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NUMERICAL RANGES OF WEIGHTED COMPOSITION

OPERATORS.

GAJATH GUNATILLAKE, MIRJANA JOVOVIC, AND WAYNE SMITH

Abstract. The operator that takes the function f to ψf ◦ ϕ is a weighted
composition operator. We study numerical ranges of some classes of weighted
composition operators on H2, the Hardy-Hilbert space of the unit disc. We
consider the case where ϕ is a rotation of the unit disc and identify a class of
convexoid operators. In the case of isometric weighted composition operators
we give a complete classification of their numerical ranges. We also consider
the inclusion of zero in the interior of the numerical range.

1. Introduction

Let ϕ be a holomorphic self map of the open unit disc D and ψ be a holomorphic
map of D. If f is holomorphic on D, then the operator that takes f to ψ · f ◦ ϕ is
a weighted composition operator and is denoted by Cψ,ϕ. If z is in D, then

Cψ,ϕ(f)(z) = ψ(z)f(ϕ(z)).

In case ψ ≡ 1, the operator is simply called a composition operator, and is de-
noted Cϕ. In this work we investigate numerical ranges of weighted composition
operators acting on the Hardy space H2.

The numerical range of a bounded linear operator T on a Hilbert space H is
the subset W (T ) of the complex plane given by

W (T ) = {〈T (g), g〉 : g ∈ H, ||g|| = 1}. (1.1)

Numerical ranges of (unweighted) composition operators acting on H2 are dis-
cussed in [1, 2, 16].

In section 3 we consider Cψ,ϕ with rotational composition maps, i.e. ϕ(z) = eiθz.
We identify a class of convexoid operators with rotational composition maps in
Theorem 3.4. If V is an open convex set with n-fold symmetry about the origin,
where n > 1, we prove in Theorem 3.5 that there is a weighted composition
operator Cψ,ϕ where ϕ(z) = e2πi/nz such that W (Cψ,ϕ) = V. In Theorem 3.13
we show that W (Cψ,ϕ) contains such a convex, n-fold symmetric set whenever

ϕ(z) = e2πi/nz and ψ is bounded.
Isometric weighted composition operators are studied in section 4. Isometries

that are not unitary operators are studied using the Wold decomposition. We also
compute the numerical ranges of unitary weighted composition operators.
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Inspired by Bourdon and Shapiro’s work on numerical ranges of composition
operators [2], in section 5 we consider the question of when zero is in the interior
of W (Cψ,ϕ). We provide the answer for different weighted composition operators
and in some cases obtain the radius of a disc centered at the origin that lies in the
numerical range.

Weighted composition operators naturally appear in studies of linear operators.
For example, isometries on Hp for p �= 2, are weighted composition operators [7].
A composition operator on the Hardy space of the upper-half plane is similar to
a weighted composition operator on the Hardy space of the unit disc. Hermitian
weighted composition operators are investigated in [5, 6] and normal weighted
composition operators appear in [3]. Compact weighted composition operators are
discussed in [8, 9] and invertibility in [10]. These operators also play an important
role in adjoints of composition operators.

2. Background material

2.1. The Hardy-Hilbert space. The set of functions analytic on D for which

sup
0<r<1

∫ 2π

0
|f(reiθ)|2 dθ

2π
< ∞

is the Hardy-Hilbert space on the unit disc H2. We refer to this space simply as
the Hardy space. If f is in H2, then f can be extended to the unit circle almost
everywhere by taking radial limits [4, p. 10]. H2 is a Hilbert space with the inner
product

〈f, g〉 =
∫ 2π

0
f(eiθ)g(eiθ)

dθ

2π
.

If f is in H2 and f(z) =
∑∞

n=0 anz
n, then ||f ||2 = ∑∞

n=0 |an|2. The inner product
on H2 can also be expressed as

〈f, g〉 =
∞∑
n=0

ancn,

where g(z) =
∑∞

n=0 cnz
n.

The reproducing kernel for w ∈ D is the function Kw(z) = 1/(1− wz). Clearly
Kw ∈ H2, and if f ∈ H2, then

〈f,Kw〉 = f(w).

In particular, ||Kw||2 = 〈Kw,Kw〉 = 1/(1−|w|2). Furthermore, if Cψ,ϕ is bounded,
then

C∗
ψ,ϕ(Kw) = ψ(w)Kϕ(w); (2.1)

see, for example, [20, Lemma 3.2].

2.2. Notation. We use the following notation in this paper.
The closure of a subset A of the complex plane will be denoted by Cl(A), the

convex hull of A by Hull(A), and A will be used to denote the set of complex
conjugates of numbers in A.

The unit circle with center at the origin will be denoted by T. The disc centered
at a with radius r will be denoted by D(a, r).
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The pseudohyperbolic distance |(a − b)/(1 − ab)| between points a, b ∈ D will
be denoted by ρ(a, b), and Δ(a, r) is our notation for the pseudohyperbolic disc
centered at a with radius r.

The space of bounded analytic functions on D will be denoted by H∞.
For an operator S on H2 we use σ(S) to denote the spectrum of S, and σp(S)

for the point spectrum of S.
If ϕ maps the disc into itself we use ϕn to denote the nth iterate of ϕ i.e., ϕn is

ϕ composed with itself n times. Also ϕ0(z) = z.

2.3. Weighted composition operators. If ψ ∈ H∞, then it is elementary that
the multiplication operator Mψ defined by Mψ(f)(z) = ψ(z)f(z) is a bounded
operator on H2 with ||Mψ(f)|| ≤ ||ψ||∞ ||f ||. The composition operator Cϕ,
where ϕ is an analytic self-map of the open unit disk and Cϕ(f)(z) = f(ϕ(z)), is
also bounded [4, Ch. 3] on H2. Thus, when ψ ∈ H∞ the operator Cψ,ϕ can be
factored as a product of two bounded operators:

Cψ,ϕ = MψCϕ.

However, as shown by examples in [8, 20], it is possible for Cψ,ϕ to be bounded
and even compact with an unbounded ψ.

Note that if ϕ(z) = z, then Cψ,ϕ = Mψ, and if ψ ≡ k is constant, then Cψ,ϕ =
kCϕ. In this paper we are interested in weighted composition operators that do
not simplify in this way. Hence we introduce the standing assumption that

ϕ is not the identity and ψ is not constant. (2.2)

If ϕ is an automorphism of D, then ϕ(z) = λ
a− z

1− az
, where |λ| = 1 and a ∈ D.

Every automorphism not the identity belongs to one of three classes, depending
upon the nature of its fixed points.

If ϕ has a fixed point inside D, then ϕ is an elliptic automorphism.
If ϕ has only one fixed point on the unit circle T, then ϕ is parabolic.
If ϕ has two distinct fixed points on T, then ϕ is hyperbolic. One of the fixed

points is attractive, and the other one is repulsive.
For every holomorphic self-map ϕ of the unit disc D that is not the identity or

an elliptic automorphism of D, there exists a unique point ζ in the closure of D so
that the iterates ϕn of ϕ converge to ζ uniformly on compact subsets of D. The
point ζ is called the Denjoy-Wollff point of ϕ [4, p. 58].

We now record two results from the literature for later reference.

Lemma 2.1. [10, Lemma 1.4.1] If k is a positive integer, then

Ck
ψ,ϕ = C(ψ)(ψ◦ϕ)(ψ◦ϕ2)···(ψ◦ϕk−1),ϕk

.

Lemma 2.2. [8, Theorem 1] Suppose that Cψ,ϕ is a bounded operator on H2. If

ϕ has a fixed point ζ in the open unit disc then ψ(ζ)(ϕ′(ζ))j is in the spectrum of
the adjoint operator C∗

ψ,ϕ for any nonnegative integer j.

2.4. Numerical range. If T is a bounded operator on a Hilbert space H with
the inner product 〈·, ·〉H , then the numerical range of T is the set

{〈T (x), x〉H : x ∈ H, ||x||H = 1} (2.3)

and is denoted by W (T ).
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The following are various properties of the numerical range. Some are quite
easy to prove; for others we have provided a reference.

