN RN
Under the above assumptions, it is easy to know that I € C!(E;, R) and
(I'(w), v) = f (AuAv + Vu - Vv + AV(x)uv)dx — / f(x, wyvdx, Vu,v €E,.
RN RN

The following lemmas are our main tools.
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Lemma 1.1 ([14, Theorem 2.2]). Let E be a real Banach space and I € C'(E, R) satisfying (PS) condition. Suppose 1(0) = 0 and

(I) there are constants p, o« > 0 such that Iss,0) = @, and
(I;) thereisane € E \ B,(0) such that I(e) < 0,

then I possesses a critical value n > «.

Lemma 1.2 ([14, Theorem 9.12]). Let E be an infinite dimensional Banach space, 1(0) = 0,1 € C'(E, R) be even and satisfy (PS)
condition. Assume that E = V € X, where V is finite dimensional, and I satisfies

(I3) there are constants p, o« > 0 such that Iyp,0)nx = @
and
(I4) for each finite dimensional subspace Ec E, thereisanR = R(E) > 0 such that If\pgp0) < 0.

Then I possess an unbounded sequence of critical values.

2. Proof of main results
To complete the proof of our main theorems, we need following lemmas.

Lemma 2.1 ((See [15] or [16])). Let §2 be an open setin RN and f € C(£2 x R, R) a function such that |f (x, u)| < C;(Ju|" + |u|®)
forsome C; > 0and1 < r < s < oo. Suppose that s < p < oo,r < q < 00,q > 1, {u,} is a bounded sequence in
P(2) NLY(2),u, — uinlP(£2 NBg) NLI(L N Bg) forall R > 0 and u,(x) — u(x) ae. inx € 2. Then, passing to a
subsequence, there exists a sequence {v,} such that v, — uin [’ (§£2) N L($2) and

f(xs un) —f(X, Up — Uﬂ) _f(X, u) - Oa

in Lg(.Q) + Lg(.Q), where v, (x) = x (M) u(x), x € C*(R, [0, 1]) be such that x(t) = 1fort <1, x(t) = 0fort > 2,

Rn
R, > 0is a sequence of constants with R, — 0o, asn — oo, the space [P (£2) N L9(§2) with the norm

lullpag = llullp + llullq
and the space LP($2) + L9(£2) with the norm
lullpvg = inf{llvll, + llwllq : v € IP(£2), w € L(2), u = v + w}.

Lemma 2.2. If u, — uinE,, then, passing to a subsequence, there exists a sequence {v,} such that v, — uinE, and

I(un) = I(uy — vp) +1(w) + o(1) (2.1)
and

I'(up) = 1I'(up — vy) +1'(w) + 0(1). (2.2)

Particularly, if {u,} is a (PS). sequence, then, passing to a subsequence, one has I (u, — v,) — ¢ — I(u) and I'(u,, — v,) — O as
n— oo.

Proof. Let x € C*(R, [0, 1]) be a cut-off function such that x(t) = 1fort < 1,x(t) = O0fort > 2 and set

vn(x) = (%:') u(x), where R, > 0 is a sequence of constants with R, — oo asn — oo. Then v, — u in E,. Indeed,

u € E; implies that for any ¢ > 0, there is a corresponding p; = p1(¢) > 0 such that

/ |AulPdx < &, / AV(uldx < ¢, / [Vul’dx < ¢,
RN\B,, RN\Bp, RN\Bp,

where B,, := B, (0). Thus,

lon —ull, = /RN(IA(vn — W+ [V(p — W]+ AV ) |on — ul?)dx
=l ) o e () o)
= | X R u—u X R u—u
- 4/ (2|><|)_1 ,<2|x|> ’
N RN X Ry X Ry

2

2|x|
+AV(X) ‘x (

R

Joi o

2
64
|AulPdx + — |Vu|?dx
Rn
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2
o (2
R,
,zm ?
X R,
20x\|”
Ry
211\ [
Ry
e GOl

u?dx

2
7 [ 2]x|
1&N—n2/’X(m>’2 64
+ dx—l—f
R2 RN |x|2
v [ (2
RN X Ry
2|x|
+ AV (x) [x
RN
/ (2|x|> 64/ ,
<4 X X
By, Rn n JRN

