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We show that an n-homogeneous polynomial P on the Fourier algebra A(G) of a 
locally compact group G can be represented in the form P (f) = 〈T, fn〉 (f ∈ A(G))
for some T in the group von Neumann algebra VN (G) of G if and only if it is 
orthogonally additive and completely bounded.
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1. Introduction

Let A be a Banach algebra. A map Φ from A onto a Banach space Y is said to be orthogonally additive if 
Φ(a +b) = Φ(a) +Φ(b) whenever a, b ∈ A are such that ab = ba = 0. In the case where A is a C∗-algebra, it is 
known that every continuous orthogonally additive n-homogeneous polynomial P on A can be represented 
in the form P (a) = 〈ω, an〉 (a ∈ A) for some ω ∈ A∗ (see [5,7,22] for commutative C∗-algebras and 
[21] for arbitrary C∗-algebras). Our purpose is to investigate whether this representation still holds true 
for orthogonally additive n-homogeneous polynomials on the Fourier algebra A(G) of a locally compact 
group G. We refer the reader to [13] for the basic properties of A(G). We recall that A(G) is a regular, 
Tauberian, semisimple, commutative Banach algebra whose character space is identified with G by point 
evaluation and the dual of A(G) can be identified with the group von Neumann algebra VN (G) of G. The 
next example shows that the required representation may fail to hold for some groups.

Example 1.1. Let F2 be the free group on two generators {a, b}. It is clear that the set {anbn : n ∈ N}
satisfies the Leinert condition [18, Definition] and [18, (2.1)] then shows that there exists C > 0 such that ∑∞

n=1 |f(anbn)|2 ≤ C‖f‖2
A(F2) for each f ∈ A(F2). This allows to define a continuous orthogonally additive 
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2-homogeneous polynomial P : A(F2) → C by P (f) =
∑∞

n=1(f(anbn))2 for each f ∈ A(F2). Suppose that P
can be represented by some T ∈ VN (F2). For all g, h ∈ A(F2) we have

∞∑
n=1

g
(
anbn

)
h
(
anbn

)
= 1

2
(
P (g + h) − P (g) − P (h)

)
= 1

2
(〈
T, (g + h)2

〉
−

〈
T, g2〉− 〈

T, h2〉)
= 〈T, gh〉.

Consequently, 
∑∞

n=1 f(anbn) = 〈T, f〉 for each f in the linear span B of the set {gh : g, h ∈ A(F2)}. We 
mention in passing that, by [18, (2.3)], B �= A(F2). Let λ be the left regular representation of F2 on L2(F2). 
By [1, Theorem IV J], we have ‖ 

∑N
n=1 λ(anbn)‖VN(F2) = 2

√
N − 1 for each N ≥ 3. Since VN (F2) = A(F2)∗

and B is dense in A(F2), we conclude that there exists f ∈ B such that ‖f‖A(F2) = 1 and

√
N − 1 <

∣∣∣∣∣
〈

N∑
n=1

λ
(
anbn

)
, f

〉∣∣∣∣∣ =

∣∣∣∣∣
N∑

n=1
f
(
anbn

)∣∣∣∣∣ =
∣∣〈T, f〉∣∣ ≤ ‖T‖VN(F2),

a contradiction.

In order to have a right view of the representation problem it seems to be appropriate to take into 
account the structure of operator space of A(G). We refer the reader to [12] for the necessary background 
from operator space theory. The duality between A(G) and VN (G) equips A(G) with a natural structure 
of operator space. Further, with this structure, A(G) becomes a completely contractive Banach algebra (see 
[12, Sections 16.1 and 16.2]). This implies that the polynomial f �→ 〈T, fn〉 is not merely continuous, but 
actually completely bounded for each T ∈ VN (G).

In Section 2 we show that a (complex-valued) n-homogeneous polynomial P on the Fourier algebra A(G)
of a locally compact group G can be represented in the form P (f) = Pn

T (f) := 〈T, fn〉 (f ∈ A(G)) for some 
T ∈ VN (G) if and only if it is orthogonally additive and completely bounded. In fact, the map T �→ Pn

T is 
shown to be a completely isometric isomorphism from VN (G) onto the space Pn

cbo(A(G), C) of all completely 
bounded orthogonally additive (complex-valued) n-homogeneous polynomials on A(G). Section 3 reveals 
that the preceding theory applies to other Banach algebras such as the Figà–Talamanca–Herz algebras and 
the commutative C∗-algebras.

It should be pointed out that the representation of orthogonally additive polynomials has been widely 
discussed in the context of Banach lattices (see [16] and the references therein).