• W (T ) is convex [13, p. 113].
• Similar operators may not share the same numerical range [2, p. 412].
• If S = UTU−1 where U is unitary, then W (S) = W (T ).
• W (P ⊕R) = Hull(W (P ) ∪W (R)).
• σp(T ) ⊆ W (T ).
• σ(T ) ⊆ Cl(W (T )) [13, p. 115].
• W (T ) ⊆ Cl(D(0, ||T ||)).
• If T ′ is the compression of T to the closed subspace M , then W (T ′) ⊆ W (T ).
• If S is a normal operator, then Hull(σ(S)) = Cl(W (S)) [13, p. 117].
Any operator with the property that the closure of its numerical range is equal

to the convex hull of the spectrum is known as a convexoid operator.

An elementary fact about the Cauchy-Schwarz inequality yields the following
result about certain boundary points of the numerical range.

Lemma 2.3. Let T be a bounded operator on a Hilbert space H. If μ ∈ W (T ) and
|μ| = ||T ||, then μ is an eigenvalue of T .

Proof. Under the hypotheses, there is a unit vector f0 in H such that

〈T (f0), f0〉 = μ. (2.4)

From the Cauchy-Schwarz inequality, |〈T (f), f〉| ≤ ||T || whenever f is a unit
vector. Since equality in the Cauchy-Schwarz inequality is achieved only when the
two vectors are linearly dependent, T (f0) = λf0 for some λ ∈ C. From (2.4) it
follows that μ = λ is an eigenvalue of T. �

3. Rotations

We begin with weighted composition operators whose composition map is ϕ(z) =
eiθz.

3.1. Rational rotations. Let λ = e2πi/n and ϕ(z) = λz. Suppose that j is a
fixed integer and 0 ≤ j < n. If f(z) =

∑
k=0 akz

kn+j then Cϕ(f) = λjf. Therefore
it is natural to look at the subspaces Hj of functions that have such Maclaurin
series.

Definition 3.1. Let 2 ≤ n, and 0 ≤ j < n. Let Hj be the set defined by

Hj =
{
f : f(z) = zjg(zn), g ∈ H2

}
.

It is clear that Hj is a closed subspace of H2. Let Pj denote the orthogonal pro-
jection onto it. When Hj is invariant under multiplication by a bounded function
ψ, the compression of Mψ to Hj is just the restriction Mψ|Hj of Mψ to Hj . Next
we compute the numerical range of this operator.

Lemma 3.2. Let ψ ∈ H∞. If Hj is an invariant subspace of Mψ, then W (Mψ|Hj ) =
Hull(ψ(D)).
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Proof. Let Kw,j = PjKw where w is in D. Then Kw,j is the reproducing kernel
for w in the space Hj , and〈

Mψ
Kw,j

||Kw,j || ,
Kw,j

||Kw,j ||
〉

=
1

||Kw,j ||2 〈ψKw,j ,Kw,j〉

=
1

||Kw,j ||2ψ(w)Kw,j(w).

But Kw,j(w) = 〈Kw,j ,Kw,j〉 = ||Kw,j ||2, so ψ(w) ∈ W (Mψ|Hj ) and hence

Hull(ψ(D)) ⊆ W (Mψ|Hj ).

It is known that W (Mψ) = Hull(ψ(D)); see [15, Corollary 2]. Since W (Mψ|Hj ) ⊆
W (Mψ) we get the desired result. �

Next we compute the numerical range of a weighted composition operator with
a rotational composition map.

Lemma 3.3. Let ϕ(z) = λz where λ = e2πi/n. Suppose that ψ is a bounded
function on D. If g ∈ H∞ and ψ(z) = g(zn), then

W (Cψ,ϕ) = Hull(ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D)).

Proof. Since the spaces H0, H1, · · · , Hn−1 are orthogonal and together span H2,

H2 = H0 ⊕H1 ⊕ · · · ⊕Hn−1.

Let f ∈ Hj , so that f(λz) = λjf(z) and hence Cϕ(Hj) ⊆ Hj . Since ψ(z) =
g(zn) it is easy to see that ψf ∈ Hj . Thus, Mψ(Hj) ⊆ Hj and

Cψ,ϕ(Hj) ⊆ Hj .

Let Cj = Cψ,ϕ|Hj . Then

Cψ,ϕ = C0 ⊕ C1 ⊕ · · · ⊕ Cn−1.

If h ∈ Hj then

〈Cjh, h〉 = 〈ψ(z)h(λz), h(z)〉 = λj〈ψ(z)h(z), h(z)〉.
It follows from Lemma 3.2 that

W (Cj) = Hull(λjψ(D)).

Since Cψ,ϕ is the direct sum of C0, · · · , Cn−1

W (Cψ,ϕ) = Hull(W (C0) ∪ · · · ∪W (Cn−1))

(see [16, p. 64]). Thus,

W (Cψ,ϕ) = Hull(ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D)).

�
Next we classify some convexoid operators. To avoid interrupting of the flow of

the arguments, we delay the computation of the spectra of the operators until the
end of this section.

Theorem 3.4. Let ϕ(z) = e2πi/nz. Suppose that ψ(z) = g(zn), where g ∈ H∞.
Then Cψ,ϕ is convexoid; that is

Cl (W (Cψ,ϕ)) = Hull (σ(Cψ,ϕ)) .
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Proof. Let λ = e2πi/n. From Lemma 3.3,

W (Cψ,ϕ) = Hull(ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D)).

Lemma 3.15 below identifies the spectrum of Cψ,ϕ as the closure of

ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D),

giving the desired result. We used that Hull(Cl(A)) = Cl(Hull(A)) for a bounded
set A ⊂ C. This follows from the fact that, in the complex plane, the convex hull
of a compact set is compact and the closure of a convex set is convex [15]. �

A set V ⊂ C that satisfies e2πi/nV = V is said to have n-fold symmetry about
the origin. We now apply the results above to a convex set that has n-fold sym-
metry.

Theorem 3.5. Let V be an open, bounded, non-empty convex set. If V has n-fold
symmetry about the origin, then there is a weighted composition operator Cψ,ϕ

where ϕ is a rotation such that W (Cψ,ϕ) is V.

Proof. Let f be a Riemann map from D onto V and define ψ(z) = f(zn), for z
in D. Note that the range(ψ) = range(f), and hence ψ(D) = V . Let ϕ(z) = λz,

where λ = e2πi/n. From Lemma 3.3 we have that

W (Cψ,ϕ) = Hull(ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D)).

Since ψ(D) has n-fold symmetry about the origin, λpψ(D) = ψ(D) = V , for
0 ≤ p ≤ n− 1. Since V is convex, W (Cψ,ϕ) = V as desired. �

Corollary 3.6. Let f ∈ H∞ be nonconstant. If n > 1, then there is a weighted
composition operator Cψ,ϕ such that W (Cψ,ϕ) is the smallest convex set with n-fold
symmetry about the origin that contains f(D).

We remark that the statement remains valid, with the same proof, for f con-
stant. This was not included in the statement of the corollary, since in this case
the weight ψ will be constant, contrary to our standing assumption (2.2).

Proof. Let ψ(z) = f(zn). Then range(ψ) = range(f). Let ϕ(z) = λz where λ =

e2πi/n. From Lemma 3.3 it follows that

W (Cψ,ϕ) = Hull(f(D) ∪ λf(D) ∪ · · · ∪ λn−1f(D)).

It is easy to see that λjW (Cψ,ϕ) = W (Cψ,ϕ) for any 0 ≤ j < n. Thus W (Cψ,ϕ)
has n-fold symmetry at the origin and is a convex set. Let Q be a convex set with
n-fold symmetry at the origin that contains f(D). Then Q also contains λjf(D)
for 0 ≤ j < n. Thus Q contains W (Cψ,ϕ). �

As the next examples show, if ψ is not of the form ψ(z) = f(zn), f ∈ H∞, then
W (Cψ,ϕ) may or may not be the convex hull of σ(Cψ,ϕ).

Example 3.7. Let ψ(z) = ez and ϕ(z) = eπiz. Then Cψ,ϕ is not convexoid.

