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In this work we study the homogenization for infinitesimal dislocation based 
gradient viscoplasticity with linear kinematic hardening and general non-associative 
monotone plastic flows. The constitutive equations in the models we study are 
assumed to be only of monotone type. Based on the generalized version of Korn’s 
inequality for incompatible tensor fields (the non-symmetric plastic distortion) due 
to Neff/Pauly/Witch, we derive uniform estimates for the solutions of quasistatic 
initial-boundary value problems under consideration and then using a modified 
unfolding operator technique and a monotone operator method we obtain the 
homogenized system of equations. A new unfolding result for the Curl Curl-operator 
is presented in this work as well. The proof of the last result is based on the 
Helmholtz–Weyl decomposition for vector fields in general Lq-spaces.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

We study the homogenization of quasistatic initial-boundary value problems arising in gradient viscoplas-
ticity. The models we study use rate-dependent constitutive equations with internal variables to describe 
the deformation behavior of metals at infinitesimally small strain.

Our focus is on a phenomenological model on the macroscale not including the case of single crystal 
plasticity. Our model has been first presented in [42]. It is inspired by the early work of Menzel and 
Steinmann [38]. Contrary to more classical strain gradient approaches, the model features from the outset 
a non-symmetric plastic distortion field p ∈ M3 [10], a dislocation based energy storage based solely on 
|Curl p| (and not ∇p) and therefore second gradients of the plastic distortion in the form of CurlCurl p
acting as dislocation based kinematical backstresses. We only consider energetic length scale effects and not 
higher gradients in the dissipation.

Uniqueness of classical solutions in the subdifferential case (associated plasticity) for rate-independent 
and rate-dependent formulations is shown in [41]. The existence question for the rate-independent model in 
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terms of a weak reformulation is addressed in [42]. The rate-independent model with isotropic hardening is 
treated in [21,42]. The well-posedness of a rate-dependent variant without isotropic hardening is presented 
in [49,50]. First numerical results for a simplified rate-independent irrotational formulation (no plastic spin, 
symmetric plastic distortion p) are presented in [46]. In [26,55] well-posedness for a rate-independent model 
of Gurtin and Anand [28] is shown under the decisive assumption that the plastic distortion is symmetric 
(the irrotational case), in which case one may really speak of a strain gradient plasticity model, since the 
full gradient acts on the symmetric plastic strain.

Let us shortly revisit the modeling ingredients of the gradient plasticity model under consideration. This 
part does not contain new results but is added for clarity of exposition. As usual in infinitesimal plasticity 
theory, the basic variables are the displacement u : Ω → R

3 and the plastic distortion p : Ω → R
3×3. We 

split the total displacement gradient ∇u into non-symmetric elastic and non-symmetric plastic distortions

∇u = e + p.

For invariance reasons, the elastic energy contribution may only depend on the symmetric elastic strains 
sym e = sym(∇u − p). For more on the basic invariance questions related to this issue dictating this type of 
behavior, see [59,40]. We assume as well plastic incompressibility tr p = 0, as is usual. The thermodynamic 
potential of our model is therefore written as

∫
Ω

(
C[x]

(
sym(∇u− p)

)(
sym(∇u− p)

)︸ ︷︷ ︸
elastic energy

+ C1[x]
2 |dev sym p|2︸ ︷︷ ︸

kinematical hardening

+ C2

2 |Curl p|2︸ ︷︷ ︸
dislocation storage

+ u · b︸︷︷︸
external volume forces

)
dx (1)

The positive definite elasticity tensor C is able to represent the elastic anisotropy of the material. The plastic 
flow has the form

∂tp ∈ g
(
σ − C1[x] dev sym p− C2 Curl Curl p

)
, (2)

where σ = C[x] sym(∇u − p) is the elastic symmetric Cauchy stress of the material and g is a multivalued 
monotone flow function which is not necessary the subdifferential of a convex plastic potential (associative 
plasticity). This ensures the validity of the second law of thermodynamics, see [42].

In this generality, our formulation comprises certain non-associative plastic flows in which the yield 
condition and the flow direction are independent and governed by distinct functions. Moreover, the flow 
function g is supposed to induce a rate-dependent response as all materials are, in reality, rate-dependent.

Clearly, in the absence of energetic length scale effects (i.e. C2 = 0), the Curl Curl p-term is absent. 
In general we assume that g maps symmetric tensors to symmetric tensors. Thus, for C2 = 0 the plastic 
distortion remains always symmetric and the model reduces to a classical plasticity model. Therefore, the 
energetic length scale is solely responsible for the plastic spin (the non-symmetry of p) in the model.

Regarding the boundary conditions necessary for the formulation of the higher order theory we assume 
that the so-called micro-hard boundary condition (see [29]) is specified, namely

p× n|∂Ω = 0.

This is the correct boundary condition for tensor fields in L2
Curl-spaces which admits tangential traces. We 

combine this with a new inequality extending Korn’s inequality to incompatible tensor fields, namely
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∃C = C(Ω) > 0 ∀p ∈ L2
Curl

(
Ω,M3) : p× n|∂Ω = 0 :

‖p‖L2(Ω)︸ ︷︷ ︸
plastic distortion

≤ C(Ω)
(
‖sym p‖L2(Ω)︸ ︷︷ ︸
plastic strain

+ ‖Curl p‖L2(Ω)︸ ︷︷ ︸
dislocation density

)
. (3)

Here, the domain Ω needs to be sliceable, i.e. cuttable into finitely many simply connected subdomains 
with Lipschitz boundaries. This inequality has been derived in [43–45] and is precisely motivated by the 
well-posedness question for our model [42]. The inequality (3) expresses the fact that controlling the plastic 
strain sym p and the dislocation density Curl p in L2(Ω) gives a control of the plastic distortion p in L2(Ω)
provided the correct boundary conditions are specified: namely the micro-hard boundary condition. Since 
we assume that tr(p) = 0 (plastic incompressibility) the quadratic terms in the thermodynamic potential 
provide a control of the right hand side in (3).

It is worthy to note that with g only monotone and not necessarily a subdifferential the powerful en-
ergetic solution concept [37,26,35] cannot be applied. In our model we face the combined challenge of a 
gradient plasticity model based on the dislocation density tensor Curl p involving the plastic spin, a general 
non-associative monotone flow-rule and a rate-dependent response.

Setting of the homogenization problem Let Ω ⊂ R
3 be an open bounded set, the set of material points of 

the solid body, with a C2-boundary and Y ⊂ R
3 be a set having the paving property with respect to a basis 

(b1, b2, b3) defining the periods, a reference cell. By Te we denote a positive number (time of existence), 
which can be chosen arbitrarily large, and for 0 < t ≤ Te

Ωt = Ω × (0, t).

The sets, M3 and S3 denote the sets of all 3 ×3–matrices and of all symmetric 3 ×3–matrices, respectively. 
Let sl(3) be the set of all traceless 3 × 3–matrices, i.e.

sl(3) =
{
v ∈ M3 ∣∣ tr v = 0

}
.

Unknown in our small strain formulation are the displacement uη(x, t) ∈ R
3 of the material point x at time t

and the non-symmetric infinitesimal plastic distortion pη(x, t) ∈ sl(3).
The model equations of the problem are

− divx ση(x, t) = b(x, t), (4)

ση(x, t) = C[x/η]
(
sym

(
∇xuη(x, t) − pη(x, t)

))
, (5)

∂tpη(x, t) ∈ g
(
x/η,Σlin

η (x, t)
)
, Σlin

η = Σlin
e,η + Σlin

sh,η + Σlin
curl,η, (6)

Σlin
e,η = ση, Σlin

sh,η = −C1[x/η] dev sym pη, Σlin
curl,η = −C2 Curl Curl pη,

which must be satisfied in Ω × [0, Te). Here, C2 ≥ 0 is a given material constant independent of η and Σlin
η

is the infinitesimal Eshelby stress tensor driving the evolution of the plastic distortion pη and η is a scaling 
parameter of the microstructure. The homogeneous initial condition and Dirichlet boundary condition are

pη(x, 0) = 0, x ∈ Ω, (7)

pη(x, t) × n(x) = 0, (x, t) ∈ ∂Ω × [0, Te), (8)

uη(x, t) = 0, (x, t) ∈ ∂Ω × [0, Te), (9)
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where n is a normal vector on the boundary ∂Ω.1 For simplicity we consider only homogeneous boundary 
condition and we assume that the cell of periodicity is given by Y = [0, 1)3. Then, we assume that C1 :
Y → R, a given material function, is measurable, periodic with the periodicity cell Y and satisfies the 
inequality

C1[y] ≥ α1 > 0 (10)

for all y ∈ Y and some positive constant α1. For every y ∈ Y the elasticity tensor C[y] : S3 → S3 is linear 
symmetric and such that there exist two positive constants 0 < α ≤ β satisfying

α|ξ|2 ≤ Cijkl[y]ξklξij ≤ β|ξ|2 for any ξ ∈ S3. (11)

We assume that the mapping y �→ C[y] : R3 → S3 is measurable and periodic with the same periodicity 
cell Y . Due to the above assumption (C1 > 0), the classical linear kinematic hardening is included in 
the model. Here, the nonlocal backstress contribution is given by the dislocation density motivated term 
Σlin

curl,η = −C2 Curl Curl pη together with corresponding Neumann conditions.
For the model we require that the nonlinear constitutive mapping v �→ g(y, v) : M3 → 2sl(3) is monotone 

for all y ∈ Y , i.e. it satisfies

0 ≤ (v1 − v2) ·
(
v∗1 − v∗2

)
, (12)

for all vi ∈ M3, v∗i ∈ g(y, vi), i = 1, 2 and all y ∈ Y . We also require that

0 ∈ g(y, 0), a.e. y ∈ Y. (13)

The mapping y �→ g(y, ·) : R3 → 2sl(3) is periodic with the same periodicity cell Y . Given are the volume 
force b(x, t) ∈ R

3 and the initial datum p(0)(x) ∈ sl(3).