1.1. Notation

Let X, X1, . . . , Xn, and Y be Banach spaces. We write Bn(X1, . . . , Xn; Y ) for the Banach space of all 
continuous n-linear maps from X1 × · · · × Xn into Y . We write Bn(X, Y ) in the case where X1 = · · · =
Xn = X. As usual, we abbreviate B1(X, Y ) to B(X, Y ), B(X, X) to B(X), and B(X, C) to X∗. We write 
〈·,·〉 for the dual pairing of X and X∗. A map P : X → Y is a continuous n-homogeneous polynomial if there 
exists ϕ ∈ Bn(X, Y ) (which is unique if it is required to be symmetric) such that P (x) = ϕ(x, . . . , x) for 
each x ∈ X. Let Pn(X, Y ) denote the space of all continuous n-homogeneous polynomials from X into Y . 
This is a Banach space equipped with the norm ‖P‖ = sup‖x‖=1 ‖P (x)‖. From the polarization formula, it 
follows that ‖P‖ ≤ ‖ϕ‖ ≤ nn

n! ‖P‖, where ϕ is the symmetric n-linear map associated with P .
Throughout this paper we confine ourselves to complex-valued polynomials on a Banach algebra A. Of 

course, for any ω ∈ A∗, the map Pn
ω : A → C defined by

Pn
ω (a) =

〈
ω, an

〉
(a ∈ A)
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is a continuous orthogonally additive n-homogeneous polynomial. The symmetric n-linear form ϕn
ω: An → C

associated with Pn
ω is given by

ϕn
ω(a1, . . . , an) = 1

n!
∑
σ∈Sn

〈ω, aσ(1) · · · aσ(n)〉 (a1, . . . , an ∈ A),

which becomes simply

ϕn
ω(a1, . . . , an) = 〈ω, a1 · · · an〉 (a1, . . . , an ∈ A),

in the case where A is commutative.
We now suppose that X, X1, . . . , Xn, and Y are operator spaces. As usual, Mk(X) denotes the space of 

k × k matrices with entries in X. This may also be thought of as the algebraic tensor product Mk ⊗ X, 
where Mk = Mk(C). We identify matrices of matrices with simple matrices in the usual way. Let ϕ: X1 ×
· · · ×Xn → Y be an n-linear map and k1, . . . , kn ∈ N. Then the (k1, . . . , kn)-amplification

ϕ(k1,...,kn):Mk1(X1) × · · · ×Mkn
(Xn) → Mk1···kn

(Y )

of ϕ is defined through

ϕ(k1,...,kn)(α1 ⊗ x1, . . . , αn ⊗ xn) = α1 ⊗ · · · ⊗ αn ⊗ ϕ(x1, . . . , xn)

for all (α1, . . . αn) ∈ Mk1(C) × · · · × Mkn
(C) and (x1, . . . , xn) ∈ X1 × · · · × Xn. The map ϕ is said to be 

completely bounded if

‖ϕ‖cb = sup
{∥∥ϕ(k1,...,kn)∥∥

Bn(Mk1 (X1),...,Mkn (Xn);Mk1···kn (Y )) : k1, . . . , kn ∈ N
}
< ∞.

This is the same as asserting that the linearization of ϕ from X1 ⊗ · · · ⊗ Xn into Y determines 
a completely bounded linear map ϕ̂ from the operator space projective tensor product X1⊗̂ · · · ⊗̂Xn

into Y . We write CBn(X1, . . . , Xn; Y ) for the linear space of all completely bounded n-linear maps 
from X1 × · · · × Xn into Y . This is an operator space with matrix norms coming from the identi-
fication Mk(CBn(X1, . . . , Xn; Y )) = CBn(X1, . . . , Xn; Mk(Y )). We write CBn(X, Y ) in the case where 
X1 = · · · = Xn = X and we abbreviate CB1(X, Y ) to CB(X, Y ). The map ϕ �→ ϕ̂ is a completely iso-
metric isomorphism from CBn(X1, . . . , Xn; Y ) onto CB(X1⊗̂ · · · ⊗̂Xn, Y ) and there are natural completely 
isometric isomorphisms from CBn(X1, . . . , Xn; Y ) onto CB(Xi, CBn−1(X1, . . . , Xi−1, Xi+1, . . . , Xn; Y )). An 
n-homogeneous polynomial P : X → Y is completely bounded if the symmetric n-linear form associated with 
P is completely bounded. We write Pn

cb(X, Y ) for the linear space of all completely bounded n-homogeneous 
polynomials from X into Y . This is an operator space with the structure inherited from CBn(X, Y ) through 
the identification of Pn

cb(X, Y ) with the symmetric completely bounded n-linear maps. We refer the reader 
to [10] for further details about completely bounded polynomials.

2. Orthogonally additive polynomials on Fourier algebras

Let A be a Banach algebra, and let n be an integer with n ≥ 2. Motivated by [6] we call an n-linear form 
ϕ: An → C orthosymmetric if ϕ(a1, . . . , an) = 0, whenever (a1, . . . , an) ∈ An is such that aiaj = ajai = 0
for some i, j ∈ {1, . . . , n}. Guided by [16] we also consider the following variant of the newly quoted 
orthosymmetry. An n-tuple (a1, . . . , an) ∈ An is said to be partitionally orthogonal if there exists a partition 
{Λ1, . . . , Λm} of the set {1, . . . , n} with 2 ≤ m ≤ n such that aiaj = ajai = 0 whenever i ∈ Λk and j ∈ Λl

with k, l ∈ {1, . . . , m} and k �= l. An n-linear form ϕ: An → C is said to be partitionally orthosymmetric
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if ϕ(a1, . . . , an) = 0 whenever (a1, . . . , an) ∈ An is partitionally orthogonal. It is easy to check that the 
orthosymmetry of ϕ implies the partitional orthosymmetry of ϕ.