It is easy to see that C2
ψ,ϕ is the identity on H2 and thus (σ(Cψ,ϕ))

2 = {1}.
Hence σ(Cψ,ϕ) ⊆ {−1, 1} and Hull(σ(Cψ,ϕ)) ⊆ [−1, 1]. Let g =

Kiπ/4

||Kiπ/4||
. Then
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〈Cψ,ϕ(g), g〉 = eiπ/4
1− (π/4)2

1 + (π/4)2
, and hence W (Cψ,ϕ) is not contained in the real

line.

Example 3.8. Let ψ(z) = z and ϕ(z) = eπiz. Then Cψ,ϕ is convexoid.

The operator Cψ,ϕ is an isometry and Cl(W (Cψ,ϕ)) is the closed unit disc (see
Corollary 4.5). The spectrum of Cψ,ϕ is also the closed unit disc [10, Theorem
3.1.1].

In following examples we compute the numerical range using the results above.

Example 3.9. Let ψ(z) = 1 + z2/2 and ϕ(z) = eπiz.

From Lemma 3.3 it follows that W (Cψ,ϕ) = Hull(ψ(D)∪(−ψ(D))), where ψ(D)
is the open disc of radius 1/2 centered at 1. The spectrum and the numerical range
of Cψ,ϕ are illustrated in Figure 1.

Example 3.10. Let ψ(z) = 1 + z4/2 and ϕ(z) = eπi/2z.

From Lemma 3.3 it follows that

W (Cψ,ϕ) = Hull(ψ(D) ∪ iψ(D) ∪ (−ψ(D)) ∪ (−iψ(D))).

The numerical range and the spectrum of Cψ,ϕ are depicted in Figure 2.
Lemma 3.3 does not reveal which unit vectors correspond to given points in the

numerical range. Therefore we consider the following. Let |μ| = 1 and n be a
natural number. Assume p and m are integers such that 0 ≤ p ≤ 2, 0 ≤ m ≤ n,
and λ = i. Let

pn(z) =
1√
n

(
λp

μ
z4+p +

λ2p

μ2
z8+p +

λ3p

μ3
z12+p + · · ·+ λmp

μm
z4m+p

)
and

qn(z) =
1√
n

(
λp+1

μ
z4+(p+1) +

λ2(p+1)

μ2
z8+(p+1) + · · ·+ λ(n−m)(p+1)

μn−m
z4(n−m)+(p+1)

)
.

If Pn(z) = pn(z) + qn(z), then ||Pn|| = 1 and

〈Cψ,ϕ(Pn), Pn〉 = μ

2

(
1− 2

n

)
+

m

n
λp +

(
1− m

n

)
λp+1.

The point wm,n =
m

n
λp +

(
1− m

n

)
λp+1 lies on the line segment with endpoints λp

and λp+1. The set {wm,n : 0 ≤ m ≤ n, n ∈ N} forms a dense set of the line segment
from λp to λp+1. Therefore by choosing appropriate μ,m and n it is clear that for
any given point w on the boundary of the numerical range, there is Pn = pn + qn
so that 〈Cψ,ϕ(Pn), Pn〉 is arbitrarily close to w.
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K2 K1 0 1 2

K2

K1

1

2

K2 K1 0 1 2

K2

K1

1

2

Figure 1. The figure on the left is the spectrum and the one on
the right is the numerical range of the operator in Example 3.9.

K2 K1 0 1 2

K2

K1

1

2

K2 K1 0 1 2

K2

K1

1

2

Figure 2. The figure on the left is the spectrum and the one on
the right is the numerical range of the operator in Example 3.10.

It is not hard to see that if λ is any primitive nth root of unity, our previous
results still hold. Indeed, consider ϕ(z) = e2πim/nz, where m and n are relatively

prime and 0 ≤ m < n. Let λ = e2πim/n and μ = e2πi/n. If pk denotes mjk (mod
n), then λjk = μpk .

Suppose that f ∈ Hj for some 0 ≤ j < n. Then Cϕ(f) = μpf where p ≡ mj
(mod n). If ψ is in H∞, then

〈Cψ,ϕ(f), f〉 = μp〈ψf, f〉.
If the Taylor series of ψ is of the form

∑∞
�=0 a�z

n�, then from Lemma 3.2 we have

W (Cψ,ϕ|Hj ) = Hull(μpψ(D)).

Since Cψ,ϕ = Cψ,ϕ|H0 ⊕ Cψ,ϕ|H1 ⊕ · · · ⊕ Cψ,ϕ|Hn−1 , it follows that

W (Cψ,ϕ) = Hull(μp0ψ(D) ∪ μp1ψ(D) ∪ · · · ∪ μpn−1ψ(D)). (3.1)

If 0 ≤ j1 < j2 < n, then it is easy to see that mj1 �≡ mj2 (mod n) and thus
{p0, p1, · · · , pn−1} = {0, 1, 2, · · · , n− 1}.
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The normalizing assumption that ψ(0) = 1 is made in several of the following
results. Since Cαψ,ϕ = αCψ,ϕ and W (Cαψ,ϕ) = αW (Cψ,ϕ) for any constant α,
these results have easy extensions to any ψ with ψ(0) �= 0.

The following propositions give more information about sets contained inW (Cψ,ϕ).

Proposition 3.11. Let ψ(z) = 1+ ψ̂1z+ ψ̂2z
2 + · · · and ϕ(z) = e2πi/nz. Assume

that ψ̂np+j �= 0 for some 0 < j < n. Then W (Cψ,ϕ) contains the ellipse with

foci 1 and e2πij/n, and with major axis
√

|1− e2πij/n|2 + |ψ̂np+j |2 and minor axis

|ψ̂np+j |.
Proof. Let k = np+ j, λ = e2πi/n. Define

Qk = span{e1, e2}
where e1(z) = 1 and e2(z) = zk. We next compute the matrix representation of
the compression of Cψ,ϕ to Qk. We have

Cψ,ϕ(e1)(z) = 1 + ψ̂1z + ψ̂2z
2 + · · ·+ ψ̂kz

k + · · ·
and

Cψ,ϕ(e2)(z) = λk(zk + ψ̂1z
k+1 + ψ̂2z

k+2 + · · · )
Thus the compression of Cψ,ϕ to Qk has the matrix representation[

1 0

ψ̂k λk

]
.

If 0 < j < n, then λk �= 1 and the numerical range of the compression of Cψ,ϕ to

Qk is the ellipse with foci at 1 and λk, and major axis
√
|1− e2πij/n|2 + |ψ̂np+j |2

and minor axis |ψ̂np+j | (see [12, p. 1]). Since the numerical range of the com-
pression is contained in the numerical range of the operator, the stated result
follows. �
Proposition 3.12. Let ϕ(z) = e2πi/nz and ψ(z) = 1 + ψ̂1z + · · · . Suppose that

m1,m2 are positive integers such that m2 > m1, and ψ̂nm1ψ̂nm2ψ̂n(m2−m1) = 0 but
at least one of the 3 terms is nonzero. Then W (Cψ,ϕ) contains the disc centered

at 1 with radius 1
2(|ψ̂nm1 |2 + |ψ̂n(m2−m1)|2 + |ψ̂nm2 |2)1/2.

Proof. Let e1(z) = 1, e2(z) = znm1 and e3(z) = znm2 . Suppose that

Q = span{e1, e2, e3}.
Let T be the compression of Cψ,ϕ to Q. We first compute the matrix of T. Now,

Cψ,ϕ(e1)(z) = ψ(z) = 1 + ψ̂1z + · · ·+ ψ̂nm1z
nm1 + · · ·+ ψ̂nm2z

nm2 + · · · ,
and

Cψ,ϕ(e2)(z) = ψ(z)(e2πi/nz)nm1

= znm1 + ψ̂1z
nm1+1 + · · ·+ ψ̂n(m2−m1)z

nm2 + · · · .
Also,

Cψ,ϕ(e3)(z) = ψ(z)(e2πi/nz)nm2 = znm2 + ψ̂1z
nm2+1 + · · · .
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Thus, the matrix of T is ⎡⎣ 1 0 0

ψ̂nm1 1 0

ψ̂nm2 ψ̂n(m2−m1) 1

⎤⎦ .