Remark 1.1. It is well known that classical viscoplasticity (without gradient effects) gives rise to a well-posed 
problem. We extend this result to our formulation of rate-dependent gradient plasticity. The presence of the 
classical linear kinematic hardening in our model is related to C1 > 0 whereas the presence of the nonlocal 
gradient term is always related to C2 > 0.

The development of the homogenization theory for the quasi-static initial boundary value problem of 
monotone type in the classical elasto/visco-plasticity introduced by Alber in [2] has started with the work [3], 
where the homogenized system of equations has been derived using the formal asymptotic ansatz. In the 
following work [4] Alber justified the formal asymptotic ansatz for the case of positive definite free energy,2
employing the energy method of Murat–Tartar, yet only for local smooth solutions of the homogenized 
problem. It is shown there that the solutions of elasto/visco-plasticity problems can be approximated in the 
L2(Ω)-norm by the smooth functions constructed from the solutions of the homogenized problem. Later 
in [47], under the assumption that the free energy is positive definite, it is proved that the difference of the 
solutions of the microscopic problem and the solutions constructed from the homogenized problem, which 
both need not be smooth, tends to zero in the L2(Ω×Y )-norm, where Y is the periodicity cell. Based on the 
results obtained in [47], in [5] the convergence in L2(Ω×Y ) is replaced by convergence in L2(Ω). In the mean-
time, for the rate-independent problems in plasticity similar results are obtained in [39] using the unfolding 
operator method (see Section 3) and methods of energetic solutions due to Mielke. For special rate-dependent 
models of monotone type, namely for rate-dependent generalized standard materials, the two-scale conver-

1 Here, v × n with v ∈ M3 and n ∈ R
3 denotes a row by column operation.

2 Positive definite energy corresponds to linear kinematic hardening behavior of materials.
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gence of the solutions of the microscopic problem to the solutions of the homogenized problem has been 
shown in [61,62]. The homogenization of the Prandtl–Reuss model is performed in [57,62]. In [48] the author 
considered the rate-dependent problems of monotone type with constitutive functions g, which need not be 
subdifferentials, but which belong to the class of functions M(Ω, M3, q, α, m) introduced in Section 5. Using 
the unfolding operator method and in particular the homogenization methods developed in [18], for this class 
of functions the homogenized equations for the viscoplactic problems of monotone type are obtained in [48].

In the present work the construction of the homogenization theory for the initial boundary value problem 
(4)–(9) is based on the existence result derived in [50] (see Theorem 5.6) and on the homogenization 
techniques developed in [48] for classical viscoplasticity of monotone type. The existence result in [50]
extends the well-posedness for infinitesimal dislocation based gradient viscoplasticity with linear kinematic 
hardening from the subdifferential case (see [49]) to general non-associative monotone plastic flows for 
sliceable domains. In this work we also assume that the domain Ω is sliceable and that the monotone 
function g : R3×M3 → 2sl(3) belongs to the class M(Ω, M3, q, α, m). For sliceable domains Ω, based on the 
inequality (3), we are able to derive then uniform estimates for the solutions of (4)–(9) in Lemma 5.8. Using 
the uniform estimates for the solutions of (4)–(9), the unfolding operator method and the homogenization 
techniques developed in [18,48], for the class of functions M(Ω, M3, q, α, m) we obtain easily the homogenized 
equations for the original problem under consideration (see Theorem 5.7). The distinguish feature of this 
work is that we use a variant of the unfolding operator due to Francu (see [24,25]) and not the one defined 
in [17]. The modified unfolding operator helps to resolve the problems connecting with the need of the 
careful treatment of the boundary layer in the definition of the unfolding operator in [17]. To the best our 
knowledge this is the first homogenization result obtained for the problem (4)–(9). We note that similar 
homogenization results for the strain-gradient model of Fleck and Willis [22] are derived in [23,27,31] using 
the unfolding method together with the Γ -convergence method in the rate-independent setting. In [23] the 
authors, based on the assumption that the model under consideration is of rate-independent type, are able 
to treat the case when C2 is a Y -periodic function as well. In the rate-independent setting this is possible 
due to the fact that the whole system (4)–(9) can be rewritten as a standard variational inequality (see [30]) 
and then the subsequent usage of the techniques of the convex analysis enable the passage to the limit in 
the model equations. Contrary to this, in the rate-independent case this reduction to a single variational 
inequality is not possible and one is forced to use the monotonicity argument to study the asymptotic 
behavior of the third term Σlin

curl,η in (6).

Notation Suppose that Ω is a bounded domain with a C2-boundary ∂Ω. Throughout the whole work we 
choose the numbers q, q∗ satisfying the following conditions

1 < q, q∗ < ∞ and 1/q + 1/q∗ = 1,

and | ·| denotes a norm in Rk. Moreover, the following notations are used in this work. The space Wm,q(Ω, Rk)
with q ∈ [1, ∞] consists of all functions in Lq(Ω, Rk) with weak derivatives in Lq(Ω, Rk) up to order m. If m is 
not integer, then Wm,q(Ω, Rk) denotes the corresponding Sobolev–Slobodecki space. We set Hm(Ω, Rk) =
Wm,2(Ω, Rk). The norm in Wm,q(Ω, Rk) is denoted by ‖ · ‖m,q,Ω (‖ · ‖q := ‖ · ‖0,q,Ω). The operator Γ0
defined by

Γ0 : v ∈ W 1,q(Ω,Rk
)
�→ W 1−1/q,q(∂Ω,Rk

)
denotes the usual trace operator. The space Wm,q

0 (Ω, Rk) with q ∈ [1, ∞] consists of all functions v in 
Wm,q(Ω, Rk) with Γ0v = 0. One can define the bilinear form on the product space Lq(Ω, M3) ×Lq∗(Ω, M3)
by

(ξ, ζ)Ω =
∫

ξ(x) · ζ(x)dx.

Ω
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The space

Lq
Curl

(
Ω,M3) =

{
v ∈ Lq

(
Ω,M3) ∣∣ Curl v ∈ Lq

(
Ω,M3)}

is a Banach space with respect to the norm

‖v‖q,Curl = ‖v‖q + ‖Curl v‖q.

The well known result on the generalized trace operator (see [58, Section II.1.2]) can be easily adopted 
to the functions with values in M3. Then, according to this result, there is a bounded operator Γn on 
Lq

Curl(Ω, M3)

Γn : v ∈ Lq
Curl

(
Ω,M3) �→ (

W 1−1/q∗,q∗(∂Ω,M3))∗
with

Γnv = v × n|∂Ω if v ∈ C1(Ω̄,M3),
where X∗ denotes the dual of a Banach space X. Next,

Lq
Curl,0

(
Ω,M3) =

{
w ∈ Lq

Curl
(
Ω,M3) ∣∣ Γn(w) = 0

}
.

Let us define spaces V q(Ω, M3) and Xq(Ω, M3) by

V q
(
Ω,M3) =

{
v ∈ Lq

(
Ω,M3) ∣∣ div v,Curl v ∈ Lq

(
Ω,M3), Γnv = 0

}
,

Xq
(
Ω,M3) =

{
v ∈ Lq

(
Ω,M3) ∣∣ div v,Curl v ∈ Lq

(
Ω,M3), Γ0v = 0

}
,

which are Banach spaces with respect to the norm

‖v‖V q

(
‖v‖Xq

)
= ‖v‖q + ‖Curl v‖q + ‖div v‖q.

According to [34, Theorem 2]3 the spaces V q(Ω, M3) and Xq(Ω, M3) are continuously imbedded into 
W 1,q(Ω, M3). We define V q

σ (Ω, M3) and Xq
σ(Ω, M3) by

V q
σ

(
Ω,M3) :=

{
v ∈ V q

(
Ω,M3) ∣∣ div v = 0

}
,

Xq
σ

(
Ω,M3) :=

{
v ∈ Xq

(
Ω,M3) ∣∣ div v = 0

}
,

and denote by V q
har(Ω, M3) and Xq

har(Ω, M3) the Lq-spaces of harmonic functions on Ω as

V q
har

(
Ω,M3) :=

{
v ∈ V q

σ

(
Ω,M3) ∣∣ Curl v = 0

}
,

Xq
har

(
Ω,M3) :=

{
v ∈ Xq

σ

(
Ω,M3) ∣∣ Curl v = 0

}
.

