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We study the time evolution of a Vlasov–Poisson plasma moving in a torus, in which 
it is confined by an unbounded external magnetic field. This field depends on the 
distance from the border of the torus, is tangent to the border and singular on it. 
We prove the existence and uniqueness of the solution, and also its confinement 
inside the torus for all times, i.e. the external field behaves like a magnetic mirror.
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1. Introduction

Recently the time evolution of a Vlasov–Poisson plasma confined in a cylinder by a magnetic field has been 
studied in [3–5]. More precisely the authors have assumed the presence of an external magnetic field parallel 
to the axis of the cylinder, smooth inside and singular on the border. It is proved in [3] (for finite total mass) 
and [4,5] (for infinite total mass), in spite of the fact that the mutual interaction could become very large, 
that the magnetic mirror effect happens, i.e. each element of the plasma is rejected by the border and the 
plasma remains confined inside the cylinder. In the present paper we show that the same effect happens also 
if the plasma is contained in a torus, that is a region in which the border has a non-vanishing curvature. The 
analysis in the present situation needs some non-trivial improvements, due to the geometry of the region. 
For reader’s convenience the present paper is self-contained, even if some parts follow directly [3]. The idea 
lies always in the rectification of the characteristics of the plasma (that is, a fluid-element’s trajectory is 
close to a straight line in a short time interval) along the lines of the magnetic field. We show that a control 
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of the time average of a plasma particle’s velocity along the direction of the magnetic field allows to obtain 
the result. The principal difficulty is that the magnetic field could destroy the rectification property near 
the border, where its intensity becomes very large. Another motivation to the present paper is that in [3]
it is stated that a confining effect happens also when the magnetic field is orthogonal to the symmetry axis 
of the cylinder, without an explicit proof, which actually is not straightforward, and it can be achieved 
analogously to the present one.

The existence of the solution of the Vlasov–Poisson equation in three dimensions is not obvious, because 
of the singular nature of the interaction, that could produce an infinite growth of the velocity in a finite 
time. This behavior has been excluded twenty years ago by a clever use of time averages of the electric field. 
A central point in the proof was a rectification of the motion of a characteristic of the Vlasov fluid during 
a small time interval Δ. The interval Δ has to be chosen large enough to benefit by the time average, but 
also small enough such that the rectification property for speedy particles holds. In this way it has been 
proved that initially bounded velocities remain bounded for any time interval [0, T ]. This approach and 
other ones are discussed in the papers [2,10,13,14,16,17] in the case of finite total mass. See also [9] for 
a review. The various papers on the argument also improve the dependence on T . Moreover we mention 
that the time evolution of a Vlasov–Poisson plasma in presence of singular external forces has been studied 
in some recent papers [6–8,11,15], while the “one and one-half” dimensional relativistic Vlasov–Maxwell 
system in a bounded domain with magnetic confinement has been studied in [12].

The main difference between the present paper and [3] lies in the fact that here the magnetic lines are 
no more straight lines, which forces us to use curvilinear coordinates, and consequently to choose a smaller 
time interval Δ with respect to [3], for technical reasons which will be clear in the sequel. For this fact 
we take less advantage by the time average (in the limit, the point estimate in time is not good for our 
purposes), and to compensate it we need some more refined partitions of the phase-space. For the sake 
of concreteness we study the problem with a particular choice of the magnetic field, but other choices are 
possible. Moreover a posteriori it will be evident that the proof applies to a generic region containing the 
plasma, provided that the external magnetic field is tangent to the border and singular on it.

The plan of the paper is the following: in Section 2 we define the model and give the main results, and 
in Section 3 we give the proofs. Appendix A is devoted to some technical tools.

2. Statement of the problem and results

Consider a torus T3 such that x = (x1, x2, x3) ∈ T
3 if

(
R−

√
x2

1 + x2
2

)2

+ x2
3 = r2, (2.1)

with R > r0 > 0, and r ∈ [0, r0]. In toroidal coordinates the equations are

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 = (R + r cosα) cos θ
x2 = (R + r cosα) sin θ

x3 = r sinα

0 ≤ α < 2π, 0 ≤ θ < 2π.

(2.2)

We study a charged plasma (with charges of the same sign) initially strictly contained in T3, and moving 
via the Vlasov–Poisson equation coupled with a magnetic external field B(x). Let f(x, v, t) be the charge 
distribution (or equivalently mass) of the plasma particles at the phase point (x, v) and time t. The evolution 
equations for the plasma are
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tf(x, v, t) + v · ∇xf(x, v, t) + (E(x, t) + v ∧B(x)) · ∇vf(x, v, t) = 0

E(x, t) = 1
4π

∫
R3

x− y

|x− y|3 ρ(y, t) dy

ρ(x, t) =
∫
R3

f(x, v, t) dv

f(x, v, 0) = f0(x, v).