2
7 [ 2]x|
16(N — 1) ‘X (*)‘ 64
n ( )/ R )l 24 54 / J
RN RN

R IXI2 R3
2|x|
+2 X -1
Bp1 Rn
2|x|
+ AV(X) | x -1
Bp, Ry
<4 / (2"") 2
=< X -
Bl’l Rn
64a?(N — 1)2 2
+7a(4 )/ u?dx + ﬂ/uzdx
R, RN Rn RN
21| 2
+2 X -1
By, Ry
2|x|
+ | wwlx -1
B Rn

P1
where & = maxj<<2 | x'(t)|, B = maxj<r<2 | x”(t)|. Hence, using the Lebesgue dominated converge theorem, we obtain

RN
2
u?dx

)_1

u?dx

|Vu| dx u?dx

2
u?dx + Ce

2
u?dx + Ce,

o — ulle, — 0

asn — oo. Now, set L := A2 —A + AV (x). Then
I(u) = (Lu u); — / F(x, u)dx,
RN

where (-, -), denote inner product in L*(RY). By v, — uinE; and u, — u in E,, we have
(Lup, vn)2 = (Lup, Up)z — (Lu, u),

and
(Lun, Un)2 = (L(Un — Vn), Un — Vn)2 + (Lu, u)z + 0(1)

and
(Un, @), = (Un — Vn, @), + (U, @)g; +0(1)

for each ¢ € E;. Note that

' w), ) = (u, @), — /Nf(x, wedx, Yo €E;.
R’
Hence, in order to prove (2.1) and (2.2), we only need to prove

A [on F(X up)dx = [fon F(x, un — vp)dX + [on F(x, u)dx + 0(1)

and

B. Sup”‘ﬂ”EA=1 fRN (f(xs un) _f(xv Uy — vﬂ) _f(xv u))(/)dx = 0(1)
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The proof of A: Since u, — u in E;, passing to a subsequence, we can assume that u, — uinL{ (RV) foreach t € [2, 2,)
and u,(x) — u(x) a.e.in RV. By (f;) and (f,) we know that for any &; > 0 there is a constant C(¢;) > 0 such that

If (x, w)| < erlul + CleDulP~', V(x,u) € RY xR, (2.3)
and
e C(e
IF(x, u)| < flul2 + %Iul”, V(x,u) € RY x R. (2.4)

Takingr = 2, s = p, and q = 2 in Lemma 2.1, we know that
/ F(x, uy)dx = / F(x, u, — vp)dx + / F(x, u)dx 4+ o(1).
RN RN RN
The proof of B: Takingr = 1,s = p — 1,and ¢ = 2 in Lemma 2.1, we know that

€00 = f (X, ) = F (g — V) =G u) = 0, in(RY) + LPT RY).

Hence, for each ¢ € E, with ||¢||, = 1, by Hélder’s inequality and Sobolev’s embedding, one has

/ Znpdx
RN

wherep’ = z%' Consequently,

= ||gn||2vp’||§0||2Ap < C”gnHva’,

sup (F(x, up) — f(x, up — vp) — f(x, u))pdx = o(1).

lolle, =1 JrN

This completes the proof of (2.1) and (2.2).
Moreover, if {u,} is a (PS), sequence, that is, I(u,;) — c and I'(u,;) — 0asn — oo, then

I(u, —vy) =c—1() +o(1).