Then the spaces V q
har(Ω, M3) and Xq

har(Ω, M3) for every fixed q, 1 < q < ∞, coincides with the spaces 
Vhar(Ω, M3) and Xhar(Ω, M3) given by

Vhar
(
Ω,M3) =

{
v ∈ C∞(

Ω̄,M3) ∣∣ div v = 0,Curl v = 0 with v · n = 0 on ∂Ω
}
,

Xhar
(
Ω,M3) =

{
v ∈ C∞(

Ω̄,M3) ∣∣ div v = 0,Curl v = 0 with v × n = 0 on ∂Ω
}
,

3 This theorem has to be applied to each row of a function with values in M3 to obtain the desired result.
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respectively (see [34, Theorem 2.1(1)]). The spaces Vhar(Ω, M3) and Xhar(Ω, M3) are finite dimensional 
vector spaces ([34, Theorem 1]).

We also define the space Zq
Curl(Ω, M3) by

Zq
Curl

(
Ω,M3) =

{
v ∈ Lq

Curl,0
(
Ω,M3) ∣∣ Curl Curl v ∈ Lq

(
Ω,M3)},

which is a Banach space with respect to the norm

‖v‖Zq
Curl

= ‖v‖q,Curl + ‖Curl Curl v‖q.

The space Wm,q
per (Y, Rk) denotes the Banach space of Y -periodic functions in Wm,q

loc (Rk, Rk) equipped 
with the Wm,q(Y, Rk)-norm.

For functions v defined on Ω× [0, ∞) we denote by v(t) the mapping x �→ v(x, t), which is defined on Ω. 
The space Lq(0, Te; X) denotes the Banach space of all Bochner-measurable functions u : [0, Te) → X such 
that t �→ ‖u(t)‖qX is integrable on [0, Te). Finally, we frequently use the spaces Wm,q(0, Te; X), which consist 
of Bochner measurable functions having q-integrable weak derivatives up to order m.

2. Maximal monotone operators

In this section we recall some basics about monotone and maximal monotone operators. For more details 
see [9,32,53], for example.

Let V be a reflexive Banach space with the norm ‖ · ‖, V ∗ be its dual space with the norm ‖ · ‖∗. The 
brackets 〈·, ·〉 denotes the dual pairing between V and V ∗. Under V we shall always mean a reflexive Banach 
space throughout this section. For a multivalued mapping A : V → 2V ∗ the sets

D(A) = {v ∈ V | Av �= ∅}

and

Gr A =
{[

v, v∗
]
∈ V × V ∗ ∣∣ v ∈ D(A), v∗ ∈ Av

}
are called the effective domain and the graph of A, respectively.

Definition 2.1. A mapping A : V → 2V ∗ is called monotone if and only if the inequality holds

〈
v∗ − u∗, v − u

〉
≥ 0 ∀

[
v, v∗

]
,
[
u, u∗] ∈ Gr A.

A monotone mapping A : V → 2V ∗ is called maximal monotone iff the inequality

〈
v∗ − u∗, v − u

〉
≥ 0 ∀

[
u, u∗] ∈ Gr A

implies [v, v∗] ∈ Gr A.
A mapping A : V → 2V ∗ is called generalized pseudomonotone iff the set Av is closed, convex and 

bounded for all v ∈ D(A) and for every pair of sequences {vn} and {v∗n} such that v∗n ∈ Avn, vn ⇀ v0, 
v∗n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈
v∗n, vn − v0

〉
≤ 0,

we have that [v0, v∗0 ] ∈ Gr A and 〈v∗n, vn〉 → 〈v∗0 , v0〉.
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A mapping A : V → 2V ∗ is called strongly coercive iff either D(A) is bounded or D(A) is unbounded and 
the condition

〈v∗, v − w〉
‖v‖ → +∞ as ‖v‖ → ∞,

[
v, v∗

]
∈ Gr A,

is satisfied for each w ∈ D(A).

It is well known ([53, p. 105]) that if A is a maximal monotone operator, then for any v ∈ D(A) the image 
Av is a closed convex subset of V ∗ and the graph Gr A is demi-closed.4 A maximal monotone operator is 
also generalized pseudomonotone (see [9,32,53]).

Remark 2.2. We recall that the subdifferential of a lower semi-continuous and convex function is maximal 
monotone (see [54, Theorem 2.25]).

Definition 2.3. The duality mapping J : V → 2V ∗ is defined by

J(v) =
{
v∗ ∈ V ∗ ∣∣ 〈v∗, v〉 = ‖v‖2 =

∥∥v∗∥∥2
∗
}

for all v ∈ V .

Without loss of generality (due to Asplund’s theorem) we can assume that both V and V ∗ are strictly 
convex, i.e. that the unit ball in the corresponding space is strictly convex. In virtue of [9, Theorem II.1.2], 
the equation

J(vλ − v) + λAvλ � 0

has a solution vλ ∈ D(A) for every v ∈ V and λ > 0 if A is maximal monotone. The solution is unique (see 
[9, p. 41]).

Definition 2.4. Setting

vλ = jAλ v and Aλv = −λ−1J(vλ − v)

we define two single valued operators: the Yosida approximation Aλ : V → V ∗ and the resolvent jAλ : V →
D(A) with D(Aλ) = D(jAλ ) = V .

By the definition, one immediately sees that Aλv ∈ A(jAλ v). For the main properties of the Yosida 
approximation we refer to [9,32,53] and mention only that both are continuous operators and that Aλ is 
bounded and maximal monotone.

Convergence of maximal monotone graphs In the presentation of the next subsections we follow the 
work [18], where the reader can also find the proofs of the results mentioned here.

The derivation of the homogenized equations for the initial boundary value problem (4)–(9) is based on 
the notion of the convergence of the graphs of maximal monotone operators. According to Brezis [11] and 
Attouch [8], the convergence of the graphs of maximal monotone operators is defined as follows.

4 A set A ∈ V × V ∗ is demi-closed if vn converges strongly to v0 in V and v∗
n converges weakly to v∗

0 in V ∗ (or vn converges 
weakly to v0 in V and v∗

n converges strongly to v∗
0 in V ∗) and [vn, v∗

n] ∈ Gr A, then [v, v∗] ∈ Gr A.
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Definition 2.5. Let An, A : V → 2V ∗ be maximal monotone operators. The sequence An converges to A
as n → ∞, (An � A), if for every [v, v∗] ∈ Gr A there exists a sequence [vn, v∗n] ∈ Gr An such that 
[vn, v∗n] → [v, v∗] strongly in V × V ∗ as n → ∞.

Obviously, if An and A are everywhere defined, continuous and monotone, then the pointwise convergence, 
i.e. if for every v ∈ V , An(v) → A(v), implies the convergence of the graphs. The converse is true in 
finite-dimensional spaces.

The next theorem is the main mathematical tool in the derivation of the homogenized equations for the 
problem (4)–(9).

Theorem 2.6. Let An, A : V → 2V ∗ be maximal monotone operators, and let [vn, v∗n] ∈ Gr An and [v, v∗] ∈
V × V ∗. If, as n → ∞, An � A, vn ⇀ v0, v∗n ⇀ v∗0 ∈ V ∗ and

lim sup
n→∞

〈
v∗n, vn

〉
≤

〈
v∗0 , v0

〉
, (14)

then [v0, v∗0 ] ∈ Gr A and

lim inf
n→∞

〈
v∗n, vn

〉
=

〈
v∗0 , v0

〉
.

Proof. See [18, Theorem 2.8]. �
Remark 2.7. We note that if a sequence [vn, v∗n] ∈ Gr An in the definition of the graph convergence of 
maximal monotone operators converges strongly to some [v, v∗] in V ×V ∗ as n → ∞, then the condition (14)
is satisfied and due to Theorem 2.6 the limit [v, v∗] belongs to the graph of the operator A.

The convergence of the graphs of multi-valued maximal monotone operators can be equivalently stated in 
term of the pointwise convergence of the corresponding single-valued Yosida approximations and resolvents.

Theorem 2.8. Let An, A : V → 2V ∗ be maximal monotone operators and λ > 0. The following statements 
are equivalent:

(a) An � A as n → ∞;
(b) for every v ∈ V , jAn

λ v → jAλ v as n → ∞;
(c) for every v ∈ V , An

λv → Aλv as n → ∞;
(d) An

λ � Aλ as n → ∞.

Moreover, the convergences jAn

λ v → jAλ v and An
λv → Aλv are uniform on strongly compact subsets of V .

Proof. See [18, Theorem 2.9]. �
Canonical extensions of maximal monotone operators In this subsection we present briefly some facts 
about measurable multi-valued mappings. We assume that V , and hence V ∗, is separable and denote the 
set of maximal monotone operators from V to V ∗ by M(V × V ∗). Further, let (S, Σ(S), μ) be a σ-finite 
μ-complete measurable space. The notion of measurability for maximal monotone mappings can be defined 
in terms of the measurability for appropriate single-valued mappings.

Definition 2.9. A function A : S → M(V × V ∗) is measurable iff for every v ∈ E, x �→ j
A(x)

v is measurable.
λ
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For further reading on measurable multi-valued mappings we refer the reader to [14,18,32,52].
Given a mapping A : S → M(V × V ∗), one can define a monotone graph from Lp(S, V ) to Lq(S, V ∗), 

where 1/p + 1/q = 1, as follows:

Definition 2.10. Let A : S → M(V × V ∗), the canonical extension of A from Lp(S, V ) to Lq(S, V ∗), where 
1/p + 1/q = 1, is defined by:

Gr A =
{[
v, v∗

]
∈ Lp(S, V ) × Lq

(
S, V ∗) ∣∣ [v(x), v∗(x)

]
∈ Gr A(x) for a.e. x ∈ S

}
.