It seems appropriate to mention in passing that the orthosymmetric bilinear maps have been intensively 
used in [2–4] to study the disjointness preserving linear maps on a variety of Banach algebras.

Lemma 2.1. Let A be a Banach algebra, and let n be an integer with n ≥ 2. Then for any ω ∈ A∗ the n-linear 
form ϕn

ω is orthosymmetric and ‖ϕn
ω‖Bn(A,C) ≤ ‖ω‖A∗ . If A has an approximate identity of bound C, then 

‖ω‖A∗ ≤ Cn−1‖ϕn
ω‖Bn(A,C).

Proof. It is easily seen that ϕn
ω is orthosymmetric and that ‖ϕn

ω‖Bn(A,C) ≤ ‖ω‖A∗ .
Suppose that (ρλ)λ∈Λ is an approximate identity of bound C. It is clear that 〈ω, a〉 =

limλ∈Λ ϕn
ω(a, ρλ, . . . , ρλ) for each a ∈ A. Moreover, |ϕn

ω(a, ρλ, . . . , ρλ)| ≤ ‖ϕn
ω‖Bn(A,C)C

n−1‖a‖A for all 
a ∈ A and λ ∈ Λ. Hence, |〈ω, a〉| ≤ ‖ϕn

ω‖Bn(A,C)C
n−1‖a‖A and therefore ‖ω‖A∗ ≤ Cn−1‖ϕn

ω‖Bn(A,C). �
Remark 2.2.

(1) If A has an approximate identity of bound 1, then ‖ϕn
ω‖Bn(A,C) = ‖ω‖A∗ for each ω ∈ A∗. Of course, 

‖Pn
ω ‖Pn(A,C) ≤ ‖ω‖A∗ . Nevertheless, this latter inequality may fail to be an equality (see Example 2.7).

(2) It is worth noting that the Fourier algebra A(G) of any amenable group G has an approximate identity 
of bound 1 (further, A(G) has a bounded approximate identity precisely when G is amenable) [19].

The next result reveals the reason of considering the partitional orthosymmetry.

Lemma 2.3. Let A be a Banach algebra. Let P : A → C be a continuous n-homogeneous polynomial for some 
integer n with n ≥ 2, and let ϕ: An → C be the symmetric continuous n-linear form associated with P . Then 
the following assertions are equivalent:

(1) the polynomial P is orthogonally additive;
(2) the form ϕ is partitionally orthosymmetric.

Proof. Let (a1, . . . , an) ∈ An partitionally orthogonal. Let {Λ1, . . . , Λm} be the corresponding partition 
from the definition. Let z1, . . . , zn ∈ C. Then the elements 

∑
i∈Λj

ziai with j ∈ {1, . . . , m} are mutually 
orthogonal and therefore

P

(
n∑

i=1
ziai

)
=

m∑
j=1

P

( ∑
i∈Λj

ziai

)
.

The coefficient of the monomial z1 · · · zn on the left side of the identity is n!ϕ(a1, . . . , an) while the co-
efficient of z1 · · · zn of each and every summand on the right side is zero because m ≥ 2. We thus get 
ϕ(a1, . . . , an) = 0. �
Theorem 2.4. Let G be a locally compact group, and let n be an integer with n ≥ 2. Then the following 
statements hold:

(1) a completely bounded n-linear form on A(G) is orthosymmetric if and only if it is partitionally or-
thosymmetric;

(2) the map T �→ ϕn
T is a completely isometric isomorphism from VN (G) onto the space CBn

o (A(G), C) of 
all completely bounded orthosymmetric n-linear forms on A(G);
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(3) the map T �→ Pn
T is a completely isometric isomorphism from VN (G) onto the space Pn

cbo(A(G), C) of 
all completely bounded orthogonally additive n-homogeneous polynomials on A(G).

Proof. Let Mn: A(G)n → A(G) be the n-linear map defined by

Mn(f1, . . . , fn) = f1 · · · fn

for all f1, . . . , fn ∈ A(G). It is well known that M2 is completely bounded with ‖M2‖CB2(A(G),A(G)) ≤ 1. 
Furthermore, it is clear that

M (k1,...,kn)
n (F1, . . . Fn) = M

(k1,k2···kn)
2

(
F1,M

(k2,...,kn)
n−1 (F2, . . . , Fn)

)
for all k1, . . . , kn ∈ N and F1 ∈ Mk1(A(G)), . . . , Fkn

∈ Mkn
(A(G)). By using an inductive procedure we 

deduce that ‖Mn‖CBn(A(G),A(G)) ≤ 1.
Let H be a locally compact group. If f ∈ A(G) and g ∈ A(H), then the function (s, t) �→ f(s)g(t) on 

G ×H lies in A(G ×H). By [11], this induces a canonical completely isometric isomorphism from A(G)⊗̂A(H)
onto A(G ×H). Consequently, the map Ψ : A(G)⊗̂ · · · ⊗̂A(G) → A(Gn) defined through

Ψ(f1 ⊗ · · · ⊗ fn)(t1, . . . , tn) = f1(t1) . . . fn(tn)

for all f1, . . . , fn ∈ A(G) and t1, . . . , tn ∈ G is a completely isometric isomorphism.
Let T ∈ VN (G). It is clear that ϕn

T is partitionally orthogonal. Further, we have ϕn
T = T ◦ Mn, and

therefore ϕn
T ∈ CBn(A(G), C).