Now, we prove I'(u, — v;) — 0asn — oo.
By (2.2) and I'(u,) — 0, it is sufficient to prove that (I'(u), ¢) = 0 forall ¢ € E,. Since u, — uin LfOC(RN) fort € [2, 2,),
by (f;) and Theorem A.2 in [17], we have

f(xs un) g f(X, u)v (25)

p_
in L,‘;;1 (RM). Further, for any &, > 0, there exists p, > 0 such that

1

i
/ lplPdx | < &;. (2.6)
RN\B,,

It follows from (2.3), (2.5), (2.6) and Hdélder’s inequality that

p—1

5 7
< ( If (% ) — f(x, u>|v”1dx) ( / |<p|"dx>
Bp, Bp,

+ / (e1(lun] + |u) 4+ Clen) (ualP~" + JulP~ ")) pdx
RY\By,

‘ / (F (%, ) — £ (x )iy
RN

p—1

5( tf(x,un>—f<x,u)|v51dx) (/ |<p|de>
sz Bﬂz

1

2
+& (/ |¢|de> (lunllz + lull2) + Cenea(lua ™" + lul™").
RN\B,,
Hence fRN (f (x, up) — f(x, u))pdx — 0asn — oo, and hence, for each ¢ € E;, we have

(I'(up) = I'(w), @) = (Up — U, @), —/ (f (x, up) — f(x, u)pdx — 0.
RN

Therefore, (I'(1), ¢) = 0 for all ¢ € E;. This completes the proof. O
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Lemma 2.3. Let (f;) and (f,) be satisfied. Then V(m)‘r < quf(x, u) — F(x, u) := g(x, u) for some t € (max {1, %}, l%) and

all (x, u) with |u| large enough.
Proof. By (f;) and (f,), we know that we have d; > 0,i = 1, 2 such that
If (¢, w)| < di|u| + da|ufP~!

forall (x,u) € RV x R. We note that ;25 > max {1, §} because p € (2,2,).Fixt € (max{l, o1 #), if [u| > 1, then
1

If (x, w)| < (di + d2)[ul’~". Choose R > 150 large that . < ;- % whenever |u| > R. Then, for |u| large enough,
1 1 (di + dz)t_l
0 <Fxu =< ;uf(X,u) =< (E—W uf (x, u)

1 , -1
< (5~ Haper ) weew

and it follows that L&01° < %uf(x, u) — F(x, u) = g(x, u). This completes the proof. O

Jul*

Lemma 2.4. Let (V;) and (f;) — (f3) be satisfied. Then there is A > 0 such that for each c € R, I satisfies (PS). condition for all
A > A

Proof. Let {u,} be a (PS). sequence. Then, by (f3), we have

1
1+c+ ”un”E;\ > I(up) — ;(1/(un), Up)

1 1 1
= <5 - *> ||un||é +/ <*unf(x’ up) — F(x, u”)> dx
m RN \ M
1 1
z(i—;)wm;

for large n. This implies {u,} is bounded in E;. Hence, passing to a subsequence, we may assume that u, — u in Ej.
Furthermore, Lemma 2.2 implies that, passing to a subsequence, there exists a sequence v, — u in E; such that

I(u, — vy) > ¢ —1(u)
and
I'(uy —vy) = 0

asn — oo. It follows from (V,) and w, := u,, — v, — 0inE, that

lwall3 :/ wﬁdx+/ widx
{xeRN:V (x)>b} {xeRN:V (x)<b}

1
< — wwﬁw+/ wydx
Ab Jgv {xeRN:V (x)<b}

1
< Ellwnllﬁk +o(1). 2.7)

Moreover, for 7 in Lemma 2.3, set s = Tz% then2 < p < s < 2,.Givenq € (s, 2,), then by (2.7) and Hélder and Sobolev

T
inequalities,

2(q=s) q(s=2) qs—=2)

q—s
= = = 12
lwally < llwall,"™ llwallg"™ <" (E) lwall, +o(1). (2.8)

By Lemma 2.3, we know that for large R > 0, Fexwl® < g(x,u) holds for all (x,u) with |u| > R. By (2.3), we have

Ju|™ jl

If (x, )| < (g1 4+ C(e1)RP~2)|u| = C|u| for all (x, u) with |u| < R. It follows from (2.7) that
C
/ [, wp)wpdx < c/ whdx < — [lwallg, + o(1).
lwnl<R |wnl<R Ab
By I(w,) — ¢ — I(u) and I'(w,) — 0, we have