Monotonicity of A defined in Definition 2.10 is obvious, while its maximality follows from the next 
proposition.

Proposition 2.11. Let A : S → M(V × V ∗) be measurable. If Gr A �= ∅, then A is maximal monotone.

Proof. See [18, Proposition 2.13]. �
We have to point out here that the maximality of A(x) for almost every x ∈ S does not imply the 

maximality of A as the latter can be empty [18]: S = (0, 1), and Gr A(x) = {[v, v∗] ∈ R × R | v∗ = x−1/q}.
For given mappings A, An : S → M(V ×V ∗) and their canonical extensions A, An, one can ask whether 

the pointwise convergence An(x) � A(x) implies the convergence of the graphs of the corresponding 
canonical extensions An � A. The answer is given by the next theorem.

Theorem 2.12. Let A, An : S → M(V × V ∗) be measurable. Assume

(a) for almost every x ∈ S, An(x) � A(x) as n → ∞,
(b) A and An are maximal monotone,
(c) there exist [αn, βn] ∈ Gr An and [α, β] ∈ Lp(S, V ) × Lq(S, V ∗) such that [αn, βn] → [α, β] strongly in 

Lp(S, V ) × Lq(S, V ∗) as n → ∞,

then An � A.

Proof. See [18, Proposition 2.16]. �
We note that assumption (c) in Theorem 2.12 cannot be dropped in virtue of Remark 2.16 in [18].

3. The periodic unfolding

The derivation of the homogenized problem for (4)–(9) is based on the periodic unfolding operator 
method. In 1990, Arbogast, Douglas and Hornung used a so-called dilation operator to study the homoge-
nization of double-porosity periodic medium in [7] (see [12,13] for further applications of the method). This 
idea has been extended and further developed in [16] for two-scale and multi-scale homogenization under 
the name of “unfolding method”. Nowadays there exists an extensive literature concerning the applications 
and extensions of the unfolding operator method. We recommend an interested reader to have a look into 
the following survey papers [15,17] and in the literature cited there. We recall briefly the definition of the 
unfolding operator due to Cioranescu, Damlamian and Griso [16,17]:

Let Ω ⊂ R
3 be an open set and Y = [0, 1)3. Let (e1, e2, e3) denote the standard basis in R3. For z ∈ R

3, 
[z]Y denotes a linear combination 

∑3
j=1 djej with {d1, d2, d3} ∈ Z such that z − [z]Y belongs to Y , and set

{z}Y := z − [z]Y ∈ Y v ∈ R
3.
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Then, for each x ∈ R
3, one has

x = η

([
x

η

]
Y

+ y

)
.

We use the following notations:

Ξη =
{
ξ ∈ Z

k
∣∣ η(ξ + Y ) ⊂ Ω

}
, Ω̂η = int

{ ⋃
ξ∈Ξη

(ηξ + ηY )
}
, Λη = Ω \ Ω̂η.

The set Ω̂η is the largest union of η(ξ + Y ) cells (ξ ∈ Z
3) included in Ω, while Λη is the subset of Ω

containing the parts from η(ξ + Y ) cells intersecting the boundary ∂Ω.

Definition 3.1. Let Y be a reference cell, η be a positive number and a map v : Ω → R
k. The unfolding 

operator Tη(v) : Ω × Y → R
k is defined by

(Tηv)(x, y) :=
{
v
(
η
[
x
η

]
Y

+ ηy
)
, a.e. (x, y) ∈ Ω̂η × Y,

0, a.e. (x, y) ∈ Λη × Y.
(15)

From Definition 3.1 it easily follows that, for q ∈ [1, ∞[, the operator Tη is linear and continuous from 
Lq(Ω, Rk) to Lq(Ω × Y, Rk) and that or every φ in L1(Ω, Rk) one has

1
|Y |

∫
Ω×Y

Tη(φ)(x, y)dxdy =
∫
Ω̂η

φ(x)dx (16)

and ∣∣∣∣
∫
Ω̂η

φ(x)dx− 1
|Y |

∫
Ω×Y

Tη(φ)(x, y)dxdy
∣∣∣∣ ≤

∫
Λη

∣∣φ(x)
∣∣dx.

Obviously, if φη ∈ L1(Ω, Rk) satisfies

∫
Λη

∣∣φη(x)
∣∣dx → 0, (17)

then ∫
Ω

φη(x)dx− 1
|Y |

∫
Ω×Y

Tη(φη)(x, y)dxdy → 0.

In [17], each sequence φη fulfilling (17) has been called the sequence satisfying unfolding criterion for integrals 
and this has been denoted as follows∫

Ω

φη(x)dx
Tη� 1

|Y |

∫
Ω×Y

Tη(φη)(x, y)dxdy.

The fact, that we cannot consider the integration on the right hand side in (16) over the whole domain Ω
and have to establish the validity of the unfolding criterion for integrals for a sequence of functions, can 
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cause some difficulty due to the necessity of the careful treatment of the boundary layer in (17). In [24,25]
this problem has been resolved by extending the unfolding operator by the identity:

(Tηv)(x, y) :=
{
v
(
η
[
x
η

]
Y

+ ηy
)
, a.e. (x, y) ∈ Ω̂η × Y,

v(x), a.e. (x, y) ∈ Λη × Y.
(18)

The unfolding operator in (18) conserves the integral, i.e. every φ in L1(Ω, Rk) one has

1
|Y |

∫
Ω×Y

Tη(φ)(x, y)dxdy =
∫
Ω

φ(x)dx,

which implies that it is an isometry between Lq(Ω, Rk) and Lq(Ω × Y, Rk). In case of a general bounded 
domain Ω, i.e. when |Λη| > 0 and |Λη| → 0, both definitions of the unfolding operator (15) and (18) are 
equivalent for the sequences, which are bounded in Lq(Ω, Rk). For the sequences, which are unbounded in 
Lq(Ω, Rk), the definitions differ (see [25, Section 4]). Since in this work we are dealing only with bounded 
sequence, we shall not introduce a new notation for the unfolding operator (18) and use the results in [17], 
which are proved for bounded sequences in Lq(Ω, Rk) and the unfolding operator defined by (15).

Proposition 3.2. Let q belong to [1, ∞[.

(a) For any v ∈ Lq(Ω, Rk), Tη(v) → v strongly in Lq(Ω × Y, Rk),
(b) Let vη be a bounded sequence in Lq(Ω, Rk) such that vη → v strongly in Lq(Ω, Rk), then

Tη(vη) → v, strongly in Lq
(
Ω × Y,Rk

)
.

(c) For every relatively weakly compact sequence vη in Lq(Ω, Rk), the corresponding Tη(vη) is relatively 
weakly compact in Lq(Ω × Y, Rk). Furthermore, if

Tη(vη) ⇀ v̂ in Lq
(
Ω × Y,Rk

)
,

then

vη ⇀
1
|Y |

∫
Y

v̂dy in Lq
(
Ω,Rk

)
.

Proof. See [17, Proposition 2.9]. �
Next results present some properties of the restriction of the unfolding operator to the space W 1,q(Ω, Rk).

Proposition 3.3. Let q belong to ]1, ∞[. Let vη converge weakly in W 1,q(Ω, Rk) to v. Then

Tη(vη) ⇀ v in Lq
(
Ω,W 1,q

per
(
Y,Rk

))
.

Proof. See [17, Corollary 3.2, Corollary 3.3]. �
Proposition 3.4. Let q belong to ]1, ∞[. Let vη converge weakly in W 1,q(Ω, Rk) to some v. Then, up to a 
subsequence, there exists some v̂ ∈ Lq(Ω, W 1,q

per(Y, Rk)) such that

Tη(∇vη) ⇀ ∇v + ∇y v̂ in Lq
(
Ω × Y,Rk

)
.
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Proof. See [17, Theorem 3.5]. �
The last proposition can be generalized to Wm,q(Ω, Rk)-spaces with m ≥ 1.

Proposition 3.5. Let q belong to ]1, ∞[ and m ≥ 1. Let vη converge weakly in Wm,q(Ω, Rk) to some v. Then, 
up to a subsequence, there exists some v̂ ∈ Lq(Ω, Wm,q

per (Y, Rk)) such that

Tη
(
Dlvη

)
⇀ Dlv in Lq

(
Ω,Wm−l,q

(
Y,Rk

))
for |l| ≤ m− 1,

Tη
(
Dlvη

)
⇀ Dlv + Dl

y v̂ in Lq
(
Ω × Y,Rk

)
for |l| = m

Proof. See [17, Theorem 3.6]. �
For a multi-valued function h ∈ M(Ω, Rk, α, m)5 we define the unfolding operator as follows.

Definition 3.6. Let Y be a periodicity cell, η be a positive number and a map h ∈ M(Ω, Rk, p, α, m). The 
unfolding operator Tη(h) : Ω × Y × R

k → 2Rk is defined by

Tη(h)(x, y, v) :=
{
h
(
η
[
x
η

]
Y

+ ηy, v
)
, a.e. (x, y) ∈ Ω̂η × Y, v ∈ R

k,

|v|p−2v, a.e. (x, y) ∈ Λη × Y, v ∈ R
k.

Obviously, by its definition the unfolding operator of a multi-valued function from M(Ω, Rk, α, m) belongs 
to the set M(Ω × Y, Rk, α, m).