(2.3)

We choose the external magnetic field B(x) of the form

B(x) = ∇∧A(x), A(x) = a(r)
R + r cosα êθ, (2.4)

where a(r) is a smooth function for 0 ≤ r < r0, which becomes singular for r → r0, and êθ is the unit vector 
tangent to the border of the torus in the direction of increasing θ (and fixed α).

From (2.2) one obtains

⎧⎨
⎩

êr = cosα cos θ ĉ1 + cosα sin θ ĉ2 + sinα ĉ3

êθ = −sin θ ĉ1 + cos θ ĉ2
êα = −sinα cos θ ĉ1 − sinα sin θ ĉ2 + cosα ĉ3

(2.5)

where êα is the unit vector defined analogously to êθ (consequently orthogonal to êθ), êr = êθ ∧ êα, and 
ĉ1, ĉ2, ĉ3 are the unit vectors of the Cartesian axes x1, x2, x3. From (2.4) we have (for the curl in toroidal 
coordinates see for instance [1])

B(x) = a′(r)
R + r cosα êα. (2.6)

We will see that the properties assumed for a(r) assure that the plasma remains confined inside the torus 
for all positive times.

Eq. (2.3) is a conservation equation for the density f along the characteristics of the system, i.e. the 
solutions to the following problem:

⎧⎪⎨
⎪⎩

Ẋ(t) = V (t)
V̇ (t) = E(X(t), t) + V (t) ∧B(X(t))
(X(t′), V (t′)) = (x, v),

(2.7)

where we have used the simplified notation

(X(t), V (t)) = (X(t, t′, x, v), V (t, t′, x, v)) (2.8)

to represent a characteristic at time t passing at time t′ < t through the point (x, v). Hence we have

‖f(t)‖L∞ = ‖f(0)‖L∞ . (2.9)

Moreover this dynamical system preserves the measure of the phase space (Liouville’s theorem).
A remark, that will play an important role in the sequel, is the conservation of total energy. In fact the 

magnetic force V (t) ∧B(X(t)) does not change the modulus of the velocity, since

d
V 2 = 2V · V̇ = 2V · (E + V ∧B) = 2V · E, (2.10)
dt



34 S. Caprino et al. / J. Math. Anal. Appl. 427 (2015) 31–46
and the quantity

E = 1
2

∫
v2f(x, v, t) dxdv + 1

2

∫
ρ(x, t) ρ(y, t)

|x− y| dxdy (2.11)

is invariant under the evolution (2.7).
We denote by St the support in (x, v) of f(x, v, t) for any t ∈ [0, T ], T > 0 being the positive arbitrarily 

fixed time, and we set

P (T ) := P = max
{

sup
t∈[0,T ]

sup
(x,v)∈St

|V (t)|, 1
}
. (2.12)

Our main result is the following:

Theorem 1. Let T > 0 be arbitrarily fixed and assume that f0 ∈ L∞(R3 × R
3) is a positive function having 

compact support on the set

S0 =
{
(x, v) : x ∈ T

3, d(x, ∂T3) > δ, |v| ≤ P0
}
, (2.13)

for positive constants P0 > 0, δ ∈ (0, r0), being d(x, ∂T3) the distance of a point x from the border of the 
torus. Then there exists a solution to system (2.7) over the interval [0, T ], which is supported for all times 
on the set

St =
{
(x, v) : x ∈ T

3, d(x, ∂T3) > δ(t), |v| ≤ P (t)
}
,

for a suitable continuous function δ(t) ∈ (0, r0).
Moreover this solution is unique in the class of the characteristics distributed with f(x, v, t) and supported 

on St.

We remark that the assumptions on f0 imply that initially the energy is bounded, and hence

E(t) = E(0) ≤ C. (2.14)

From now on we will indicate by C any positive constant, depending only on conserved quantities and 
possibly on T , and changing from line to line. Some constants will be numbered, in order to quote them in 
the paper. We set

‖f0‖L∞ = C1. (2.15)

The fundamental estimate which we need to prove Theorem 1 is stated in the following theorem.

Theorem 2. In the hypotheses of Theorem 1 it is

P (T ) ≤ C.