Let [Tij ] ∈ Mk(VN (G)). Then∥∥[ϕn
Tij

]∥∥
Mk(CBn(A(G),C)) =

∥∥[Tij ] ◦Mn

∥∥
CBn(A(G),Mk)

≤
∥∥[Tij ]

∥∥
CB(A(G),Mk)‖Mn‖CBn(A(G),A(G))

≤
∥∥[Tij ]

∥∥
Mk(VN(G)).

Let ϕ be a completely bounded partitionally orthosymmetric n-linear form on A(G). Our next objective 
is to show that ϕ = ϕn

T for some T ∈ VN (G), which establishes the orthosymmetry of ϕ. Let us also observe 
that such a T is necessarily unique because the linear span of the set {f1 · · · fn: f1, . . . , fn ∈ A(G)} is dense 
in A(G).

Let I be the closed linear subspace of A(Gn) generated by the set K of all functions of the form
Ψ(f1⊗· · ·⊗fn), where (f1, . . . , fn) ∈ A(G)n is partitionally orthogonal. It is clear that Ψ(f1⊗· · ·⊗fn)K ⊂ K

for each (f1, . . . , fn) ∈ A(G)n and, since Ψ(A(G) ⊗· · ·⊗A(G)) is dense in A(Gn), it follows that I is an ideal 
of A(Gn). Since ϕ is partitionally orthosymmetric, it follows that I ⊂ ker(ϕ̂ ◦Ψ−1). Consequently, there ex-
ists a continuous linear functional ϕ̃: A(Gn)/I → C such that ϕ̂◦Ψ−1 = ϕ̃ ◦Q, where Q: A(Gn) → A(Gn)/I
is the quotient homomorphism.

The task is now to prove that

I =
{
F ∈ A

(
Gn

)
: F (t, . . . , t) = 0 for each t ∈ G

}
.

To this end, we first show that the hull

h(I) =
{
(t1, . . . , tn) ∈ Gn : F (t1, . . . , tn) = 0 for each F ∈ I

}
of I is the set Δ = {(t, . . . , t) : t ∈ G}. It is immediate to check that Δ ⊂ h(I). Conversely, assume that 
(t1, . . . , tn) ∈ Gn \Δ. Then there exists a partition {Λ1, . . . , Λm} of the set {1, . . . , n} and pairwise different 
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elements s1, . . . , sm ∈ G with 2 ≤ m ≤ n such that ti = sk whenever i ∈ Λk for some k ∈ {1, . . . , m}. Let 
U1, . . . , Um pairwise disjoint open subsets of G with sk ∈ Uk (k ∈ {1, . . . , m}) and let g1, . . . , gm ∈ A(G)
with supp(gk) ⊂ Uk and gk(sk) = 1 (k ∈ {1, . . . , m}). We define f1, . . . , fn ∈ A(G) by fi = gk whenever 
i ∈ Λk for some k ∈ {1, . . . , m}. Then (f1, . . . , fn) is partitionally orthogonal so that Ψ(f1 ⊗ · · · ⊗ fn) ∈ K. 
Since Ψ(f1 ⊗ · · · ⊗ fn)(t1, . . . , tn) = 1, it follows that (t1, . . . , tn) ∈ Gn \ h(I), which completes the proof of 
the property h(I) = Δ. Since Δ is a closed subgroup of Gn, we conclude that Δ is a set of synthesis for 
A(Gn) [24, Theorem 3]. This means that {F ∈ A(Gn) : F (t, . . . , t) = 0 for each t ∈ G} is the only closed 
ideal whose hull equal to Δ and therefore it is equal to I, as claimed.

On account of [14, Proposition 4.2], the restriction map Γ : A(Gn)/I → A(G) defined by Γ (Q(F ))(t) =
F (t, . . . , t) for all F ∈ A(Gn) and t ∈ G is a completely isometric isomorphism. Further, it should be observed 
that clearly (Γ ◦Q ◦Ψ)(f1⊗· · ·⊗fn) = f1 · · · fn for each (f1, . . . , fn) ∈ A(G)n. Define T = ϕ̃◦Γ−1 ∈ A(G)∗. 
Then

ϕn
T (f1, . . . , fn) =

〈
ϕ̃ ◦ Γ−1, (Γ ◦Q ◦ Ψ)(f1 ⊗ · · · ⊗ fn)

〉
= 〈ϕ̃ ◦Q ◦ Ψ, f1 ⊗ · · · ⊗ fn〉

=
〈
ϕ̂ ◦ Ψ−1 ◦ Ψ, f1 ⊗ · · · ⊗ fn

〉
= 〈ϕ̂, f1 ⊗ · · · ⊗ fn〉

= ϕ(f1, . . . , fn)

for each (f1, . . . , fn) ∈ A(G)n.
Let [ϕij ] ∈ Mk(CBn

o (A(G), C)) and take Tij = ϕ̃ij ◦ Γ−1 for all i, j ∈ {1, . . . , k}. Using that Q is a 
complete quotient map and that Γ , Ψ , and ̂ are completely isometric isomorphisms, we obtain