We note that the periodic unfolding method described above is an alternative to the two-scale convergence 
method introduced in [51] and further developed in [6]. More precisely, the two-scale convergence of a 
bounded sequence vη in Lp(Ω, Rk) is equivalent to the weak convergence of the corresponding unfolded 
sequence Tη(vη) in Lp(Ω × Y, Rk) (see [17, Proposition 2.14] or [24,25,36]).

4. Unfolding the Curl Curl-operator

Our method is based on the Helmholtz–Weyl decomposition for vector fields in general Lq-spaces over 
a domain Ω with a C2-boundary ∂Ω. It turns out (see [34, Theorem 2.1(2)]) that the following theorem 
holds.

Theorem 4.1. Let 1 < q < ∞. Every v ∈ Lq(Ω, R3) can be uniquely decompose as

v = h + Curlw + ∇z, (19)

where h ∈ Xq
har(Ω, R3), w ∈ V q

σ (Ω, R3) and z ∈ W 1,q(Ω, R3), and the triple (h, w, z) satisfies the inequality

‖h‖q + ‖w‖1,q,Ω + ‖z‖1,q,Ω ≤ C‖v‖q, (20)

where C is a constant depending on Ω and q. If there is another triple of functions (h̃, w̃, ̃z) such that v can 
be written in the form

v = h̃ + Curl w̃ + ∇z̃,

with h̃ ∈ Xq
har(Ω, R3), w̃ ∈ V q

σ (Ω, R3) and z̃ ∈ W 1,q(Ω, R3), then it holds

h = h̃, Curlw = Curl w̃, ∇z = ∇z̃.

5 The class of functions h ∈ M(Ω, Rk, α, m) is defined in Definition 5.1.
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Remark 4.2. If L denotes the dimension of Vhar(Ω, R3), i.e. dim Vhar(Ω, R3) = L, and {φ1, ..., φL} is a basis 
of Vhar(Ω, R3), then it holds V q(Ω, R3) ⊂ W 1,q(Ω, R3) with the estimate

‖v‖q + ‖∇v‖q ≤ C

(
‖Curl v‖q + ‖div v‖q +

L∑
i=1

∣∣(v, φi)
∣∣)

for all v ∈ V q(Ω, R3), where C = C(Ω, q) ([34, Theorem 2.4(2)]). The proof of the above inequality 
with 

∑L
i=1 |(v, φi)| replaced by ‖v‖q is performed in [34, Lemma 4.5] (for q = 2 it can be found in [20, 

Theorem VII.6.1]). If we assume that the boundary ∂Ω has L +1 smooth connected components Γ0, Γ1, ..., ΓL

such that Γ1, ..., ΓL lie inside Γ0 with Γi ∩ Γj = ∅ for i �= j and

∂Ω =
L⋃

i=0
Γi,

then it holds ([34, Appendix A])

dimVhar
(
Ω,R3) = L.

If the function v in (19) is more regular, then the function w can be chosen from a better space as the 
next theorem shows.

Theorem 4.3. Let 1 < q < ∞. Assume that decomposition (19) holds. If, additionally v ∈ Zq
Curl(Ω, R3), then 

w in (19) can be chosen from W 3,q(Ω, R3) ∩ V q
σ (Ω, R3) satisfying the estimate

‖w‖3,q,Ω ≤ C
(
‖Curl v‖1,q,Ω + ‖v‖q

)
, (21)

where C is a constant depending on Ω and q.

Proof. For v ∈ Lq
Curl(Ω, R3) this result is proved in [33]. For v ∈ Zq

Curl(Ω, R3) the proof runs the same lines. 
We repeat them.

As it is shown in [34, Lemma 4.2(2)], we can choose the function w ∈ V q
σ (Ω, R3) satisfying the equation

(Curlw,Curlψ)Ω = (v,Curlψ)Ω , for all ψ ∈ V q∗

σ

(
Ω,R3) (22)

with the estimate

‖w‖1,q,Ω ≤ C‖v‖q, (23)

where C depends only on Ω and q. Since divw = 0 in Ω and v ∈ Zq
Curl(Ω, R3), it follows from (22) that 

−Δw = Curl v in the sense of distributions, and we may regard w as a weak solution of the following 
boundary value problem

−Δw = Curl v, in Ω, (24)

divw = 0, on ∂Ω, (25)

w · n = 0, on ∂Ω. (26)

Since Curl v ∈ W 1,q(Ω, R3), it follows from [34, Lemma 4.3(1)] and the classical theory of Agmon, Dou-
glas and Nirenberg [1] that the solution w of the homogeneous boundary value problem (24) belongs to 
W 3,q(Ω, R3) and the estimate

‖w‖3,q,Ω ≤ C
(
‖Curl v‖1,q,Ω + ‖w‖q

)
, (27)
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is valid with the constant C dependent of Ω and q. Due to (23), the estimate (27) implies (21). This 
completes the proof. �

Now we can state the main result of this section.

Theorem 4.4. Let 1 < q < ∞. Suppose that sequence vη is weakly compact in Zq
Curl(Ω, R3). Then there exist

v ∈ Zq
Curl

(
Ω,R3), v0 ∈ Lq

(
Ω × Y,R3) with Curly v0 = 0,

v1 ∈ Lq
(
Ω,W 2,q

per
(
Y,R3)) with divy v1 = 0,

such that

vη ⇀ v in Zq
Curl

(
Ω,R3), (28)

Tη(vη) ⇀ v0 in Lq
(
Ω × Y,R3), (29)

Tη(Curl vη) ⇀ Curl v in Lq
(
Ω,W 1,q

per
(
Y,R3)), (30)

Tη(Curl Curl vη) ⇀ Curl Curl v + Curly Curly v1 in Lq
(
Ω × Y,R3). (31)

Moreover, v(x) =
∫
Y
v0(x, y)dy.

Proof. Convergence (29) and the last statement of the theorem follow from Proposition 3.2(c). Conver-
gence (28) is obvious. Next, we prove convergences (30) and (31). According to Theorem 4.1, there exist 
hη ∈ Xq

har(Ω, R3), wη ∈ V q
σ (Ω, R3) and zη ∈ W 1,q(Ω, R3) satisfying the inequality

‖hη‖q + ‖wη‖1,q,Ω + ‖zη‖1,q,Ω ≤ C‖vη‖q (32)

with the constant C independent of η, and such that

vη = hη + Curlwη + ∇zη. (33)

Moreover, due to Theorem 4.3, wη in (33) enjoys the inequality

‖wη‖3,q,Ω ≤ C
(
‖Curl vη‖1,q,Ω + ‖vη‖q

)
(34)

with the constant C independent of η. Therefore, the weak compactness of vη in Zq
Curl(Ω, R3) and (34)

imply that wη is weakly compact in W 3,q(Ω, R3). Thus, in virtue of Proposition 3.5 we conclude that there 
exist

w ∈ W 3,q(Ω,R3) and w1 ∈ Lq
(
Ω,W 3,q

per
(
Y,R3))

such that

Tη
(
Dlwη

)
⇀ Dlw in Lq

(
Ω,W 3−l,q

(
Y,Rk

))
for |l| ≤ 2, (35)

Tη
(
Dlwη

)
⇀ Dlw + Dl

yw1 in Lq
(
Ω × Y,Rk

)
for |l| = 3. (36)

Since Curl vη = Curl Curlwη and Curl v = Curl Curlw, we get that

Tη(Curl vη) ⇀ Curl v in Lq
(
Ω,W 1,q

per
(
Y,R3)),

Tη(Curl Curl vη) ⇀ Curl Curl v + Curly Curly v1 in Lq
(
Ω × Y,R3).
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It is left to prove that the condition Curly v0 = 0 is valid.6 To this end, we note first that the additive 
decomposition (33) implies

Tη(vη) = Tη(hη) + Tη(Curlwη) + Tη(∇zη). (37)

Since the function hη belongs to the space of smooth functions Xq
har(Ω, R3), up to a subsequence, the 

sequence hη converges strongly to a function h in Lq(Ω, R3). This provides that

Tη(hη) → h in Lq
(
Ω × Y,R3).

Next, the weak compactness of wη in W 3,q(Ω, R3) together with the convergence (35) and Rellich’s theorem 
guarantee that

Tη(Curlwη) → Curlw in Lq
(
Ω × Y,R3).

Proposition 3.5 applied to the gradient of zη implies that there exist functions z ∈ W 1,q(Ω, R3) and z1 ∈
Lq(Ω, W 1,q

per(Y, R3)) such that

Tη(∇zη) ⇀ ∇z + ∇yz1 in Lq
(
Ω × Y,M3).

Passage to the weak limit in (37) yields now that

v0 = h + Curlw + ∇z + ∇yz1,

where on the right hand side the function z1 depends on the variable y only. Therefore, we get that

Curly v0 = Curly ∇yz1 = 0.

The proof of Theorem 4.4 is complete. �
5. Homogenized system of equations

Main result First, we define a class of maximal monotone functions we deal with in this work.