From Theorem 4.1 of [14] it follows that W (T ) is the disc centered at 1 with the
radius

1

2

√
|ψ̂nm1 |2 + |ψ̂n(m2−m1)|2 + |ψ̂nm2 |2.

Since W (T ) ⊆ W (Cψ,ϕ), the desired result follows. �

Theorem 3.13. Let ϕ(z) = λz where λ = e2πi/n. Let ψ ∈ H∞ and define ψ̃ by
the equation

nψ̃(z) = ψ(z) + ψ(λz) + ψ(λ2z) + · · ·+ ψ(λn−1z).

Then

W (C
˜ψ,ϕ

) = Hull
(
ψ̃(D) ∪ λψ̃(D) ∪ · · · ∪ λn−1ψ̃(D)

)
⊂ W (Cψ,ϕ).

Proof. We first compute the compression of Cψ,ϕ to the subspaceH� (see Definition

3.1), where 0 ≤ � ≤ n− 1. Let f ∈ H�. Then f(z) =
∑∞

k=0 akz
kn+�. Thus

Cψ,ϕ(f)(z) = ψ(z)f(λz) = λ�(ψ0(z) + ψ1(z) + · · ·+ ψn−1(z))(
∞∑
k=0

akz
kn+�)

where ψr = Prψ and Pr is the projection onto Hr. Thus,

ψr(z) =
∞∑
k=0

ψ̂nk+rz
nk+r.

Hence ψrf belongs to H⊥
� for r = 1, · · · , n − 1 and ψ0f belongs to H�. If C� =

P�Cψ,ϕ|H�
, then

C�(f) = λ�ψ0f.

Thus, C� is the multiplication operator on H� with multiplier λ�ψ0. Hence from
Lemma 3.2 it follows that

W (C�) = Hull(λ�ψ0(D)).

If 0 ≤ r, j ≤ n− 1, then ψr(λ
jz) = λjrψr(z). Therefore

ψ(λjz) = ψ0(z) + λjψ1(z) + (λj)2ψ2(z) + · · ·+ (λj)(n−1)ψn−1(z).

Note that 1 + λp + (λp)2 + · · ·+ (λp)(n−1) = 0 for 0 < p ≤ n− 1, and so

ψ(z) + ψ(λz) + ψ(λ2z) + · · ·+ ψ(λn−1z) = nψ0(z).

Thus ψ̃ = ψ0, and the equality relation in the statement to be proved is immediate
from Lemma 3.3, while the subset relation follows from

W (C�) ⊆ W (Cψ,ϕ), 0 ≤ � ≤ n− 1.

�
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Finally, we compute the spectrum when ϕ(z) = e2πi/nz and ψ(z) = g(zn), where
g ∈ H∞. This result was used in the proof of Theorem 3.4. Spectra of weighted
composition operators with rotational composition maps and general weights are
computed in [10]. Since the weight functions take a special form in the operators
that are studied here, we compute the spectrum in a different way.

Lemma 3.14. Let n > 1. Suppose that ψ(z) = g(zn), where g ∈ H∞. If 0 ≤ � < n,
then

σ(Mψ|H�
) = Cl(ψ(D)).

Proof. Let M� = Mψ|H�
. Since Mψ(H�) ⊆ H�,

Mψ = M0 ⊕M1 ⊕ · · · ⊕Mn−1.

It is well known that Cl(ψ(D)) = σ(Mψ), and hence

Cl(ψ(D)) = σ(M0) ∪ · · · ∪ σ(Mn−1).

Thus

σ(M�) ⊆ Cl(ψ(D)). (3.2)

Let w ∈ D \ {0} and let μ = ψ(w). If h = (M� − μ)f for some f ∈ H�, then

h(w) = ψ(w)f(w)− μf(w) = 0. (3.3)

Hence all functions in the range of M� − μ on H� vanish at w, and so M� − μ is
not invertible. Thus μ ∈ σ(M�) and it follows that

ψ(D \ {0}) ⊆ σ(M�). (3.4)

Since ψ is analytic on D, Cl(ψ(D \ {0})) = Cl(ψ(D)), and from (3.2) and (3.4) we
get that

Cl(ψ(D)) = σ(M�).

�

Lemma 3.15. Let ϕ(z) = λz, where λ = e2πi/n, and let ψ(z) = g(zn), where
g ∈ H∞. Then

σ(Cψ,ϕ) = Cl
(
ψ(D) ∪ λψ(D) ∪ · · · ∪ λn−1ψ(D)

)
.

Proof. Let 0 ≤ � < n. If f ∈ H�, it is readily checked that Cϕ(f) = λ�f , and so

Cψ,ϕ(f) = MψCϕ(f) = λ�ψf = λ�M�(f) ∈ H�, (3.5)

where M� = Mψ|H�
. Put C� = Cψ,ϕ|H�

, so that C� = λ�M� from (3.5). Thus

Cψ,ϕ = C0 ⊕ C1 ⊕ · · · ⊕ Cn−1, (3.6)

and hence

σ(Cψ,ϕ) = σ(C0) ∪ σ(C1) ∪ · · · ∪ σ(Cn−1). (3.7)

Since σ(Ck) = σ(λkMk) = λkσ(Mk), the desired result follows from Lemma 3.14
and (3.7). �
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3.2. Irrational rotations.

Lemma 3.16. Let ψ(z) = 1 + ψ̂1z + ψ̂2z
2 + · · · and ϕ(z) = λz, where λ = e2πiθ

for θ irrational. Assume that n is a nonnegative integer and m is a positive
integer. Then W (Cψ,ϕ) contains the ellipse with foci λn, λn+m whose major axis

is

√
|λn − λn+m|2 + |ψ̂m|2 and minor axis is |ψ̂m|.

Proof. Let
Q = span{e1, e2}

where e1(z) = zn and e2(z) = zn+m. We have

Cψ,ϕ(e1)(z) = (1 + ψ̂1z + ψ̂2z
2 + · · ·+ ψ̂mzm + · · · )λnzn

= λnzn + λnψ̂1z
n+1 + · · ·+ λnψ̂mzn+m + · · ·

and
Cψ,ϕ(e2)(z) = λn+mzn+m + λn+mψ̂1z

n+m+1 + · · · .
If T is the compression of Cψ,ϕ to Q, then the matrix representation of T is[

λn 0

λnψ̂m λn+m

]
.

Since W (T ) is the ellipse described in the statement (see [12, p. 1]) and W (T ) ⊆
W (Cψ,ϕ), the desired result follows. �

For ψ and ϕ defined above, the set {ψ(0)ϕ′(0)n, n ≥ 0} is in σ(Cψ,ϕ) (see [8,
Lemma 3]), and it forms a dense subset of the unit circle. Thus, it is easy to see
that W (Cψ,ϕ) contains the open unit disc. Using Lemma 3.16 the radius of the
disc can be improved.

Theorem 3.17. Suppose that ψ(z) = 1 + ψ̂1z + ψ̂2z
2 + · · · and ϕ(z) = e2πiθz,

where θ is irrational. If m is a positive integer, then W (Cψ,ϕ) contains the open

disc centered at 0 with radius | cos(πmθ)|+ |ψ̂m|.
Proof. Let λ = e2πiθ. From Lemma 3.16 it follows that the ellipse with foci
λn, λn+m and minor axis of length |ψ̂m| is contained in W (Cψ,ϕ). With some
simple trigonometry it is easy to see that there is a point on this ellipse whose
distance from the origin is | cos(πmθ)|+ |ψ̂m|. The result follows since the sequence
{λn}∞n=1 is dense on the unit circle. �

4. Isometries

The main tool in this section is the Wold decomposition, which states that every
isometry is a direct sum of a shift (defined below) and a unitary operator. We will
first discuss some essential facts about the Wold decomposition (see [17]).

4.1. Shift operator.

Definition 4.1. A bounded operator S on a Hilbert space H is a shift operator if
S is an isometry and (S∗)n → 0 strongly.

Lemma 4.2. An isometry S on a Hilbert space H is a shift operator if and only
if
⋂∞

j=0 S
j(H) = {0}.
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A proof can be found in [17, p.3].