∥∥[Tij ]
∥∥
Mk(VN(G)) =

∥∥[Tij ]
∥∥
CB(A(G),Mk) =

∥∥[Tij ](k)∥∥
B(Mk(A(G)),Mk(Mk))

=
∥∥[ϕ̃ij ](k) ◦

(
Γ−1)(k)∥∥

B(Mk(A(G)),Mk(Mk))

≤
∥∥[ϕ̃ij ](k)∥∥

B(Mk(A(Gn)/I),Mk(Mk))

∥∥(Γ−1)(k)∥∥
B(Mk(A(G)),Mk(A(Gn)/I))

=
∥∥[ϕ̃ij ](k)∥∥

B(Mk(A(Gn)/I),Mk(Mk)) =
∥∥[ϕ̃ij ](k) ◦Q(k)∥∥

B(Mk(A(Gn)),Mk(Mk))

=
∥∥[ϕ̂ij ](k) ◦

(
Ψ−1)(k)∥∥

B(Mk(A(Gn)),Mk(Mk))

≤
∥∥[ϕ̂ij ](k)∥∥

B(Mk(A(G)⊗̂···⊗̂A(G)),Mk(Mk))

∥∥(Ψ−1)(k)∥∥
B(Mk(A(Gn)),Mk(A(G)⊗̂···⊗̂A(G)))

=
∥∥[ϕ̂ij ](k)∥∥

B(Mk(A(G)⊗̂···⊗̂A(G)),Mk(Mk)) ≤
∥∥[ϕ̂ij ]

∥∥
CB(A(G)⊗̂···⊗̂A(G),Mk)

=
∥∥[ϕ̂ij ]

∥∥
Mk(CB(A(G)⊗̂···⊗̂A(G),C)) =

∥∥[ϕij ]
∥∥
Mk(CBn(A(G),C)).

This completes the proof of the statement (2).
Finally, Lemma 2.3 and the statement (2) in the theorem now yield (3). �
We will now show that if G is almost abelian, then we are allowed to ignore the operator space structure 

of A(G).

Lemma 2.5. Let G be a locally compact group. Let X be an operator space, and let ϕ: A(G)n → X be a 
bounded n-linear map for some positive integer n. Suppose that G has an abelian subgroup of finite index. 
Then ϕ is completely bounded.
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Proof. The case n = 1 follows from [14, Theorem 4.5].
We now turn to the case n ≥ 2. Throughout the proof, ⊗π denotes the Banach space projective tensor 

product. The linearization of ϕ on A(G) ⊗ · · · ⊗ A(G) gives a bounded linear map ϕπ: A(G) ⊗π · · · ⊗π

A(G) → X. By [20, Theorem 1], the canonical map Φ: A(G) ⊗π · · · ⊗π A(G) → A(Gn) is a (Banach 
space) isomorphism (though not necessarily isometric). Since Gn has an abelian subgroup of finite index, 
[14, Theorem 4.5] shows that every bounded linear map from A(Gn) into any operator space is completely 
bounded. Consequently, the map ϕπ◦Φ−1 is completely bounded. We finally observe that ϕ = ϕπ◦Φ−1◦Ψ◦Θ, 
where Ψ is the completely isometric isomorphism from A(G)⊗̂ · · · ⊗̂A(G) onto A(Gn) used in the proof 
of Theorem 2.4 and Θ: A(G)n → A(G)⊗̂ · · · ⊗̂A(G) is the completely bounded n-linear map defined by 
Θ(f1, . . . , fn) = f1 ⊗ · · · ⊗ fn for each (f1, . . . , fn) ∈ A(G)n. �

Theorem 2.4 together with Lemmas 2.5 and 2.1 and Remark 2.2 now yield the next corollary. It may be 
worth noting that if the group G has an abelian subgroup of finite index, then G is amenable.

Corollary 2.6. Let G be a locally compact group, and let n be an integer with n ≥ 2. Suppose that G has an 
abelian subgroup of finite index. Then the following statements hold:

(1) a continuous n-linear form on A(G) is orthosymmetric if and only if it is partitionally orthosymmetric;
(2) the map T �→ ϕn

T is an isometry from VN (G) onto the space Bn
o (A(G), C) of all continuous orthosym-

metric n-linear forms on A(G);
(3) the map T �→ Pn

T is an isomorphism from VN (G) onto the space Pn
o (A(G), C) of all continuous orthog-

onally additive n-homogeneous polynomials on A(G).