As it is well known, Theorem 2 implies existence and uniqueness of the solution to system (2.7) globally 
in time and similarly to system (2.3) if the initial datum f0 is assumed to be smooth.

We note that other choices of the magnetic field are possible, for example it can be taken directed along êθ
and singular on the border of the torus. We have considered the form (2.6) which gives more difficulties in 
the analysis, other choices can be studied following the same lines of the present paper.
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3. Proofs

We remark that the proof of Theorem 2 would be trivial if we could obtain an a priori bound on the 
electric field |E(x, t)| ≤ CPα, with 0 ≤ α < 1. Unfortunately we are not able to obtain an estimate so sharp 
and we are only able to bound the time average of the electric field, as we will show in the sequel.

We need to state some preliminary lemmas whose proofs are postponed in Appendix A. First of all we 
state two classical well known estimates, which we prove for the sake of completeness.

Lemma 1. In the hypotheses of Theorem 1 we have

(∫
ρ(x, t) 5

3 dx

) 3
5

≤ C (3.1)

Lemma 2. In the hypotheses of Theorem 1 we have

sup
t∈[0,T ]

sup
(x,v)

|E(x, t)| ≤ C2P
4
3 . (3.2)

We define now the short time interval Δ by which we divide the total time interval [0, T ]. We need to 
choose a Δ smaller than in [3], precisely we put

Δ := min
{

C3

P 2−γ
, T

}
(3.3)

where γ ∈ (0, 18 ), and

C3 = 1
4
(
2 + 1

R−r0
+ C2

) .
It will be useful to study the evolution of a single characteristic of the plasma in toroidal coordinates, 

whence system (2.7) becomes
⎧⎪⎪⎨
⎪⎪⎩

−α̇2r + r̈ − (R + r cosα)θ̇2 cosα = Er + a′(r) θ̇

(R + r cosα)θ̈ + 2 ṙ θ̇ cosα− 2 α̇ θ̇ r sinα = Eθ −
a′(r) ṙ

R + r cosα
α̈ r + 2 α̇ ṙ + (R + r cosα)θ̇2 sinα = Eα,

(3.4)

where we have omitted the dependence on t of (r, θ, α), and we denote by (Er, Eθ, Eα) the components of 
the electric field in toroidal coordinates. Note that the components of the velocity in such coordinates are

vr = ṙ, vθ = (R + r cosα)θ̇, vα = rα̇, (3.5)

and we remark that Eqs. (3.4) show that the component vα is not directly affected by the magnetic field.
We consider two characteristics, solutions of (3.4),

(
r1(t), θ1(t), α1(t); ṙ1(t), θ̇1(t), α̇1(t)

)
, (3.6)

which corresponds in Cartesian coordinates to (X(t), V (t)), and
(
r2(t), θ2(t), α2(t); ṙ2(t), θ̇2(t), α̇2(t)

)
, (3.7)

corresponding in Cartesian coordinates to (Y (t), W (t)).
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In the following lemmas we make the technical assumption that the trajectories occur in the region 
r > r0

2 , condition which is satisfied in the short time interval Δ, if initially it is r > r0
2 + PΔ (note that 

PΔ → 0 if P diverges). This assumption is not essential, it is done only to avoid the singularity of the 
toroidal coordinates for r = 0. Actually for r ≤ r0

2 we could use Cartesian coordinates, since the magnetic 
field is bounded, and the analysis follows well known results as [16,17].

We fix a positive number γ′ > γ. Hence we state:

Lemma 3. Let t′ ∈ [0, T ]. The following hold:
If

|r1(t′)α̇1(t′) − r2(t′)α̇2(t′)| ≤ P γ′

then

sup
t∈[t′,t′+Δ]

|r1(t)α̇1(t) − r2(t)α̇2(t)| ≤ 2P γ′
. (3.8)

If

|r1(t′)α̇1(t′) − r2(t′)α̇2(t′)| ≥ P γ′

then

inf
t∈[t′,t′+Δ]

|r1(t)α̇1(t) − r2(t)α̇2(t)| ≥
1
2P

γ′
. (3.9)

Let us put v⊥ =
√
v2
r + v2

θ , denoting the corresponding quantity for the two characteristics as v⊥i ,
i = 1, 2.