Proposition 4.3. If S is a shift operator on a Hilbert space H, then W (S) is D.

Proof. Let k be a unit vector in ker(S∗). For |λ| < 1, define f by

f =

∞∑
j=0

λjSj(k). (4.1)

Since S is an isometry, this series converges in H. Note that S∗S = I, and hence

S∗(f) =
∞∑
j=0

λjS∗Sj(k) =

∞∑
j=1

λjSj−1(k). (4.2)

Thus S∗(f) = λf, i.e. λ is in the point spectrum of S∗. Hence D is contained in
W (S). Since ||S|| = 1, W (S) is contained in Cl(D).

If a unimodular λ is in W (S), then it follows from Lemma 2.3 that S(g) = λg
for some unit vector g. Thus for any nonnegative integer n

Sn(g) = λng. (4.3)

Hence g belongs to ∩∞
j=0S

j(H) which contradicts Lemma 4.2. Therefore no point

in the unit circle belongs to W (S) and this yields the desired result. �

In the following theorem, we identify certain ψ and ϕ that produce shift oper-
ators.

Theorem 4.4. Suppose that Cψ,ϕ is an isometry on H2. Further suppose that ζ
is the fixed point of ϕ and |ζ| < 1. If |ψ(ζ)| < 1, then Cψ,ϕ is a shift operator, and
hence W (Cψ,ϕ) = D.

Proof. Let

Hm = Cm
ψ,ϕ(H

2),

where m is a nonnegative integer. Let h ∈ ∩∞
m=0Hm. Then, for each m, there is

an fm ∈ H2 so that h = Cm
ψ,ϕ(fm). Since Cψ,ϕ is an isometry

||h|| = ||fm||
for all m. From Lemma 2.1 it follows that

Cm
ψ,ϕ(f) = (ψ ◦ ϕm−1ψ ◦ ϕm−2 · · ·ψ)(f ◦ ϕm).

If w ∈ D, then

h(w) = ψ(ϕm−1(w))ψ(ϕm−2(w)) · · ·ψ(w)(fm(ϕm(w))).

Thus

|h(w)| ≤ |ψ(ϕm−1(w))ψ(ϕm−2(w)) · · ·ψ(w)| ||fm|| 1√
1− |ϕm(w)|2 . (4.4)

Choose p so that |ψ(ζ)| < p < 1, and let U ⊆ D be an open neighborhood of ζ
such that |ψ(z)| < p, for z ∈ U. Now choose r > 0 so that Δ(ζ, r) ⊆ U , where
Δ(ζ, r) is the pseudohyperbolic disc centered at ζ with radius r; see §2.2. Then

ρ(ζ, ϕ(w)) = ρ(ϕ(ζ), ϕ(w)) ≤ ρ(ζ, w), (4.5)
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by the Schwarz-Pick Lemma; see for example [11, p. 2]. Hence ϕ(Δ(ζ, r)) ⊂
Δ(ζ, r). Therefore, for m ≥ 0 and w ∈ Δ(ζ, r), |ψ(ϕm(w))| < p. Thus from (4.4)

|h(w)| ≤ pm
||fm||√

1− |ϕm(w)|2 , m ≥ 0 and w ∈ Δ(ζ, r). (4.6)

Since ‖fm‖ = ‖h‖ and ϕm(Δ(ζ, r)) ⊂ Δ(ζ, r), the right hand side of (4.6) has the
limit 0 as m → ∞ for each w ∈ Δ(ζ, r). Therefore h ≡ 0 on Δ(ζ, r), and hence on
D as well. Thus

∞⋂
m=0

Hm = {0}.

Hence Cψ,ϕ is a shift operator and W (Cψ,ϕ) is D. �

Corollary 4.5. Let ϕ be an inner function that fixes the origin. If ψ is also a
nonconstant inner function, then Cψ,ϕ is a shift operator on H2 and W (Cψ,ϕ) = D.

Proof. Since ϕ(0) = 0 and ϕ is an inner function, Cϕ is an isometry [4, p.123].
The multiplication operator Mψ is also an isometry and Cψ,ϕ = MψCϕ. Therefore
Cψ,ϕ is an isometry. Since ||ψ||∞ = 1, we have that |ψ(0)| < 1, and the result
follows from Theorem 4.4.

�

Next we look at isometries that are not unitary operators.

Theorem 4.6. Let Cψ,ϕ be an isometry on H2. If Cψ,ϕ is not a unitary operator,
then W (Cψ,ϕ) = D ∪ σp(Cψ,ϕ).

Proof. Since Cψ,ϕ is an isometry, its Wold decomposition is

Cψ,ϕ = U ⊕ S,

where H2 = K⊕ L, U is a unitary operator on K, and S is a shift operator on L;
see [17, p. 2]. Since Cψ,ϕ is not unitary, L �= {0}, and the operator Cψ,ϕ is the
direct sum of U and S,

W (Cψ,ϕ) = Hull(W (U) ∪W (S)). (4.7)

Since S is a shift operator, W (S) = D. The numerical range of any isometry is
contained in the closed unit disc. Thus it follows from (4.7) that

D ⊆ W (Cψ,ϕ) ⊆ Cl(D).

Suppose that λ ∈ W (Cψ,ϕ) and |λ| = 1. From Lemma 2.3 it follows that λ is an
eigenvalue. Since σp(Cψ,ϕ) ⊆ W (Cψ,ϕ), the desired result follows. �

4.2. Unitary weighted composition operators. We quote the following re-
sults about unitary operators from [3].

Theorem A. [3, Theorem 6] The weighted composition operator Cψ,ϕ is unitary
if and only if ϕ is an automorphism and ψ = cKβ/||Kβ ||, where ϕ(β) = 0 and
|c| = 1.

The following result describes the spectra of unitary weighted composition op-
erators.
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Theorem B. [3, Theorem 7] Suppose that Cψ,ϕ is unitary.
If ϕ is elliptic with the fixed point p, then |ϕ′(p)| = 1 and the spectrum of Cψ,ϕ

is the closure of {ψ(p)ϕ′(p)n : n = 0, 1, 2, · · · }.
If ϕ is parabolic or hyperbolic, then the spectrum is the unit circle.

Next we compute numerical ranges of unitary operators.

Theorem 4.7. Suppose that Cψ,ϕ is unitary. Then the following are true.

(1) If ϕ is hyperbolic, then W (Cψ,ϕ) = D.
(2) If ϕ is parabolic, then W (Cψ,ϕ) = D.
(3) If ϕ is elliptic and p is the fixed point for ϕ, then

(a) If ϕ′(p) is not a root of unity, then W (Cψ,ϕ) = D∪ {ψ(p)ϕ′(p)n : n =
0, 1, 2, · · · }.

(b) If ϕ′(p) is an nth root of unity, then W (Cψ,ϕ) is the regular polygon
with the vertices ψ(p), ψ(p)ϕ′(p), · · · , ψ(p)ϕ′(p)n−1.

Proof. (1) Hyperbolic ϕ: Clearly W (Cψ,ϕ) is contained in the closed unit disc
and Cl(W (Cψ,ϕ)) contains σ(Cψ,ϕ), which is the unit circle. Therefore
Cl(W (Cψ,ϕ)) is the closed unit disc. Since W (Cψ,ϕ) is a convex set it
must contain the open unit disc. Hence

D ⊆ W (Cψ,ϕ) ⊆ Cl(D).

If |μ| = 1 and μ ∈ W (Cψ,ϕ), then from Lemma 2.3 it follows that μ is an
eigenvalue of Cψ,ϕ. If w is an arbitrary unimodular number, then Cψ,ϕ is
similar to wCψ,ϕ (see [3, p.282]). Thus wμ is an eigenvalue of Cψ,ϕ. Hence

σp(Cψ,ϕ) = T.

Since Cψ,ϕ is a unitary operator, eigenvectors that correspond to distinct
eigenvalues are orthogonal. Since there is an uncountable collection of dis-
tinct eigenvalues, there is an uncountable collection of orthonormal eigen-
vectors. But this is impossible, as H2 is separable. Therefore unimodular
numbers cannot be in the numerical range, which implies

W (Cψ,ϕ) = D.