Iwm—%wwawmzfgmwwM»c—m&
RN
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Therefore, there is M > 0 independent of A such that URN g(x, w,,)dx‘ < M. Using (2.8) and Hélder’s inequality, we obtain

1 1 1
X, LN 5 5
/ f(x,wn)wndst de) (/ |wn|‘dx) (/ |wn|‘dx>
|wn|>R |wn|>R |wn| RN RN
1
5(/ gmwm)wmﬁ
|wn|>R

1
- 2
M= [lwy 5

1\’ X
C Tb ||wn||Ek+o(1),

_ 2(g=9)
where 6 = 2 > 0. Therefore,

IA

o(1) = (I'(wn), wn) = [lwllf, —/ [, wy)wndx
RN

2 C 2 1 ’ 2
= ||wn||5x - E”wn”h‘)\ -C b ”wn”h +o(1)

1CC19 1
—E—(M>Hwh+d)

Set A > 0 be so large that the term in the brackets above is positive for all A > A. Then w, — 0inE, forall . > A. Since
again w, = u, — v, and v, — uinE,, u, — uin E,. This completes the proof. O

Proof of Theorem 1.1. By (2.4) and Sobolev’s embedding theorem, for 0 < &; < aiz and small p > 0, we have
2

C(e1)

1 &1
_ 2 _ 27 2 _ p
I(u) > 2IIUIIEA > llull3 llull,
1 e C(ey)
2 19 2 1 p
> Sl = Salull, - —=dalulf,

1
> S (1= ai@)|ul,
forallu € B,(0), where B,(0) = {u € E, : |lullg, < p}. Therefore
1 2N 2 .
Iy, 0 = 5(1 —e1a5)p” =a > 0.

Since E; <> [*(RV) and L*(R") is a separable Hilbert space, E; has a countable orthogonal basis {e;}. Set EX =
span{eq, ez, ..., €} and Z, = (E")l Then E; = E @Zk,E" is finite-dimensional and 133p<0)nzk > o > 0. Moreover, for

any finite- dlmensmnal subspace Ec E,, there is a positive integral number m such that E C EJ". Since all norms are
equivalent in a finite-dimensional space, there is a constant 8 > 0 such that [lu|l, > Bllullg, for all u € EJ". By (2.4) and
(f3), (fs), there exists C(e1) > 0 such that

F(x,u) > Clu|* — C(e)u?, V(x,u) € RY xR.

Hence

1 2 N 2
Iw) = 5|IUIIEA — Cllully, + Clen lully

1
< EIIHIIEA — CB"lully, + C(ena; llully,

for allu € E. Consequently, there is a large R > 0 such that] < 0 on E \ Br. Thus, there is an e € E; with |le|]|;, > R such
that I(e) < 0. Finally, obviously, I(0) = 0 and P.S. condition was proved in Lemma 2.4. Hence I possesses a critical value
n > o by Lemma 1.1, i.e. the problem (1.1) has a nontrivial solution in E; . Moreover, obviously, (fz) implies I is even. Hence,
the second conclusion follows from Lemma 1.2. This completes the proof. O

Proof of Theorem 1.2. It is sufficient to prove that (fs) implies (f3). In fact, whenu > 0,

' f(x, ut)

eyt

1 1
, 1
F(x, u)=/ Fx, ut)udt = bt Hdtg/ T wpn=1ge = Lok .
0 o ur! 2



J. Liu et al. / J. Math. Anal. Appl. 395 (2012) 608-615 615
Whenu < 0,

F(x, u)

1
/ f(x, ut)udt
0

b f(x, ut) et
_/(; 7(—ut)“_1(_u) thdt

B L f(x, ut)
~ Jo fute
[ fxuw

o luf#-1

lu|#“t#—dt

[u|#t*1dt

= lf(x, uu.
o

It shows that (f3) holds. This completes the proof. O
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