Lemma 4. Let t′ ∈ [0, T ]. The following hold:
If

|v⊥1 (t′)| ≤
√
P

then

sup
t∈[t′,t′+Δ]

|v⊥1 (t)| ≤ 2
√
P . (3.10)

If

|v⊥1 (t′)| ≥
√
P

then

inf
t∈[t′,t′+Δ]

|v⊥1 (t)| ≥
√
P

2 . (3.11)

In the following lemma it is stated the so-called rectification property of the characteristics. The proof is 
quite similar to the one given in Refs. [3,4], suitably adapted to our context.
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Lemma 5. Let t′ ∈ [0, T ] and assume that

|v1,α(t′) − v2,α(t′)| ≥ hP γ′
, for some h ≥ 1,

v1,α := r1α̇1, v2,α := r2α̇2.

Then, there exists t0 ∈ [t′, t′ + Δ] such that

|X(t) − Y (t)| ≥ h
P γ′

8 |t− t0|

for all t ∈ [t′, t′ + Δ].

Proof of Theorem 2. We will use in the sequel Cartesian coordinates for volume elements and integrand 
functions, and toroidal coordinates for the parametrization of the region of integration.

We partition the interval [0, T ] by N intervals [ti, ti+1], i = 0, . . . , N − 1, with t0 = 0, tN = T and 
1
2Δ ≤ ti+1 − ti ≤ Δ. Hence it is

t∫
0

E(X(s), s) ds =
N−1∑
i=0

ti+1∫
ti

E(X(s), s) ds. (3.12)

For a fixed i we consider the time evolution of the system over the time interval [ti, ti+1]. For any t ∈ [ti, ti+1]
we set

(X(t), V (t)) := (X(t, ti, x, v), V (t, ti, x, v))

being

X(ti) = x, V (ti) = v,

which corresponds to the characteristic (3.6), and (Y (t), W (t)), solution to system (2.7) such that

Y (ti) = y, W (ti) = w,

corresponding to (3.7). Analogously we put

v1,α(ti) = v1,α, v⊥1 (ti) = v⊥1 , v2,α(ti) = v2,α, v⊥2 (ti) = v⊥2 .

By the invariance of f along the motion, the change of variables (ȳ, w̄) = (Y (t), W (t)) and the Liouville 
theorem yield

|E(X(t), t)| ≤
∫

f(ȳ, w̄, t)
|X(t) − ȳ|2 dȳdw̄ =

∫
f(y, w, ti)

|X(t) − Y (t)|2 dydw. (3.13)

We put

Im =
∫
Sm

f(y, w, ti)
|X(t) − Y (t)|2 dydw, m = 1, 2, 3

and
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S1 = {(y, w) : |v1,α − v2,α| ≤ P γ′} (3.14)

S2 = {(y, w) : |v⊥2 | ≤
√
P} (3.15)

S3 = (S1 ∪ S2)c (3.16)

Hence it is

|E(X(t), t)| ≤
3∑

m=1
Im. (3.17)

Let us start by I1. By (3.8) it follows that if (y, w) ∈ S1 then |v1,α(t) −v2,α(t)| ≤ 2P γ′ for any t ∈ [ti, ti+1]. 
Hence setting S′

1 = {(ȳ, w̄) : |v̄2,α − v1,α(t)| ≤ 2P γ′} and χ for the characteristic function, by Hölder 
inequality and Lemma 1 we obtain

I1 ≤
∫
S′

1

f(ȳ, w̄, t)
|X(t) − ȳ|2 dȳdw̄

≤
∫

|X(t)−ȳ|≤ε

f(ȳ, w̄, t)
|X(t) − ȳ|2χ(S′

1) dȳdw̄ +
∫

|X(t)−ȳ|>ε

ρ(ȳ, t)
|X(t) − ȳ|2 dȳ

≤ C1ε

∫
χ(S′

1) dw̄ +
(∫

ρ(ȳ, t) 5
3 dȳ

) 3
5

⎛
⎜⎝ ∫

|X(t)−ȳ|>ε

1
|X(t) − ȳ|5 dȳ

⎞
⎟⎠

2
5

≤ CεP 2+γ′
+ Cε−

4
5 . (3.18)

The minimum in ε of the right hand side is attained for ε = CP− 10
9 − 5

9γ
′ , so we get

I1 ≤ CP
8
9+ 4

9γ
′
. (3.19)

To perform the integral over the set S2 we observe that by (3.10) if (y, w) ∈ S2 then for all t ∈ [ti, ti+1]
it is |v⊥2 (t)| ≤ 2

√
P , hence by the same arguments used to obtain (3.19) we have

I2 ≤ CεP 2 + Cε−
4
5 ≤ CP

8
9 . (3.20)