(2) Parabolic ϕ : Suppose that the unimodular number μ belongs to W (Cψ,ϕ).
From Lemma 2.3 it follows that μ is an eigenvalue of Cψ,ϕ. When ϕ is
parabolic, Cψ,ϕ is similar to C

˜ψ,ϕ̃
, where

ϕ̃(z) =
(1 + i)z − 1

z + i− 1
or

ϕ̃(z) =
(1− i)z − 1

z − i− 1

[10, Lemma 3.0.6]. We only consider the first map, as the same arguments
can be applied to the second map. Since Cψ,ϕ and C

˜ψ,ϕ̃
are similar, μ

belongs to σp(C ˜ψ,ϕ̃
). Therefore C

˜ψ,ϕ̃
(g) = μg for some g in H2. Hence

ψ̃ g ◦ ϕ̃ = μg. (4.8)
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If f(z) = es
z+1
z−1 , where s > 0, then

f ◦ ϕ̃ = e−2isf (4.9)

[4, p.254]. Let h = gf. Since f is an inner function, h ∈ H2. We have

C
˜ψ,ϕ̃

(h) = ψ̃ g ◦ ϕ̃ f ◦ ϕ̃,
and from (4.8) and (4.9) it follows that

C
˜ψ,ϕ̃

(h) = μe−2ish.

Therefore μe−2is is an eigenvalue of C
˜ψ,ϕ̃

. Since s is an arbitrary posi-

tive number and μ is a unimodular number it follows that T ⊆ σp(C ˜ψ,ϕ̃
).

Similarity of the two operators now yields

T ⊆ σp(Cψ,ϕ).

Thus the unitary operator Cψ,ϕ possesses an uncountable collection of
eigenvalues. This leads to a contradiction as shown in the proof of the
hyperbolic case. Thus unimodular numbers cannot be in W (Cψ,ϕ). The
rest of the proof is also similar to the proof of the hyperbolic case.

(3) Elliptic ϕ :
(a) Assume that ϕ′(p) is not a root of unity:

From [8, Lemma 3] it follows that ψ(p)(ϕ′(p))n is in σ(C∗
ψ,ϕ|Kn) where

Kn is a finite dimensional invariant subspace of C∗
ψ,ϕ. Thus ψ(p)(ϕ

′(p))n
is an eigenvalue of C∗

ψ,ϕ for each nonnegative integer n. Therefore

σp(C
∗
ψ,ϕ) contains the set

{ψ(p)(ϕ′(p))n : n = 0, 1, · · · }.
If ϕ′(p) is not a root of unity, then since |ψ(p)| = 1 [3, p. 282], we

have {ψ(p)(ϕ′(p))n : n = 0, 1, · · · } is a dense subset of the unit circle.
Since W (C∗

ψ,ϕ) is a convex set that contains σp(C
∗
ψ,ϕ), it follows that

D ∪ {ψ(p)(ϕ′(p))n : n = 0, 1, · · · } ⊆ W (C∗
ψ,ϕ).

Also W (Cψ,ϕ) = W (C∗
ψ,ϕ), and so

D ∪ {ψ(p)(ϕ′(p))n : n = 0, 1, · · · } ⊆ W (Cψ,ϕ).

Since ||Cψ,ϕ|| = 1, the numerical range is contained in the closed
unit disc. If λ is a unimodular number that belongs to W (Cψ,ϕ) it
follows from Lemma 2.3 that λ is an eigenvalue. It is known that
{ψ(p)(ϕ′(p))n : n = 0, 1, · · · } contains all eigenvalues of Cψ,ϕ [8, p.
463]. This yields the desired result.

(b) Assume that ϕ′(p) is a root of unity:
Then σ(Cψ,ϕ) = {ψ(p), ψ(p)ϕ′(p), · · · , ψ(p)ϕ′(p)n−1} [3, Theorem 7].
Since Cψ,ϕ is normal it is convexoid. Therefore Cl(W (Cψ,ϕ)) is the
polygon with vertices ψ(p), ψ(p)ϕ′(p), · · · , ψ(p)ϕ′(p)n−1. Because all

of ψ(p)ϕ′(p)k are eigenvalues of C∗
ψ,ϕ, it follows that these vertices are

in W (Cψ,ϕ). The result now follows from the convexity of W (Cψ,ϕ).
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�

5. Inclusion of zero

In [2] Bourdon and Shapiro prove that for any Cϕ not the identity, the origin
lies in the closure of W (Cϕ). They also show that 0 lies in the interior of W (Cϕ)
whenever Cϕ fails to have dense range; if ϕ(0) = 0, then 0 is in the interior of
W (Cϕ) unless ϕ(z) = tz for some t ∈ [−1, 1]; if ϕ fixes a nonzero point in D and is
neither the identity map nor a positive conformal dilation, then 0 is in the interior
of W (Cϕ).

Similar results hold for weighted composition operators, and the proofs, with
minor adjustments carry over as well. Therefore some proofs are omitted.

Recall that our standing assumption is that ϕ is an analytic self map of D that
is different from the identity; see (2.2).

Proposition 5.1. If Cψ,ϕ is bounded on H2, then 0 belongs to the closure of
W (Cψ,ϕ).

Proof. Let fa = Ka/||Ka|| where a ∈ D and Ka is the reproducing kernel at a. Let
wa = 〈Cψ,ϕfa, fa〉, so wa ∈ W (Cψ,ϕ). Now,

wa =
〈Cψ,ϕKa,Ka〉

||Ka||2
and hence

wa = (1− |a|2)〈Ka, C
∗
ψ,ϕKa〉.

But C∗
ψ,ϕKa = ψ(a)Kϕ(a) from (2.1), so

wa = ψ(a)(1− |a|2)〈Ka,Kϕ(a)〉 = ψ(a)
1− |a|2
1− aϕ(a)

, a ∈ D. (5.1)

Also Cψ,ϕ(1) = ψ ∈ H2, and hence limr→1− ψ(rμ) exists for almost all μ ∈ D.
Because ϕ is not the identity function, its boundary function differs from the
identity almost everywhere. Therefore there is ζ ∈ ∂D so that limr→1− ψ(rζ)
exists finitely and limr→1− ϕ(rζ) �= ζ. Equation (5.1) shows that wrζ → 0 as
r → 1−, yielding the stated result. �

The next result is an immediate consequence of (5.1).

Corollary 5.2. Suppose that Cψ,ϕ is bounded on H2. If ϕ has a fixed point ζ in
D, then ψ(ζ) is in W (Cψ,ϕ).

While Proposition 5.1 shows that 0 ∈ Cl(W (Cψ,ϕ)) always, it is possible that
0 ∈ ∂W (Cψ,ϕ), as Example 5.7 below shows.

Next we look at Cψ,ϕ induced by a constant composition map. Recall that Ka

is the reproducing kernel for the point a ∈ D; see §2.1.
Proposition 5.3. Let ϕ ≡ a where |a| < 1. If ψ ∈ H2, then the following are
true:

(1) If Ka = μψ, μ �= 0, then W (Cψ,ϕ) is the closed line segment from 0 to μ.
(2) If Ka ⊥ ψ, then W (Cψ,ϕ) is the closed disc centered at the origin with

radius ‖Ka‖/2.
(3) Otherwise W (Cψ,ϕ) is a closed ellipse with foci at 0 and ψ(a).
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Proof. Since ψ ∈ H2 and ϕ is constant, Cψ,ϕ is a bounded rank one operator. In
particular, for f ∈ H2,

Cψ,ϕf = ψf(a) = 〈f,Ka〉ψ. (5.2)

The stated results are now immediate from [2, Proposition 2.5], where the numer-
ical range of a rank one operator is computed. �

We now turn to the question of when 0 is in the interior of the numerical range.
Corollary 3.6 of [2] states that if ϕ is not one-to-one, then 0 is an interior point of
W (Cϕ). A similar result holds for weighted composition operators, based on the
following ideas.

It is known that if an eigenvalue λ of a bounded operator T on a Hilbert space
lies on the boundary of W (T ), then λ is a normal eigenvalue, meaning that λ is an
eigenvalue of T ∗. In particular it follows that if T is injective and does not have
dense range, then 0 is in the interior of W (T ). See, for example, [2, p. 419] for
these facts.