Definition 5.1. For m ∈ L1(Ω, R), α ∈ R+ and q > 1, M(Ω, Rk, q, α, m) is the set of multi-valued functions 
h : Ω × R

k → 2Rk with the following properties

• v �→ h(x, v) is maximal monotone for almost all x ∈ Ω,
• the mapping x �→ jλ(x, v) : Ω → R

k is measurable for all λ > 0, where jλ(x, v) is the inverse of 
v �→ v + λh(x, v),

• for a.e. x ∈ Ω and every v∗ ∈ h(x, v)

α

(
|v|q
q

+ |v∗|q∗

q∗

)
≤

(
v, v∗

)
+ m(x), (38)

where 1/q + 1/q∗ = 1.

6 The proof of this result is due to an unknown reviewer of the manuscript.
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Remark 5.2. We note that the condition (38) is equivalent to the following two inequalities

∣∣v∗∣∣q∗ ≤ m1(x) + α1|v|q, (39)(
v, v∗

)
≥ m2(x) + α2|v|q, (40)

for a.e. x ∈ Ω and every v∗ ∈ h(x, v) and with suitable functions m1, m2 ∈ L1(Ω, R) and numbers 
α1, α2 ∈ R+.

Remark 5.3. Visco-plasticity is typically included in the former conditions by choosing the function g to be 
in Norton–Hoff form, i.e.

g(Σ) =
[
|Σ| − σy

]r
+

Σ

|Σ| , Σ ∈ M3,

where σy is the flow stress and r is some parameter together with [x]+ := max(x, 0). If g : M3 �→ S3 then 
the flow is called irrotational (no plastic spin).

The main properties of the class M(Ω, Rk, q, α, m) are collected in the following proposition.

Proposition 5.4. Let H be a canonical extension of a function h : Rk → 2Rk , which belongs to M(Ω, Rk, q,

α, m). Then H is maximal monotone, surjective and D(H) = Lp(Ω, Rk).

Proof. See Corollary 2.15 in [18]. �
In linear elasticity theory it is well known (see [60, Theorem 4.2]) that a Dirichlet boundary value problem 

formed by the equations

− divx ση(x) = b̂(x), x ∈ Ω, (41)

ση(x) = C[x/η]
(
sym

(
∇xuη(x)

)
− ε̂η(x)

)
, x ∈ Ω, (42)

uη(x) = 0, x ∈ ∂Ω, (43)

to given b̂ ∈ H−1(Ω, R3) and ε̂η ∈ L2(Ω, S3) has a unique weak solution (uη, ση) ∈ H1
0 (Ω, R3) ×L2(Ω, S3).

Next, we define the notion of strong solutions for the initial boundary value problem (4)–(9).

Definition 5.5 (Strong solutions). A function (uη, ση, pη) such that

(uη, ση) ∈ H1(0, Te;H1
0
(
Ω,R3)× L2(Ω,S3)), Σlin

η ∈ Lq
(
ΩTe

,M3),
pη ∈ H1(0, Te;L2

Curl
(
Ω,M3)) ∩ L2(0, Te;Z2

Curl
(
Ω,M3))

is called a strong solution of the initial boundary value problem (4)–(9), if for every t ∈ [0, Te] the function 
(uη(t), ση(t)) is a weak solution of the boundary value problem (41)–(43) with ε̂p = sym pη(t) and b̂ = b(t), 
the evolution inclusion (6) and the initial condition (7) are satisfied pointwise.

Next, we state the existence result (see [50]).

Theorem 5.6. Suppose that 1 < q∗ ≤ 2 ≤ q < ∞. Assume that Ω ⊂ R
3 is a sliceable domain with a 

C2-boundary, C1 ∈ L∞(Ω, R) and C ∈ L∞(Ω, S3) satisfying (10) and (11), respectively. Let the functions 
b ∈ W 1,q(0, Te; Lq(Ω, R3)) be given and g ∈ M(Ω, M3, q, α, m). Suppose that for a.e. x ∈ Ω the relation

0 ∈ g
(
x/η, σ(0)(x)

)
(44)
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holds, where the function σ(0) ∈ L2(Ω, S3) is determined by equations (41)–(43) for ε̂p = 0 and b̂ = b(0). 
Then there exists a strong unique solution (uη, ση, pη) of the initial boundary value problem (4)–(9).

Now we can formulate the main result of this work.

Theorem 5.7. Suppose that all assumptions of Theorem 5.6 are fulfilled. Then there exists

u0 ∈ H1(0, Te;H1
0
(
Ω,R3)), u1 ∈ H1(0, Te;L2(Ω,H1

per
(
Y,R3))),

σ0 ∈ L∞(
0, Te;L2(Ω × Y,S3)), σ ∈ L∞(

0, Te;L2(Ω,S3)),
p ∈ H1(0, Te;L2(Ω,M3)) ∩ L2(0, Te;Z2

Curl
(
Ω,M3)),

p0 ∈ H1(0, Te;L2(Ω × Y,M3)) with Curly p0 = 0,

and

p1 ∈ L2(0, Te;L2(Ω,W 2,q∗
per

(
Y,M3))) with divy p1 = 0,

such that

uη ⇀ u0 in H1(0, Te;H1
0
(
Ω,R3)), (45)

pη ⇀ p in H1(0, Te;L2(Ω,M3)) ∩ L2(0, Te;Z2
Curl

(
Ω,M3)), (46)

Tη(∇uη) ⇀ ∇u0 + ∇yu1 in H1(0, Te;L2(Ω × Y,R3)), (47)

ση
∗
⇀ σ in L∞(

0, Te;L2(Ω,S3)), (48)

Tη(ση)
∗
⇀ σ0 in L∞(

0, Te;L2(Ω × Y,S3)), (49)

Tη(pη) ⇀ p0 in L2(0, Te;L2(Ω × Y,M3)), (50)

Tη(∂tpη) ⇀ ∂tp0 in L2(0, Te;L2(Ω × Y,M3)), (51)

and

Tη(Curl pη) ⇀ Curl p in L2(0, Te;L2(Ω,H1
per

(
Y,M3))), (52)

Tη(dev sym pη) ⇀ dev sym p0 in L2(ΩTe
× Y,M3), (53)

Tη(Curl Curl pη) ⇀ p̃ in L2(ΩTe
× Y,M3), (54)

Tη
(
Σlin

η

)
⇀ Σlin

0 in Lq
(
ΩTe

× Y,M3), (55)

where

p̃ := Curl Curl p + Curly Curly p1,

Σlin
0 := σ0 − C1[y] dev sym p0 − C2p̃,

and (u0, u1, σ, σ0, p, p0, p1) is a solution of the following system of equations:

− divx σ(x, t) = b(x, t), (56)

− divy σ0(x, y, t) = 0, (57)

σ0(x, y, t) = C[y]
(
sym

(
∇xu0(x, t) + ∇yu1(x, y, t) − p0(x, y, t)

))
, (58)

∂tp0(x, y, t) ∈ g
(
y,Σlin

0 (x, y, t)
)
, (59)
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which holds for (x, y, t) ∈ Ω × R
3 × [0, Te], and the initial condition and boundary condition

p0(x, y, 0) = 0, x ∈ Ω, (60)

p(x, t) × n(x) = 0, (x, t) ∈ ∂Ω × [0, Te), (61)

u0(x, t) = 0, (x, t) ∈ ∂Ω × [0, Te). (62)

The functions σ and p are related to σ0 and p0 in the following ways

σ(x, t) =
∫
Y

σ0(x, y, t)dy, p(x, t) =
∫
Y

p0(x, y, t)dy.

The proof of Theorem 5.7 is divided into two parts. In the next lemma we derive the uniform estimates 
for (uη, ση, pη) and then, based on these estimates, we show the convergence result.

5.1. Uniform estimates

First, we show that the sequence of solutions (uη, ση, pη) is weakly compact.

Lemma 5.8. Let all assumptions of Theorem 5.7 be satisfied. Then the sequence of solutions (uη, ση) is 
weakly compact in H1(0, Te; H1

0 (Ω, R3) × L2(Ω, S3)) and pη is weakly compact in H1(0, Te; L2(Ω, M3)) ∩
L2(0, Te, Z2

Curl(Ω, M3)).

Proof. To prove the lemma we recall the basic steps in the proof of the existence result (Theorem 5.6). For 
more details the reader is referred to [50]. The time-discretized problem for (4)–(9) is introduced as follows:

Let us fix any m ∈ N and set

h := Te

2m , p0
η,m := 0 bnm := 1

h

nh∫
(n−1)h

b(s)ds ∈ Lq
(
Ω,R3), n = 1, ..., 2m.