Example 2.7. Let T be the circle group. The Fourier transform gives an isometric isomorphism from A(T)
onto the group algebra �1(Z) so that VN (T) is identified with �∞(Z). Let T ∈ VN (T) be defined by 
〈T, f〉 = f̂(1) for each f ∈ A(T). It is a simple matter to check that ‖T‖ = 1. Our next goal is tho show that 
‖P 2

T ‖ = 1/2. To this end, we first observe that if 0 ≤ α, β and α+ β ≤ 1, then 4αβ ≤ (α+ β)2 ≤ α+ β. Let 
f ∈ A(T) be such that ‖f‖A(T) = 1. Then |f̂(1 − k)| + |f̂(k)| ≤ ‖f‖A(T) = 1 for each k ∈ Z and therefore

∣∣P 2
T (f)

∣∣ =
∣∣f̂2(1)

∣∣ =
∣∣(f̂ ∗ f̂)(1)

∣∣ =

∣∣∣∣∣
+∞∑

k=−∞
f̂(1 − k)f̂(k)

∣∣∣∣∣
≤

+∞∑
k=−∞

∣∣f̂(1 − k)
∣∣∣∣f̂(k)

∣∣ ≤ +∞∑
k=−∞

1
4
(∣∣f̂(1 − k)

∣∣ +
∣∣f̂(k)

∣∣)
= 1

2

+∞∑
k=−∞

∣∣f̂(k)
∣∣ = 1

2 .

3. Application to other Banach algebras

We will now illustrate how the preceding theory applies to other Banach algebras such as the Figà–
Talamanca–Herz algebras and the commutative C∗-algebras.

3.1. Figà–Talamanca–Herz algebras

We now pay attention to a significant class of Banach function algebras associated with a locally compact 
group G. Let p ∈ ]1,∞[. Then Ap(G) is the Figà–Talamanca–Herz algebra of G. Ap(G) is a regular, 
Tauberian, semisimple, commutative Banach algebra whose character space is identified with G by point 
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evaluation (see [8, pp. 493–494] and [15]). It should be pointed out that A2(G) agrees with A(G). The dual 
space of Ap(G) is the Banach algebra PMq(G) of q-pseudomeasures on G, where 1

p + 1
q = 1. It is worth 

noting that Ap(G) has an approximate identity of bound 1 for any amenable group G (see [15, Theorem 6]).
There have been several attempts to equip Ap(G) with an operator space structure [9,17,23]. Here we 

consider the structure defined in [17] which turns Ap(G) into a quantized Banach algebra (though the 
multiplication is not known to be completely contractive) and a quantized Banach A(G)-module.

Lemma 3.1. Let G be a locally compact group, and let p ∈ ]1,+∞[. Let ϕ: Ap(G)n → C be a completely 
bounded partitionally orthogonal n-linear form for some integer n with n ≥ 2. Then the following statements 
hold:

(1) ϕ is symmetric;
(2) ϕ(gf1, . . . , fn) = ϕ(f1, . . . , gfn) for all f1, . . . , fn, g ∈ Ap(G).

Furthermore, in the case where G has an abelian subgroup of finite index, the complete boundedness of ϕ
can be replaced by the continuity of ϕ.

Proof. Let σ be a permutation of the set {1, . . . , n}. We claim that

ϕ(fσ(1)g1, . . . , fσ(n)gn) = ϕ(f1g1, . . . , fngn) (3.1)

and

ϕ(hf1g1, . . . , fngn) = ϕ(f1g1, . . . , hfngn) (3.2)

for all f1, . . . , fn, h ∈ A(G), g1, . . . , gn ∈ Ap(G). Fix (g1, . . . , gn) ∈ Ap(G)n and define ψ: A(G)n → C by

ψ(f1, . . . , fn) = ϕ(f1g1, . . . , fngn)

for each (f1, . . . , fn) ∈ A(G)n. Then ψ is a completely bounded partitionally orthosymmetric n-linear form. 
On account of Theorem 2.4, ψ = ϕn

T for some T ∈ VN (G). In the case where G an abelian subgroup 
of finite index and ϕ is merely continuous, ψ is merely continuous and we apply Corollary 2.6 instead of 
Theorem 2.4. Consequently,

ψ(fσ(1), . . . , fσ(n)) = 〈T, fσ(1) · · · fσ(n)〉 = 〈T, f1 · · · fn〉 = ψ(f1, . . . , fn),

which gives (3.1). Further,

ψ(hf1, . . . , fn) =
〈
T, (hf1) · · · fn

〉
=

〈
T, f1 · · · (hfn)

〉
= ψ(f1, . . . , hfn),

which yields (3.2). According to (3.1), we have

ϕ(fσ(1)gσ(1), . . . , fσ(n)gσ(n)) = ϕ(f1gσ(1), . . . , fngσ(n)) = ϕ(f1g1, . . . , fngn)

for all f1, . . . , fn, g1, . . . , gn ∈ A(G) ∩ Ap(G). This shows that ϕ is symmetric when restricted to the linear 
span J of (A(G) ∩Ap(G))(A(G) ∩Ap(G)). Similarly, (3.2) shows that (2) holds whenever f1, . . . , fn, g ∈ J . 
Since ϕ is continuous and J is dense in Ap(G), the statements (1) and (2) follow. �
Theorem 3.2. Let G be an amenable locally compact group, and let p, q ∈ ]1,+∞[ be such that 1

p + 1
q = 1. 