Proposition 5.4. Suppose that Cψ,ϕ is bounded and ϕ is a nonconstant analytic
self map of D. If either ψ has a zero in D or ϕ is not one-to-one, then 0 is in the
interior of W (Cψ,ϕ).

Proof. Since ϕ is nonconstant, Cψ,ϕ is injective. If ψ has a zero at z0 ∈ D, then
the range of Cψ,ϕ is contained in the closed subspace of functions that vanish at
z0 and hence is not dense. Thus the conclusion is a consequence of the discussion
prior to the statement of the proposition. On the other hand, suppose there exist
distinct points a, b in D such that ϕ(a) = ϕ(b). If ψ(a)ψ(b) = 0, then we are done
by the first case considered. So suppose ψ(a)ψ(b) �= 0 and note that

C∗
ψ,ϕ

(
ψ(b)Ka − ψ(a)Kb

)
= 0,

as a consequence of (2.1). Thus 0 is an eigenvalue of C∗
ψ,ϕ, but not a normal

eigenvalue since Cψ,ϕ is one-to-one. Hence 0 does not belong to ∂W (Cψ,ϕ) and
the result follows from Proposition 5.1. �

Theorem 3.8 of [2] states that if ϕ fixes 0 and is neither a negative nor a positive
dilation, then 0 is an interior point of W (Cϕ). The result carries over to weighted
composition operators and is stated in Lemma 5.5 below. The proof carries over
as well with minor modifications, and therefore is omitted.

Lemma 5.5. Suppose that Cψ,ϕ is bounded and ϕ(0) = 0. If ϕ is not of the form
ϕ(z) = tz, −1 ≤ t < 1, then 0 is in the interior of W (Cψ,ϕ).

Note that if ϕ(z) = tz,−1 ≤ t < 1, then Cϕ is Hermitian. Therefore W (Cϕ)
is a real line segment and hence 0 is not an interior point of W (Cϕ). However,
non-trivial weighted composition operators induced by dilations are not Hermitian
[6, Theorem 6] and hence the numerical range cannot be found so easily. Next we
consider Cψ,ϕ where ϕ(z) = tz,−1 ≤ t < 1.

Lemma 5.6. Suppose that ϕ(z) = tz where −1 ≤ t ≤ 0 and Cψ,ϕ is a bounded
operator. Then 0 is an interior point of W (Cψ,ϕ).
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Proof. If ψ(0) = 0, the result follows from Proposition 5.4 when t < 0, and from
Proposition 5.3 when t = 0. Therefore it suffices to consider ψ(0) = 1.

We first consider the case −1 ≤ t < 0. Since ψ is not a constant, ψ(z) = 1+ψ̃(z),

where ψ̃ is a nonconstant analytic function and ψ̃(0) = 0. If f is a unit vector in
H2, then

〈Cψ,ϕf, f〉 = 〈Cϕf, f〉+ 〈C
˜ψ,ϕ

f, f〉. (5.3)

Since ψ̃(0) = 0, by Proposition 5.4 the numerical range of C
˜ψ,ϕ

contains a disc of

positive radius centered at the origin. Therefore there is a unit vector f1 ∈ H2

so that Im〈C
˜ψ,ϕ

f1, f1〉 > 0. But 〈Cϕf1, f1〉 ∈ [t, 1] (see [2, p. 416]), so by (5.3)

p1 = 〈Cψ,ϕf1, f1〉 is in the upper half-plane. A similar argument shows that
W (Cψ,ϕ) also contains a point p2 in the lower half plane. It is readily verified that
if g(z) = z, then 〈Cψ,ϕg, g〉 = t and that 〈Cψ,ϕ1, 1〉 = 1. Since −1 ≤ t < 0, 0 is
in the interior of the convex hull of {1, t, p1, p2}, and the result follows. If t = 0,
then the result follows from Proposition 5.3, since ψ is not a constant function by
(2.2). �

Now consider ϕ(z) = tz, 0 < t < 1. Then

(1) if ψ(0) = 0, then from Proposition 5.4 it follows that 0 is in the interior of
W (Cψ,ϕ).

(2) if ψ(0) �= 0, then 0 may or may not be in the interior of W (Cψ,ϕ). Consider
the following examples.

Example 5.7. Let ϕ(z) = z/2 and ψ(z) = 1+ z/4. Then 0 is on the boundary of
W (Cψ,ϕ).

Proof. Suppose that f(z) =
∑∞

n=0 f̂nz
n is a unit vector in H2. Then,

〈Cψ,ϕf, f〉 =
∞∑

m=0

|f̂m|2
2m

+
1

4

∞∑
n=0

f̂nf̂n+1

2n
. (5.4)

Let A =
∑∞

m=0
| ̂fm|2
2m and B =

∑∞
n=0

̂fn ̂fn+1

2n . Since 2|f̂nf̂n+1| ≤ |f̂n|2 + |f̂n+1|2,

|B| ≤ 1

2

∞∑
n=0

|f̂n|2 + |f̂n+1|2
2n

. (5.5)

Thus |B| ≤ 3A/2. Therefore Re(A+B/4) > 0, hence 0 is not contained in the inte-
rior of W (Cψ,ϕ). By Proposition 5.1 it can be concluded that 0 is in the boundary
of W (Cψ,ϕ). �
Example 5.8. Let ϕ(z) = z/2 and ψ(z) = 1 + 4z. Then 0 is in the interior of
W (Cψ,ϕ).

Proof. If fθ(z) = (1+eiθz)/
√
2, then 〈Cψ,ϕfθ, fθ〉 = 3/4+2e−iθ. Since θ is arbitrary,

0 belongs to the interior of W (Cψ,ϕ). �
Next consider ϕ with a fixed point p ∈ D.

Proposition 5.9. Suppose that Cψ,ϕ is bounded and ϕ is an analytic self map of
D that has an interior fixed point p. If ϕ′(p) is not real, then 0 is an interior point
of W (Cψ,ϕ).
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Proof. If ψ(p) = 0, the result is a consequence of Proposition 5.4. If ψ(p) �= 0 and
ϕ′(p) is not real, then 0 is in the interior of the convex hull of {ψ(p)ϕ′(p)j : j ≥ 0}.
Since the point spectrum of C∗

ψ,ϕ, and hence W (C∗
ψ,ϕ), contains the conjugates of

the points {ψ(p)ϕ′(p)j} for nonnegative integers j (see [8, Lemma 3]), the result
follows. �

A conformal dilation is a map that is conformally conjugate to an r-dilation,
i.e. if ϕ is a conformal dilation then ϕ = αp ◦ δr ◦ α−1

p , where

αp(z) =
p− z

1− pz
and δr(z) = rz,

for r ∈ D. If 0 < r < 1, then ϕ is a positive conformal dilation. (see [2, p. 416]).
It is easy to see that ϕ ′(p) = r.

Theorem 4.4 of [2] states that if ϕ is not a positive conformal dilation and has
a nonzero fixed point in D, then 0 is an interior point of W (Cϕ). The result is
true for weighted composition operators as well. The proof, which considers the
compression of Cϕ to subspaces spanned by Guyker basis vectors, carries over with
minor modifications. Therefore the proof is omitted.

The next theorem summarizes our results regarding zero containment inW (Cψ,ϕ)
when ϕ has a fixed point in D.

Theorem 5.10. Suppose that Cψ,ϕ is a bounded operator on H2 and that ϕ has
a fixed point p in D. Then the following are true.

(1) If ϕ is nonconstant and not a positive conformal dilation, then 0 is an
interior point of W (Cψ,ϕ).

(2) Suppose that ϕ ≡ p is constant. If ψ = μKp for some μ �= 0, then 0 ∈
W (Cψ,ϕ) but 0 is not an interior point of W (Cψ,ϕ). Otherwise 0 is an
interior point of W (Cψ,ϕ).