Now we consider the integral over S3, for which we need to use some ideas from [4] in the case of infinite 
mass, in order to deal with the short time interval Δ. For t ∈ [ti, ti+1] we introduce the sets Ah,k and Bh,k, 
with k = 0, 1, 2, . . . ,m and h = 1, 2, . . . ,m′, defined in the following way:

Ah,k =
{
(y, w, t) : hP γ′ ≤ |v1,α − v2,α| ≤ (h + 1)P γ′

,

αk+1 < |v⊥2 | ≤ αk, |X(t) − Y (t)| ≤ lh,k
}

(3.21)

Bh,k =
{
(y, w, t) : hP γ′

< |v1,α − v2,α| ≤ (h + 1)P γ′
,

αk+1 < |v⊥2 | ≤ αk, |X(t) − Y (t)| > lh,k
}

(3.22)

where

αk = P
, lh,k = 22k

, (3.23)
2k hP 1+η
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with η > γ′ to be fixed later. Since we are in S3, it is immediately seen that

m ≤ 3
4 log2 P, m′ ≤ 2P

P γ′ − 1. (3.24)

Consequently we put

I3 ≤
m′∑
h=1

m∑
k=0

(I ′
3(h, k) + I ′′

3 (h, k)) (3.25)

being

I ′
3(h, k) =

∫
Ah,k

f(y, w, ti)
|X(t) − Y (t)|2 dydw (3.26)

and

I ′′
3 (h, k) =

∫
Bh,k

f(y, w, ti)
|X(t) − Y (t)|2 dydw. (3.27)

We start by I ′
3(h, k). The same arguments used in the proof of Lemma 3 and Lemma 4, given in Appendix A, 

show that ∀ (y, w, t) ∈ Ah,k and t ∈ [ti, ti+1] it is

(h− 1)P γ′ ≤ |v1,α(t) − v2,α(t)| ≤ (h + 2)P γ′
(3.28)

and

αk+1

2 ≤ |v⊥2 (t)| ≤ 2αk. (3.29)

Hence, setting

A′
h,k =

{
(ȳ, w̄, t) : hP γ′ ≤ |v1,α(t) − v̄2,α| ≤ (h + 1)P γ′

,

αk+1

2 ≤ |v̄⊥2 | ≤ 2αk, |X(t) − ȳ| ≤ lh,k
}

(3.30)

we have

I ′
3(h, k) ≤

∫
A′

h,k

f(ȳ, w̄, t)
|X(t) − ȳ|2 dȳdw̄. (3.31)

By the choice of the parameters αk and lh,k made in (3.23) we have

I ′
3(h, k) ≤ CC0 lh,k

∫
A′

h,k

dw̄ ≤ C lh,k α
2
k

∫
A′

h,k

dw̄1

≤ C lh,k α
2
k P

γ′ ≤ C P 1+γ′−η. (3.32)

Hence by (3.24)

m′∑ m∑
I ′

3(h, k) ≤ C P 1+γ′−η
m∑ m′∑ 1

h
≤ C P 1+γ′−η log2 P. (3.33)
h=1 k=0 k=0 h=1
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It remains to consider the set Bh,k, for which we need the rectification technique and the time average. 
By Lemma 5 there exists t0 ∈ [ti, ti+1] such that

|X(t) − Y (t)| ≥ h
P γ′

8 |t− t0|. (3.34)

Let

B′
h,k =

{
(y, w) : (y, w, t) ∈ Bh,k for some t ∈ [ti, ti+1]

}
. (3.35)

Then

ti+1∫
ti

I ′′
3 (h, k) dt =

ti+1∫
ti

dt

∫
Bh,k

f(y, w, ti)
|X(t) − Y (t)|2 dydw

≤
∫

B′
h,k

f(y, w, ti)

⎛
⎝ ti+1∫

ti

χ(Bh,k)
|X(t) − Y (t)|2 dt

⎞
⎠ dydw. (3.36)

Putting A = 4lh,k/(hP γ′), by (3.34) we have

ti+1∫
ti

χ(Bh,k)
|X(t) − Y (t)|2 dt ≤

∫
{t:|t−t0|≤A}

χ(Bh,k)
|X(t) − Y (t)|2 dt +

∫
{t:|t−t0|>A}

χ(Bh,k)
|X(t) − Y (t)|2 dt

≤
∫

{t:|t−t0|≤A}

1
l2h,k

dt +
∫

{t:|t−t0|>A}

64
h2P 2γ′ |t− t0|2

dt

≤ 2A
l2h,k

+ C

h2P 2γ′

∞∫
A

1
t2

dt = C

hP γ′ lh,k
. (3.37)