Let n be an integer with n ≥ 2. Then the following statements hold:
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(1) a completely bounded n-linear form on Ap(G) is orthosymmetric if and only if it is partitionally or-
thosymmetric;

(2) the map T �→ ϕn
T is a complete isomorphism from PMq(G) onto the space CBn

o (Ap(G), C) of all com-
pletely bounded orthosymmetric n-linear forms on Ap(G);

(3) the map T �→ Pn
T is a complete isomorphism from PMq(G) onto the space Pn

cbo(Ap(G), C) of all com-
pletely bounded orthogonally additive n-homogeneous polynomials on Ap(G).

Proof. Let ϕ be a completely bounded partitionally orthosymmetric n-linear form on Ap(G). We claim that 
ϕ is orthosymmetric. Certainly, we can assume that n ≥ 3. Moreover, since ϕ is known to be symmetric 
(Lemma 3.1), we are reduced to proving that ϕ(f1, f2, . . . , fn) = 0, whenever (f1, f2, . . . , fn) ∈ Ap(G)n is 
such that f1f2 = 0. Let (f1, f2, . . . , fn) ∈ Ap(G)n as above. On account of Lemma 3.1, we have

ϕ(f1, f2, . . . , fn−1, gh) = ϕ(gf1, f2, . . . , fn−1, h)

= ϕ(g, f1f2, . . . , fn−1, h) = 0

for all g, h ∈ Ap(G). Consequently, ϕ(f1, f2, . . . , fn−1, g) = 0 whenever g lies in the linear span J of the set 
Ap(G)Ap(G). Since ϕ is continuous and J is dense in Ap(G), it follows that ϕ(f1, f2, . . . , fn−1, fn) = 0, as 
required. This yields the statement (1).

Let Mn: Ap(G)n → Ap(G) be the n-linear map defined by

Mn(f1, . . . , fn) = f1 · · · fn

for all f1, . . . , fn ∈ Ap(G). Write μ = ‖M2‖CB2(Ap(G),Ap(G)). Then the same argument as in the beginning 
of the proof of Theorem 2.4 applies to show that ‖Mn‖CBn(Ap(G),Ap(G)) ≤ μn−1.

Let [Tij ] ∈ Mk(PMq(G)). Then∥∥[ϕn
Tij

]∥∥
Mk(CBn(Ap(G),C)) =

∥∥[Tij ] ◦Mn

∥∥
CBn(Ap(G),Mk)

≤
∥∥[Tij ]

∥∥
CB(Ap(G),Mk)‖Mn‖CBn(Ap(G),Ap(G)).

Let ϕ ∈ CBn
o (Ap(G), C). According to Lemma 3.1, we have

ϕ(g1f1, . . . , gn−1fn−1, fn) = ϕ(g1, . . . , gn−1, f1 · · · fn)

for all f1, . . . , fn, g1, . . . , gn−1 ∈ Ap(G). Let (ρλ)λ∈Λ be an approximate identity of Ap(G) of bound 1. Then

ϕ(ρλf1, . . . , ρλfn−1, fn) = ϕ(ρλ, . . . , ρλ, f1 · · · fn)

for all (f1, . . . , fn) ∈ Ap(G)n and λ ∈ Λ. We thus get

ϕ(f1, . . . , fn) = lim
λ∈Λ

ϕ(ρλ, . . . , ρλ, f1 · · · fn)

for each (f1, . . . , fn) ∈ Ap(G)n. Let f ∈ Ap(G). By Cohen’s factorization theorem f can be written as a 
product f1 · · · fn with f1, . . . , fn ∈ Ap(G). Therefore the net (ϕ(ρλ, . . . , ρλ, f))λ∈Λ is convergent. Hence we 
may define a linear functional T on Ap(G) by 〈T, f〉 = limλ∈Λ ϕ(ρλ, . . . , ρλ, f) for each f ∈ Ap(G). We now 
show that T is bounded. Indeed,∣∣ϕ(ρλ, . . . , ρλ, f)

∣∣ ≤ ‖ϕ‖Bn(Ap(G),C)‖f‖Ap(G)

for all f ∈ Ap(G) and λ ∈ Λ, which implies |〈T, f〉| ≤ ‖ϕ‖Bn(Ap(G),C)‖f‖Ap(G). It is clear that ϕn
T = ϕ.
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Let [ϕij ] ∈ Mk(CBn
o (Ap(G), C)) and let Tij ∈ PMq(G) be defined by 〈Tij , f〉 = limλ∈Λ ϕij(ρλ, . . . , ρλ, f)

for all f ∈ Ap(G) and i, j ∈ {1, . . . , k}.∥∥[Tij ]
∥∥
Mk(PMq(G)) =

∥∥[Tij ]
∥∥
CB(Ap(G),Mk) =

∥∥[Tij ](k)∥∥
B(Mk(Ap(G)),Mk(Mk)).

Let [frs] ∈ Mk(Ap(G)). Then∥∥[ϕij(ρλ, . . . , ρλ, frs)
]∥∥

Mk(Mk) =
∥∥[ϕij ](1,...,1,k)([ρλ], . . . , [ρλ], [frs]

)∥∥
Mk(Mk)

≤
∥∥[ϕij ](1,...,1,k)∥∥

Bn(M1(Ap(G)),...,M1(Ap(G)),Mk(Ap(G));Mk(Mk))

∥∥[frs]
∥∥
Mk(Ap(G))

≤
∥∥[ϕij ]

∥∥
CBn(Ap(G),Mk)

∥∥[frs]
∥∥
Mk(Ap(G)).