When it is known that W (Cψ,ϕ) contains a disc with center 0, as in Theorem
5.10, a natural problem is to estimate the radius R of the largest such disc. But
‖Cψ,ϕ‖ is always an upper bound for this radius, as a consequence of the elementary
fact that ‖T‖ is an upper bound for the numerical radius of a bounded operator
T . The next proposition provides a lower estimate for the radius when ϕ(0) = 0
and ψ′(0) = 0.

Proposition 5.11. Suppose that Cψ,ϕ is a bounded operator on H2, ϕ(0) = 0 and

ψ has a zero of order m > 0 at the origin. If ψ̂m denotes the mth Taylor coefficient

of ψ, then W (Cψ,ϕ) contains the disc of radius |ψ̂m|/2 centered at the origin.

Proof. Let f(z) =
λ+ zm√

2
where |λ| = 1. Let the Taylor series of ϕ be

∑∞
j=1 ϕ̂jz

j

and the Taylor series of ψ be
∑∞

k=m ψ̂kz
k. Then

(f ◦ ϕ)(z) = 1√
2
(λ+ (ϕ̂1z + ϕ̂2z

2 + · · · )m) =
1√
2
(λ+ c1z

m + c2z
m+1 + · · · ).
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Now

〈Cψ,ϕ(f), f〉 = 〈ψf ◦ ϕ, f〉
=

1

2
〈(ψ̂mzm + ψ̂m+1z

m+1 + · · · )(λ+ c1z
m + c2z

m+1 + · · · ), λ+ zm〉

=
1

2
〈λψ̂mzm +

∑
k>m

dkz
k, λ+ zm〉

=
1

2
ψ̂mλ.

Since λ is an arbitrary unimodular number the stated conclusion follows. �

We next show that if ϕ is assumed to be a dilation, then a different method of
proof yields a similar conclusion.

Proposition 5.12. Let ϕ(z) = λz, where λ �= 0, and let ψ(z) = ψ̂1z+ ψ̂2z
2+ · · · .

If Cψ,ϕ is bounded on H2, then W (Cψ,ϕ) contains the closed disc centered at the

origin with radius |λψ̂m|/2 for each m ≥ 1.

Proof. Let k > 1. Define

Qk = span{e1, e2}
where e1(z) = z and e2(z) = zk. We next compute the matrix representation of
the compression of Cψ,ϕ to Qk. We have

Cψ,ϕ(e1)(z) = λ(ψ̂1z
2 + ψ̂2z

3 + · · ·+ ψ̂k−1z
k + · · · )

and

Cψ,ϕ(e2)(z) = λk(ψ̂1z
k+1 + ψ̂2z

k+2 + · · · )
Thus the compression of Cψ,ϕ to Qk has the matrix representation[

0 0

λψ̂k−1 0

]
.

Therefore the numerical range of the compression is the closed disc centered at
zero with radius |λψ̂k−1|/2 (see [12, p. 1]). The stated result now follows from the
containment of the numerical range of the compression in the numerical range of
the operator. �

We next give a simple example that shows Proposition 5.11 and Proposition
5.12 can not be extended to include the case m = 0.

Example 5.13. Let ψ(z) = 1+ εz and ϕ(z) = −z/2, with ε > 0. Then the radius
of the largest disc with center the origin and contained in W (Cψ,ϕ) is at most ε.

Proof. For a unit vector f in H2,

〈Cψ,ϕf, f〉 = 〈(1 + εz)Cϕf, f〉 = 〈Cϕf, f〉+ ε〈zCϕf, f〉.
It is known that W (Cϕ) = [−1/2, 1]; see [2, p. 416]. Also, ||Cϕ|| = 1 (see for
example [4, Corollary 3.7]) and hence |〈zCϕf, f〉| ≤ 1. The stated conclusion is an
easy consequence of these observations. �



22 G. GUNATILLAKE, M. JOVOVIC, AND W. SMITH

As was discussed in section 2.3, automorphisms of D divide into three classes,
depending upon the nature of their fixed point. It is known that the numerical
range of an (unweighted) composition operator induced by a parabolic or hyper-
bolic automorphism of D is a disc; see [1, Theorem 3.1]. This result carries over
to our setting of weighted composition operators, which we record as the next
theorem. The proof carries over without difficulty, and so will be omitted.

Theorem 5.14. Let ϕ be an automorphism of D that is either parabolic or hyper-
bolic. If Cψ,ϕ is a bounded operator, then W (Cψ,ϕ) is a disc centered at 0.

While this theorem identifies the numerical range as a disc, in general we do
not know if it is open or closed, or its exact radius. This is also the case for
(unweighted) composition operators; see [1, page 846]. It is known that for a
bounded operator T the numerical radius is at least ||T ||/2; see [12, Theorem 1.3-
1]. Therefore lower bounds for radii of discs discussed in Theorem 5.14 can be
obtained using the norms of the operators. The next few results show that the
spectrum can also be used to get lower bounds for invertible operators.

If Cψ,ϕ is invertible, then ψ is both bounded and bounded away from zero and
ϕ is an automorphism [10, Theorem 2.0.1].

Proposition 5.15. Suppose that Cψ,ϕ is invertible. Then W (Cψ,ϕ) contains the
open disc centered at the origin with radius

inf
z∈D

{|ψ(z)|}
√

1− |ϕ−1(0)|
1 + |ϕ−1(0)| .

Proof. From Theorem 2.0.1 of [10] it follows that C−1
ψ,ϕ = C1/ψ◦ϕ−1,ϕ−1 . Since

C1/ψ◦ϕ−1,ϕ−1 = M1/ψ◦ϕ−1Cϕ−1 ,

||C−1
ψ,ϕ|| ≤ ||M1/ψ◦ϕ−1 || ||Cϕ−1 ||.

It is known that ||M1/ψ◦ϕ−1 || = ||1/ψ||∞ and ||Cϕ−1 ||2 = 1 + |ϕ−1(0)|
1− |ϕ−1(0)| ; see The-

orem 3.6 of [4] and page 138 of [13]. If μ ∈ σ(Cψ,ϕ), then 1/μ ∈ σ(C−1
ψ,ϕ). Hence

|1/μ| ≤ ||C−1
ψ,ϕ||. Now it follows that

1

|μ| ≤ ||1/ψ||∞
√

1 + |ϕ−1(0)|
1− |ϕ−1(0)| .

Therefore the spectral radius of Cψ,ϕ is at least inf
z∈D

{|ψ(z)|}
√

1− |ϕ−1(0)|
1 + |ϕ−1(0)| . Since

the closed numerical range contains the spectrum, the result follows from Theorem
5.14. �

Proposition 5.16. Suppose that Cψ,ϕ is invertible and ϕ is an elliptic automor-
phism with the interior fixed point a. If ϕ′(a) is not 1 or −1, then the following
are true.

(1) If ϕ′(a) is not a root of unity, then W (Cψ,ϕ) contains the open disc with
radius |ψ(a)| centered at 0.
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(2) If ϕ′(a) is a primitive nth root of unity, then W (Cψ,ϕ) contains the open
disc with radius |ψ(a) cos(π/n)|.

Proof. (1) If ϕ is elliptic then |ϕ′(a)| = 1. Therefore if ϕ′(a) is not 1 or −1,
then ϕ′(a) is not a real number. The points ψ(a)ϕ′(a)j , j = 0, 1, 2, · · ·
belong to the spectrum [10, Lemma 3.1.1]. Since ϕ′(a) is non-real and
unimodular, the circle of radius |ψ(0)| centered at 0 is the spectrum. The
result follows.

(2) If ϕ′(a) is a primitive nth root of unity then W (Cψ,ϕ) is a regular polygon
with vertices at {ψ(a)ϕ′(a)j , j = 0, 1, 2, · · · , n − 1}. The inscribed circle
has radius |ψ(a) cos(π/n)|.

�

Proposition 5.17. Suppose that Cψ,ϕ is invertible and ψ is continuous on the

closed unit disc. If ϕ is a parabolic automorphism with the fixed point eiθ, then
the open disc centered at 0 with radius |ψ(eiθ)| is contained in W (Cψ,ϕ).

Proof. The spectrum of Cψ,ϕ is the circle centered at the origin with the radius

|ψ(eiθ)|; see Theorem 3.3.1 of [10]. The result follows. �
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