Thus by (3.36)

ti+1∫
ti

I ′′
3 (h, k) dt ≤ C

hP γ′ lh,k

∫
B′

h,k

f(y, w, ti) dydw

≤ C

hP γ′ lh,k α2
k+1

∫
B′

h,k

w2f(y, w, ti) dydw, (3.38)

since, being (y, w) ∈ B′
h,k, then |w| ≥ αk+1. Moreover the kinetic energy is bounded by the conservation of 

the energy (2.14), hence

m′∑
h=1

m∑
k=0

∫
B′

h,k

w2f(y, w, ti) dydw ≤ CE(0), (3.39)

and

m′∑
h=1

m∑
k=0

ti+1∫
I ′′

3 (h, k) dt ≤ C P−γ′−1+η. (3.40)

ti
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By multiplying and dividing by Δ we have

m′∑
h=1

m∑
k=0

ti+1∫
ti

I ′′
3 (h, k) dt ≤ C P 1−γ′−γ+ηΔ, (3.41)

and remembering the constraints η > γ′, γ′ > γ, in order to keep the exponent of P in (3.41) less than 1
(whose reason will be clear further) it is sufficient to take

γ′ = 2γ and η ∈ (2γ, 3γ).

Now we are able to conclude the proof. By (3.17) it is

t∫
0

|E(X(s), s)|ds ≤
N−1∑
i=0

ti+1∫
ti

( 3∑
m=1

Im

)
dt (3.42)

and estimates (3.19), (3.20), (3.25), (3.33) and (3.41) give us

ti+1∫
ti

( 3∑
m=1

Im

)
dt ≤ CΔ

[
P

8
9+ 4

9γ
′
+ P

8
9 + P 1+γ′−η log2 P + P 1−γ′−γ+η

]
. (3.43)

Now, with the choice stated above on the parameters η, γ′, and taking γ ∈ (0, 18 ), it follows

ti+1∫
ti

( 3∑
m=1

Im

)
dt ≤ CΔP q, (3.44)

for some q < 1. In conclusion (3.42), (3.44), and the fact that T ≤ NΔ ≤ 2T , imply

t∫
0

|E(X(s), s)| ds ≤ CTP q, q < 1. (3.45)

Estimate (3.45) allows to conclude the proof. Indeed from (2.10) and (3.45) it follows

V 2(t) ≤ V2
0 + 2P

t∫
0

|E(X(s), s)| ds ≤ V2
0 + CTP 1+q (3.46)

and, by taking the supremum in the left hand side, we obtain

P 2 ≤ V2
0 + CTP 1+q

This implies P (T ) < ∞ for any T > 0. �
Proof of Theorem 1. Using the previous result of the boundedness of P (T ) over an arbitrary time T , by 
standard methods we can obtain global existence and uniqueness of the solution to (2.7) (or (3.4)). It 
remains to prove the confinement of the plasma inside the torus in the time interval [0, T ]. We consider the 
second equation of (3.4),
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(R + r cosα)θ̈ + 2 ṙ θ̇ cosα− 2 α̇ θ̇ r sinα = Eθ −
a′(r) ṙ

R + r cosα
, (3.47)

which, after multiplying by (R + r cosα), becomes (remembering (3.5))

a′(r)ṙ = −(R + r cosα)2θ̈ − 2vrvθ cosα + 2vαvθ sinα + (R + r cosα)Eθ. (3.48)

Integrating in time (3.48), for the left hand side we have

t∫
0

a′(r(s))dr
ds

ds = a(r(t)) − a(r(0)), (3.49)

while for the right hand side we get

t∫
0

(
−(R + r cosα)2θ̈ − 2vrvθ cosα + 2vαvθ sinα + (R + r cosα)Eθ

)
ds

= −
[
(R + r cosα)2θ̇

]t
0 +

t∫
0

(
2θ̇(R + r cosα)(ṙ cosα− rα̇ sinα)

)
ds

+
t∫

0

(−2vrvθ cosα + 2vαvθ sinα + (R + r cosα)Eθ) ds. (3.50)

It is easily seen that (3.49) diverges to ∞ for r → r0 (border of the torus), while (3.50) stays finite since 
P (T ) and the electric field are bounded, as seen before. �
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Appendix A

Proof of Lemma 1. One has

ρ(x, t) =
∫

f dv =
∫

|v|≤a

f dv +
∫

|v|>a

f dv ≤ CC1a
3 + 1

a2

∫
|v|2fdv.

Minimizing on a we get

ρ(x, t) ≤ C

(∫
|v|2fdv

) 3
5

.