Then we are looking for functions un
η,m ∈ H1(Ω, R3), σn

η,m ∈ L2(Ω, S3) and pnη,m ∈ Z2
Curl(Ω, M3) with 

pnη,m(x) ∈ sl(3) for a.e. x ∈ Ω and

Σlin
n,m := σn

η,m − C1[x/η] dev sym pnη,m − 1
m
pnη,m − C2 Curl Curl pnη,m ∈ Lq

(
Ω,M3)

solving the following problem

− divx σ
n
η,m(x) = bnm(x), (63)

σn
η,m(x) = C[x/η]

(
sym

(
∇xu

n
η,m(x) − pnη,m(x)

))
(64)

pnη,m(x) − pn−1
η,m (x)

h
∈ g

(
x/η,Σlin

n,m(x)
)
, (65)

together with the boundary conditions

pnη,m(x) × n(x) = 0, x ∈ ∂Ω, (66)

un
η,m(x) = 0, x ∈ ∂Ω. (67)
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Such functions (un
η,m, σn

η,m, pnη,m) exist and satisfy the following estimate

1
2

(∥∥B1/2σl
η,m

∥∥2
2 + α1

∥∥dev sym plη,m
∥∥2

2 + 1
m

∥∥plη,m∥∥2
2 + C2

∥∥Curl plη,m
∥∥2

2

)

+ hĈ
l∑

n=1

(∥∥Σlin
n,m

∥∥q
q

+
∥∥∥∥pnη,m − pn−1

η,m

h

∥∥∥∥q
∗

q∗

)

≤ C(0) +
∫
Ω

m(x)dx + hC̃
l∑

n=1

(∥∥bnm∥∥q
q
+

∥∥(bnm − bn−1
m

)
/h

∥∥2
2

)
(68)

for any fixed l ∈ [1, 2m], where (here B := C
−1)

2C(0) :=
∥∥B1/2σ(0)∥∥2

2

and C̃, Ĉ are some positive constants independent of η (see [50] for details). To proceed further we introduce 
the Rothe approximation functions.

Rothe approximation functions For any family {ξnm}n=0,...,2m of functions in a reflexive Banach space X, 
we define the piecewise affine interpolant ξm ∈ C([0, Te], X) by

ξm(t) :=
(
t

h
− (n− 1)

)
ξnm +

(
n− t

h

)
ξn−1
m for (n− 1)h ≤ t ≤ nh (69)

and the piecewise constant interpolant ξ̄m ∈ L∞(0, Te; X) by

ξ̄m(t) := ξnm for (n− 1)h < t ≤ nh, n = 1, ..., 2m, and ξ̄m(0) := ξ0
m. (70)

For the further analysis we recall the following property of ξ̄m and ξm:

‖ξm‖Lq(0,Te;X) ≤ ‖ξ̄m‖Lq(−h,Te;X) ≤
(
h
∥∥ξ0

m

∥∥q
X

+ ‖ξ̄m‖qLq(0,Te;X)
)1/q

, (71)

where ξ̄m is formally extended to t ≤ 0 by ξ0
m and 1 ≤ q ≤ ∞ (see [56]).

Now, from (68) we get immediately that

C̄
∥∥σ̄η,m(t)

∥∥2
Ω

+ α1
∥∥dev sym p̄η,m(t)

∥∥2
2 + 1

m

∥∥p̄η,m(t)
∥∥2

2 + C2
∥∥Curl p̄η,m(t)

∥∥2
2

+ 2Ĉ
(
‖∂tpη,m‖q

∗

q∗,Ω×(0,Te) +
∥∥Σ̄lin

m

∥∥q
q,Ω×(0,Te)

)
≤ 2C(0) + 2‖m‖1,Ω + 2C̃‖b‖qW 1,q(0,Te;Lq(Ω,S3)), (72)

where C̄ is some other constant independent of η. In [50] it is shown that the Rothe approximation func-
tions (uη,m, ση,m, pη,m) and (ūη,m, ̄ση,m, p̄η,m) converge to the same limit (uη, ση, pη). Due to the lower 
semi-continuity of the norm and (72) this convergence is uniform with respect to η. Therefore, estimate (72)
provides that

{ση}η is uniformly bounded in L∞(
0, Te;L2(Ω,S3)), (73)

{dev sym pη}η is uniformly bounded in L∞(
0, Te;L2(Ω,M3)), (74)

{Curl pη}η is uniformly bounded in L∞(
0, Te;L2(Ω,M3)), (75)
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{pη}η is uniformly bounded in W 1,q∗(0, Te;Lq∗
(
Ω,M3)), (76){

Σlin
η

}
η

is uniformly bounded in Lq
(
ΩTe

,M3). (77)

Furthermore, from estimates (3), (73)–(77) we obtain easily that

{uη}η is uniformly bounded in L2(0, Te;H1
0
(
Ω,R3)), (78)

{pη}η is uniformly bounded in L2(0, Te;Z2
Curl

(
Ω,M3)). (79)

Additional regularity of discrete solutions In order to get the additional a priori estimates, we extend 
the function b to t < 0 by setting b(t) = b(0). The extended function b is in the space W 1,p(−2h, Te;
W−1,p(Ω, R3)). Then, we set b0m = b−1

m := b(0). Let us further set

p−1
η,m := p0

η,m − hGη

(
Σlin

0,m
)
,

where Gη : Lp(Ω, M3) → 2Lq(Ω,sl(3)) denotes the canonical extensions of g(x/η, ·) : M3 → 2sl(3). The 
assumption (44) and the homogeneous initial condition imply that p−1

η,m = 0. Next, we define functions 
(u−1

η,m, σ−1
η,m) and (u0

η,m, σ0
η,m) as solutions of the linear elasticity problem (41)–(43) to the data b̂ = b−1

m , 
γ̂ = 0, ε̂p = 0 and b̂ = b0m, γ̂ = 0, ε̂p = 0, respectively. Obviously, the following estimate holds

{∥∥∥∥u0
η,m − u−1

η,m

h

∥∥∥∥
2
,

∥∥∥∥σ0
η,m − σ−1

η,m

h

∥∥∥∥
2

}
≤ C, (80)

where C is some positive constant independent of m and η. Taking now the incremental ratio of (65) for 
n = 1, ..., 2m, we obtain7

rt pnη,m − rt pn−1
η,m = Gη

(
Σlin

n,m

)
− Gη

(
Σlin

(n−1),m
)
.

Let us now multiply the last identity by −(Σlin
n,m − Σlin

(n−1),m)/h. Then using the monotonicity of Gη we 
obtain that

1
m

(
rt pnη,m − rt pn−1

η,m , rt pnη,m
)
Ω

+
(
rt pnη,m − rt pn−1

η,m , C1 dev sym
(
rt pnη,m

))
Ω

+
(
rt pnη,m − rt pn−1

η,m , C2 Curl Curl
(
rt pnη,m

))
Ω
≤

(
rt pnη,m − rt pn−1

η,m , rtσn
η,m

)
Ω
.

With (63) and (64) the previous inequality can be rewritten as follows

1
m

(
rt pnη,m − rt pn−1

η,m , rt pnη,m
)
Ω

+
(
rt pnη,m − rt pn−1

η,m , C1 dev sym
(
rt pnη,m

))
Ω

+
(
rt pnη,m − rt pn−1

η,m , C2 Curl Curl
(
rt pnη,m

))
Ω

+
(
rtσn

η,m − rtσn−1
η,m ,C−1 rtσn

η,m

)
Ω

≤
(
rtun

η,m − rtun−1
η,m , rt bnm

)
Ω
.

As in the proof of (68), multiplying the last inequality by h and summing with respect to n from 1 to l for 
any fixed l ∈ [1, 2m] we get the estimate

h

m

∥∥rt plη,m
∥∥2

2 + hα1
∥∥dev sym rt plη,m

∥∥2
2 + h

∥∥B1/2 rtσl
η,m

∥∥2
2 + hC2

∥∥Curl rt plη,m
∥∥2

2

≤ 2hC(0) + 2h
l∑

n=1

(
rtun

η,m − rtun−1
η,m , rt bnm

)
Ω
, (81)

7 For sake of simplicity we use the following notation rtφn
m := (φn

m −φn−1
m )/h, where φ0

m, φ1
m, ..., φ2m

m is any family of functions.
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where now C(0) denotes

2C(0) :=
∥∥B1/2 rtσ0

η,m

∥∥2
2.

We note that (80) yields the uniform boundness of C(0) with respect to m. Now, using Young’s inequality 
with ε > 0 in (81) and then summing the resulting inequality for l = 1, ..., 2m we derive the inequality

1
m
‖∂tpm‖2

2,ΩTe
+ α1

∥∥dev sym(∂tpm)
∥∥2

2,ΩTe
+ C2

∥∥Curl(∂tpm)
∥∥2

2,ΩTe
+ C‖∂tσm‖2

2,ΩTe

≤ Cε‖∂tbm‖2
2,ΩTe

+ 2ε‖∂tum‖2
2,ΩTe

, (82)

where Cε is some positive constant independent of m and η. Using now inequality (3), the condition 
∂tpm(x, t) ∈ sl(3) for a.e. (x, t) ∈ ΩTe

, and the ellipticity theory of linear systems we obtain that

1
m
‖∂tpm‖2

2,ΩTe
+ Cε(Ω)‖∂tpm‖2

2,ΩTe
+ C‖∂tσm‖2

2,ΩTe
≤ Cε‖∂tbm‖2

2,ΩTe
, (83)

where Cε(Ω) is some further positive constant independent of m and η. Since bm is uniformly bounded in 
W 1,q(ΩTe

, S3), estimates (82) and (83) imply

{dev sym ∂tpη}η is uniformly bounded in L2(0, Te;L2(Ω,M3)), (84)

{∂tση}η is uniformly bounded in L2(0, Te;L2(Ω,M3)), (85)

{Curl ∂tpη}η is uniformly bounded in L2(0, Te;L2(Ω,M3)), (86)

{pη}η is uniformly bounded in H1(0, Te;L2
Curl

(
Ω,M3)). (87)

The proof of the lemma is complete. �
5.2. Proof of Theorem 5.7

Now, we can prove Theorem 5.7.