Hence ∥∥[Tij ](k)([frs])∥∥Mk(Mk) ≤
∥∥[ϕij ]

∥∥
CBn(Ap(G),Mk)

∥∥[frs]
∥∥
Mk(Ap(G))

and therefore ∥∥[Tij ](k)∥∥
B(Mk(Ap(G)),Mk(Mk)) ≤

∥∥[ϕij ]
∥∥
CBn(Ap(G),Mk).

This completes our argument for (2). And lastly, Lemma 2.3 and (2) establish (3). �
Corollary 3.3. Let G be a locally compact group, and let p, q ∈ ]1,+∞[ be such that 1

p + 1
q = 1. Let n be an 

integer with n ≥ 2. Suppose that G has an abelian subgroup of finite index. Then the following statements 
hold:

(1) a continuous n-linear form on Ap(G) is orthosymmetric if and only if it is partitionally orthosymmetric;
(2) the map T �→ ϕn

T is an isometry from PMq(G) onto the space Bn
o (Ap(G), C) of all continuous orthosym-

metric n-linear forms on Ap(G);
(3) the map T �→ Pn

T is an isomorphism from PMq(G) onto the space Pn
o (Ap(G), C) of all continuous 

orthogonally additive n-homogeneous polynomials on Ap(G).

Proof. Taking into account the extra statement in Lemma 3.1, the same argument as in Theorem 3.2 applies 
to prove (1) and that every continuous orthosymmetric n-linear form (continuous orthogonally additive 
n-homogeneous polynomial) on Ap(G) is of the form ϕn

T (respectively, Pn
T ) for some T ∈ PMq(G). Finally, 

Lemma 2.1 together with Remark 2.2 show that ‖T‖PMq(G) = ‖ϕn
T ‖Bn(Ap(G),C) for each T ∈ PMq(G). 

Finally, Lemma 2.3 and (2) give (3). �
3.2. Commutative C∗-algebras

Let A be a unital C∗-algebra, and let u be a unitary element of A. Then the map f �→ f(u) gives a
homomorphism from A(T) into A. Furthermore, if f ∈ A(T), then

‖f(u)‖A =

∥∥∥∥∥
+∞∑

k=−∞
f̂(k)uk

∥∥∥∥∥
A

≤
+∞∑

k=−∞

∣∣f̂(k)
∣∣‖u‖kA =

+∞∑
k=−∞

∣∣f̂(k)
∣∣ = ‖f‖A(T).

Theorem 3.4. Let A be a commutative C∗-algebra, and let n be an integer with n ≥ 2. Then the following 
statements hold:
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(1) a continuous n-linear form on A is orthosymmetric if and only if it is partitionally orthosymmetric;
(2) the map T �→ ϕn

T is an isometry from A∗ onto the space Bn
o (A, C) of all continuous orthosymmetric 

n-linear forms on A;
(3) the map T �→ Pn

T is an isomorphism from A∗ onto the space Pn
o (A, C) of all continuous orthogonally 

additive n-homogeneous polynomials on A.

Proof. Let ϕ be a continuous partitionally orthosymmetric n-linear form on A. Fix (a1, . . . , an) ∈ An and 
a unitary element u of the multiplier algebra M(A) of A. We define ψ: A(T)n → C by

ψ(f1, . . . , fn) = ϕ
(
a1f1(u), . . . , anfn(u)

)
for each (f1, . . . , fn) ∈ A(T)n. It is a simple matter to check that ψ is a continuous partitionally orthosym-
metric n-linear form. By Corollary 2.6, ψ = ϕn

T for some T ∈ VN (T). Let 1 and z stand for the functions 
on T defined by 1(z) = 1 and z(z) = z for each z ∈ T. We thus get

ϕ(. . . , aiu, . . . , an) = ψ(1, . . . , iz, . . . ,1) = 〈T,1 · · · iz · · ·1〉
= 〈T,1 · · · z〉 = ψ(1, . . . , z) = ϕ(. . . , ai, . . . , anu)

whenever 1 ≤ i ≤ n. Since every element in A is a linear combination of four unitary elements of M(A), it 
follows that ϕ(. . . , aib, . . . , an) = ϕ(. . . , ai, . . . , anb) for all b ∈ A and 1 ≤ i ≤ n. Hence

ϕ(a1b1, . . . , an−1bn−1, an) = ϕ(b1, . . . , bn−1, a1 · · · an)

for all a1, . . . , an, b1, . . . , bn−1 ∈ A.
We now take an approximate identity (ρλ)λ∈Λ of A of bound 1 and the rest of the proof goes through 

as for Theorem 3.2. We can define ω ∈ A∗ by 〈ω, a〉 = limλ∈Λ ϕ(ρλ, . . . , ρλ, a) for each a ∈ A, which 
satisfies ϕ = ϕn

ω. In particular ϕ is orthosymmetric. Lemma 2.1 together with Remark 2.2 show that 
‖ω‖A∗ = ‖ϕn

T ‖Bn(A,C). Finally, Lemma 2.3 and (2) give (3). �
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