It follows from the conservation of the energy (2.14) that the kinetic energy is bounded, so that

(∫
(ρ(x, t)) 5

3 dx

) 3
5

≤ C. �
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Proof of Lemma 2. One has

|E(x, t)| ≤
∫

ρ(y, t)
|x− y|2 dy =

∫
|x−y|≤ε

ρ(y, t)
|x− y|2 dy +

∫
|x−y|>ε

ρ(y, t)
|x− y|2 dy

≤ C sup
y

ρ(y, t)ε +
(∫

(ρ(y, t)) 5
3 dy

) 3
5

⎛
⎜⎝ ∫

|x−y|>ε

1
|x− y|5 dy

⎞
⎟⎠

2
5

≤ C sup
y

ρ(y, t)ε + Cε−
4
5 ,

by Lemma 1. Minimizing in ε:

|E(x, t)| ≤ C

(
sup
y

ρ(y, t)
) 4

9

.

On the other side,

sup
y

ρ(y, t) ≤ sup
y

∫
f(y, w, t)dw ≤ CP 3

so that we have

|E(x, t)| ≤ CP
4
3 . �

Proof of Lemma 3. Considering the third equation of (3.4), we see that along this direction α the magnetic 
field is not influential. We then obtain

d

dt
(α̇ r) = −α̇ ṙ − v2

θ

R + r cosα sinα + Eα, (A.1)

and integrating in time,

vα(t) − vα(t′) =
t∫

t′

(
−α̇(s) ṙ(s) − v2

θ(s)
R + r(s) cosα(s) sinα(s) + Eα(s)

)
ds. (A.2)

We have |ṙ| = |vr| ≤ P , |vθ| ≤ P , |Eα| ≤ C2P
4
3 , and for α̇ = 1

rvα if we restrict to consider a motion 
occurring in the region 1

2r0 ≤ r ≤ r0 (for 0 ≤ r ≤ 1
2r0 we can switch to Cartesian coordinates, since the 

magnetic field is bounded), we have |α̇| ≤ 2P . Hence

|vα(t)| ≤ |vα(t′)| +
(

2 + 1
R− r0

+ C2

)
P 2(t− t′), (A.3)

therefore by Lemma 2 and (3.3) we get, for any t ∈ [t′, t′ + Δ]:

|r1(t)α̇1(t) − r2(t)α̇2(t)| = |v1,α(t) − v2,α(t)|

≤ |v1,α(t′) − v2,α(t′)| + 2
(

2 + 1
R− r0

+ C2

)
P 2Δ

≤ P γ′
+ 1

P γ ≤ 2P γ′
.
2
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Analogously we prove the second statement:

|v1,α(t) − v2,α(t)| ≥ |v1,α(t′) − v2,α(t′)| − 1
2C3

P 2Δ

≥ P γ′ − 1
2P

γ ≥ 1
2P

γ′
. �

Proof of Lemma 4. By (2.10) and the definition of B it is

d

dt

[
v⊥1 (t)

]2 = 2v⊥1 (t) · E⊥(t), (A.4)

with E⊥ =
√

E2
r + E2

θ . We prove the thesis by contradiction. Assume that there exists a time interval 
[t∗, t∗∗] ⊂ [t′, t′ + Δ) such that |v⊥1 (t∗)| =

√
P , |v⊥1 (t∗∗)| = 2

√
P and 

√
P < |v⊥1 (t)| < 2

√
P ∀t ∈ (t∗, t∗∗). 

Then from (A.4) it follows, by Lemma 2 and (3.3):

|v⊥1 (t∗∗)|2 ≤ |v⊥1 (t∗)|2 + 2
t∗∗∫
t∗

ds |v⊥1 (s)| |E⊥(s)|

≤ P + 4
√
P

t∗∗∫
t∗

ds |E(s)|

≤ P + 4
√
PΔC2P

4
3 ≤ P + P γ− 1

6 < 2P. (A.5)

The contradiction proves the thesis. Now we prove (3.11). As before, assume that there exists a time interval 
[t∗, t∗∗] ⊂ [t′, t′ + Δ) such that |v⊥1 (t∗)| =

√
P , |v⊥1 (t∗∗)| =

√
P
2 and 

√
P
2 < |v⊥1 (t)| <

√
P ∀t ∈ (t∗, t∗∗). Then 

from (A.4) it follows, by Lemma 2 and (3.3):

|v⊥1 (t∗∗)|2 ≥ |v⊥1 (t∗)|2 − 2
t∗∗∫
t∗

ds |v⊥1 (s)| |E⊥(s)|

≥ P − 2
√
P

t∗∗∫
t∗

ds |E(s)| ≥ P − 1
2P

γ− 1
6 >

P

2 . (A.6)

Hence also in this case the contradiction proves the thesis. �
Proof of Lemma 5. Let t0 ∈ [t′, t′ + Δ] be the time at which

∣∣∣∣∣∣
t∫

t′

[v1,α(s) − v2,α(s)] ds + λ(t′)

∣∣∣∣∣∣
has the minimum value, where λ(t′) = r1(t′)α1(t′) − r2(t′)α2(t′).