Proof. Due to Lemma 5.8, we have that the sequence of solutions (uη, ση) is weakly compact in H1(0, Te;
H1

0 (Ω, R3) × L2(Ω, S3)) and the sequence pη is weakly compact in H1(0, Te; L2(Ω, M3)) ∩ L2(0, Te;
Z2

Curl(Ω, M3)). Thus, by Proposition 3.2, Proposition 3.4 and Theorem 4.4, the uniform estimates (73)–(87)
yield that there exist functions u0, u1, σ, σ0, p, p0 and p1 with the prescribed regularities in Theorem 5.7
such that the convergences in (45)–(55) hold. Note that (47)–(50) give Eq. (58), i.e.

σ0(x, y, t) = C[y]
(
sym

(
∇xu0(x, t) + ∇yu1(x, y, t) − p0(x, y, t)

))
, a.e. (88)

By Proposition 3.2, the weak-star limit σ of ση in L∞(0, Te; L2(Ω, S3)) and the weak limit p of pη in 
L2(0, Te; L2(Ω, M3)) are related to σ0 and p0 in the following ways

σ(x, t) =
∫
Y

σ0(x, y, t)dy, p(x, t) =
∫
Y

p0(x, y, t)dy.

Now, as in [19], we consider any φ ∈ C∞
0 (Ω, R3). Then, by the weak convergence of ση, the passage to the 

weak limit in (4) yields ∫ (
σ(x, t),∇φ(x)

)
dx =

∫ (
b(x, t), φ(x)

)
dx, (89)
Ω Ω
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i.e. divx σ = b in the sense of distributions. Next, define φη(x) = ηφ(x)ψ(x/η), where φ ∈ C∞
0 (Ω, R3) and 

ψ ∈ C∞
per(Y, R3). Then, one obtains that

φη ⇀ 0, in H1
0
(
Ω,R3), and Tη(∇φη) → φ∇yψ, in L2(Ω,H1

per
(
Y,R3)).

Therefore, since φη has a compact support,

∫
Ω×Y

(
Tη

(
ση(t)

)
, Tη(∇φη)

)
dxdy =

∫
Ω

(
b(t), φη

)
dx. (90)

The passage to the limit in (90) leads to

∫
Ω×Y

(
σ0(x, y, t), φ(x)∇yψ(y)

)
dxdy = 0.

Thus, in virtue of the arbitrariness of φ, one can conclude that
∫

Ω×Y

(
σ0(x, y, t),∇yψ(y)

)
dxdy = 0, (91)

i.e. divy σ0(x, ·, t) = 0 in the sense of distributions.
Next, let Tη(Gη) : Lp(Ω × Y, RN ) → 2Lq(Ω×Y,RN ) and G : Lp(Ω, RN ) → 2Lq(Ω,RN ) denote the canonical 

extensions of Tη(gη)(x, y) : RN → 2RN and g(y) : RN → 2RN , respectively. Here, g(y) is the pointwise limit 
graph of the convergent sequence of graphs Tη(gη)(x, y). The existence of the limit graph for Tη(gη)(x, y)
guaranteed by Theorem 2.8. Indeed, the resolvent jTη(gη)

λ converges pointwise to the resolvent jgλ, what 
follows from the periodicity of the mapping y → g(y, z) : Y → 2RN and the simple computations:

j
Tη(gη)
λ (x, y, z) = Tη

(
j
gη
λ

)
(x, y, z) = jgλ(y, z),

for a.e. (x, y) ∈ Ω × Y and every z ∈ R
N . Thus, by Theorem 2.8 we get that

Tη(gη)(x, y) � g(y) (92)

holds for a.e. (x, y) ∈ Ω × Y . Since gη ∈ M(Ω, RN , p, α, m), by Definition 3.6 of the unfolding operator 
for a multi-valued function it follows that Tη(gη) ∈ M(Ω × Y, RN , p, α, m). Therefore, due to this and 
convergence (92), by Proposition 5.4(b) we obtain that

Tη(Gη) � G. (93)

To prove that the limit functions (σ0, p0) satisfy (59), we apply Theorem 2.6. Since the graph convergence is 
already established, we show that condition (14) is fulfilled. Using Eqs. (4) and (5), we successfully compute 
that

1
|Y |

∫
Ω×Y

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

η (t)
))
dxdy

= 1
|Y |

∫ (
Tη

(
∂t
(
sym

(
∇uη(t)

)
− C

−1ση(t)
))
, Tη

(
ση(t)

))
dxdy
Ω×Y
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+ 1
|Y |

∫
Ω×Y

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

sh,η(t) + Σlin
curl,η(t)

))
dxdy

=
∫
Ω

(
b(t), ∂tuη(t)

)
dx− 1

|Y |

∫
Ω×Y

(
Tη

(
∂tC

−1ση(t)
)
, Tη

(
ση(t)

))
dxdy

− 1
|Y |

∫
Ω×Y

(
C1Tη

(
∂t dev sym pη(t)

)
, Tη

(
dev sym pη(t)

))
dxdy

− 1
|Y |

∫
Ω×Y

(
C2Tη

(
∂t Curl pη(t)

)
, Tη

(
Curl pη(t)

))
dxdy.

Integrating the last identity over (0, t) and using the integration-by-parts formula we get that

1
|Y |

t∫
0

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

η (t)
))

Ω×Y
dt

=
t∫

0

(
b(t), ∂tuη(t)

)
Ω
dt− 1

2
∥∥Tη(B1/2ση(t)

)∥∥2
2,Ω×Y

+ 1
2
∥∥Tη(B1/2ση(0)

)∥∥2
2,Ω×Y

− 1
2
∥∥C1/2

1 Tη
(
dev sym pη(t)

)∥∥2
2,Ω×Y

− 1
2
∥∥C1/2

2 Tη
(
Curl pη(t)

)∥∥2
2,Ω×Y

, (94)

where B = C
−1. Moreover, since ση(0) solves the linear elasticity problem (41)–(43) with ε̂η = 0 and ̂b = b(t), 

by [48, Theorem 4.1], we can conclude that Tη(B1/2ση(0)) converges to B1/2σ0(0) strongly in L2(Ω×Y, S3). 
Thus, by the lower semi-continuity of the norm the passing to the limit in (94) yields

lim sup
n→∞

1
|Y |

t∫
0

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

η (t)
))

Ω×Y
dt

≤
t∫

0

(
b(t), ∂tu0(t)

)
Ω
dt− 1

2
∥∥B1/2σ0(t)

∥∥2
2,Ω×Y

+ 1
2
∥∥B1/2σ0(0)

∥∥2
2,Ω×Y

− 1
2
∥∥C1/2

1 dev sym p0(t)
∥∥2

2,Ω×Y
− 1

2
∥∥C1/2

2 Curl p0(t)
∥∥2

2,Ω×Y
,

or

lim sup
n→∞

1
|Y |

t∫
0

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

η (t)
))

Ω×Y
dt

≤
t∫

0

(
b(t), ∂tu0(t)

)
Ω
dt− 1

|Y |

t∫
0

(
∂tC

−1σ0(t), σ0(t)
)
Ω×Y

dt

− 1
|Y |

t∫
0

(
∂t dev sym p0(t), C1 dev sym p0(t)

)
Ω×Y

dt

− 1
|Y |

t∫ (
∂t Curl p0(t), C2 Curl p0(t)

)
Ω×Y

dt (95)

0



S. Nesenenko / J. Math. Anal. Appl. 425 (2015) 133–159 157
We note that (89) and (91) imply
∫
Ω

(
b(t), ∂tu0(t)

)
dx = 1

|Y |

∫
Ω×Y

(
σ0(t), ∂tε

(
∇u0(t) + ∇yu1(t)

))
dxdy. (96)

And, since for almost all (x, y, t) ∈ Ω × Y × (0, Te) one has

(
∂t dev sym p0(x, y, t), C1[y] dev sym p0(x, y, t)

)
=

(
∂tp0(x, y, t), C1[y] dev sym p0(x, y, t)

)
,

and that for almost all t ∈ (0, Te)

(
∂t Curl p0(t), C2 Curl p0(t)

)
Ω×Y

=
(
∂tp0(t), C2 Curl Curl p0(t)

)
Ω×Y

,

the relations (95) and (96) together with (88) yield

lim sup
n→∞

1
|Y |

t∫
0

(
Tη

(
∂tpη(t)

)
, Tη

(
Σlin

η (t)
))

Ω×Y
dt

≤ 1
|Y |

t∫
0

(
∂tp0(t), Σlin

0 (t)
)
Ω×Y

dt. (97)

In virtue of convergence (93) and inequality (97), Theorem 2.6 yields that

[
Σlin

0 (x, y, t), ∂tp0(x, y, t)
]
∈ Gr g(y)

or, equivalently, that

∂tp0(x, y, t) ∈ g
(
y,Σlin

0 (x, y, t)
)
.

The initial and boundary conditions (60)–(62) for the limit functions u0, p and p0 are easily obtained 
from the weak compactness of uη and pη in the spaces H1(0, Te; H1

0 (Ω, R3)) and H1(0, Te; L2(Ω, M3)) ∩
L2(0, Te; Z2

Curl(Ω, M3)), respectively. Therefore, summarizing everything done above, we conclude that the 
functions (u0, u1, σ, σ0, p, p0, p1) satisfy the homogenized initial-boundary value problem formed by the equa-
tions/inequalities (56)–(62). �
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