We put

Γ(t) =
t∫

t′

[v1,α(s) − v2,α(s)] ds + λ(t′).

Moreover we define the function
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Γ̄(t) = Γ(t0) + Γ̇(t0)(t− t0).

Since the magnetic force does not act on the α-component (in toroidal coordinates) of the velocity, recall-
ing (A.1) it is

d2

dt2
(
Γ(t) − Γ̄(t)

)
= −α̇1(t) ṙ1(t) −

[v1,θ(t)]2 sinα1(t)
R + r1(t) cosα1(t)

+ Eα(X(t), t)

+ α̇2(t) ṙ2(t) + [v2,θ(t)]2 sinα2(t)
R + r2(t) cosα2(t)

− Eα(Y (t), t),

Γ(t0) = Γ̄(t0), Γ̇(t0) = ˙̄Γ(t0), (A.7)

denoting by Eα(X(t), t) the α-component of the electric field acting on the characteristic 1, and Eα(Y (t), t)
the α-component of the electric field acting on the characteristic 2. From (A.7) it follows

Γ(t) = Γ̄(t) +
t∫

t0

ds

s∫
t0

dτ
[
−α̇1(τ) ṙ1(τ) − [v1,θ(τ)]2 sinα1(τ)

R + r1(τ) cosα1(τ) + Eα(X(τ), τ)

+ α̇2(τ) ṙ2(τ) + [v2,θ(τ)]2 sinα2(τ)
R + r2(τ) cosα2(τ) − Eα(Y (τ), τ)

]

and reasoning as after (A.2) (i.e., supposing r ≥ r0
2 ),

t∫
t0

ds

s∫
t0

dτ

∣∣∣∣−α̇1(τ) ṙ1(τ) − [v1,θ(τ)]2 sinα1(τ)
R + r1(τ) cosα1(τ) + Eα(X(τ), τ)

+ α̇2(τ) ṙ2(τ) + [v2,θ(τ)]2 sinα2(τ)
R + r2(τ) cosα2(τ) −Eα(Y (τ), τ)

∣∣∣∣
≤ 1

2C3
P 2 |t− t0|2

2 ≤ 1
4C3

P 2|t− t0|Δ ≤ 1
4P

γ |t− t0|.

Hence,

|Γ(t)| ≥ |Γ̄(t)| − P γ

4 |t− t0|. (A.8)

Now we have

|Γ̄(t)|2 = |Γ(t0)|2 + 2Γ(t0)Γ̇(t0)(t− t0) + |Γ̇(t0)|2|t− t0|2.

We observe that Γ(t0)Γ̇(t0)(t −t0) ≥ 0. Indeed, if t0 ∈ (t′, t′+Δ) then Γ̇(t0) = 0 while if t0 = t′ or t0 = t′+Δ
the product Γ(t0)Γ̇(t0)(t − t0) ≥ 0. Hence

|Γ̄(t)|2 ≥ |Γ̇(t0)|2|t− t0|2.

By Lemma 3 (adapted to this context with a factor h ≥ 1), since t0 ∈ [t′, t′ + Δ] it is

|Γ̇(t0)| ≥ h
P γ′

2 ,

hence
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|Γ̄(t)| ≥ h
P γ′

2 |t− t0|,

and since γ′ > γ, by (A.8) we get

|Γ(t)| ≥ h
P γ′

4 |t− t0|. (A.9)

We finally achieve Lemma 5 noting that we can bound
∣∣∣∣∣∣

t∫
t′

[v1,α(s) − v2,α(s)] ds + λ(t′)

∣∣∣∣∣∣ ≤ 2|X(t) − Y (t)|. (A.10)

In fact the left hand side of (A.10) is the separation along the α-coordinate (length of arc, if it is identically 
r1 ≡ r2), and in the worst case (r1 ≡ r2), since we are looking at small lengths, the double of the chord is 
greater than the length of the corresponding arc, for angles smaller than π. �
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