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It is shown that if two cosine families with values in a normed algebra with unity, 
both indexed by t running over all real numbers, of which one consists of the 
multiples of the unity of the algebra by numbers of the form cos at for some real a, 
differ in norm by less than 8/(3

√
3) uniformly in t, then these families coincide. 

For a �= 0, the constant 8/(3
√

3) is optimal and cannot be replaced by any larger 
number.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The investigations of the present paper have their roots in the classic, albeit not particularly well known, 
result that if A is a normed algebra with a unity e and a is an element of A such that supn∈N ‖an − e‖ < 1, 
then a = e. The early version of this result, due to Cox [7], concerned the case of square matrices of a 
given size. This was later extended to bounded operators on Hilbert space by Nakamura and Yoshida [16], 
and to an arbitrary normed algebra by Hirschfeld [12] and Wallen [21]. The argument underlying Wal-
len’s contribution was elementary and gave in fact a stronger result, namely that ‖an − e‖ = o(n) and 
lim infn→∞ n−1 (‖a− e‖ + ‖a2 − e‖ + · · · + ‖an − e‖

)
< 1 imply a = e.

An immediate consequence of the Cox–Nakamura–Yoshida–Hirschfeld–Wallen theorem is that if 
{S(t)}t≥0 is a one-parameter semigroup on a Banach space X such that

sup
t≥0

‖S(t) − IX‖ < 1,
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then S(t) = IX for each t ≥ 0; here IX denotes the identity operator on X. Recently, Bobrowski and 
Chojnacki [5] established an analogue of this result for one-parameter cosine families: if a ∈ R and C =
{C(t)}t∈R is a strongly continuous cosine family on a Banach space X such that

sup
t∈R

‖C(t) − (cos at)IX‖ <
1
2 , (1.1)

then C(t) = (cos at)IX for each t ∈ R. Here, the cosine family {(cos at)IX}t∈R against which C is compared 
is an example of what is termed, following the nomenclature used in [5], a scalar cosine family. Schwenninger 
and Zwart [19] improved Bobrowski and Chojnacki’s result by showing that condition (1.1) can be replaced 
by the condition

sup
t∈R

‖C(t) − (cos at)IX‖ < 1. (1.2)

Chojnacki [6] in turn strengthened Schwenninger and Zwart’s result by proving a general theorem that 
ensures that condition (1.2) alone, without C being necessarily strongly continuous, implies the coincidence 
of C and {(cos at)IX}t∈R. Schwenninger and Zwart [20] later showed that in the case a = 0, if C is strongly 
continuous, then the condition

sup
t∈R

‖C(t) − IX‖ < 2 (1.3)

already suffices to guarantee that C(t) = IX for each t ∈ R. This latter result partially generalises the fact 
that if {C(t)}t∈R is a cosine family on a Banach space X, not necessarily strongly continuous, such that

sup
t∈R

‖C(t) − IX‖ < 3/2,

then C(t) = IX for each t ∈ R. The proof of the above fact is elementary and relies on a straightforward 
adaptation of the proof of a result of Arendt [4].

The aim of this paper is to generalise the first result of Schwenninger and Zwart (that is, the result 
related to (1.2)). A consequence of the main result given below is that if a ∈ R and C = {C(t)}t∈R is a 
cosine family on a Banach space X such that

sup
t∈R

‖C(t) − (cos at)IX‖ <
8

3
√

3
,

then C(t) = (cos at)IX for each t ∈ R. Here, the family C need not be assumed strongly continuous. For 
a �= 0, the constant 8/(3

√
3), greater than 1 but less than 2, is optimal and cannot be replaced by any larger 

number. The main result of the paper will be formulated very much like its consequence just stated, with 
the exception that the cosine families C and {(cos at)IX}t∈R on the Banach space X will be replaced by 
their counterparts with values in a normed algebra with unity.

2. Preliminaries

Let A be a normed algebra, real or complex, with a unity e. An element of A is called scalar if it is 
a scalar multiple of the unity e. A family in A is termed scalar if every member of this family is scalar. 
A family {g(t)}t∈R in A is called a one-parameter group if

(i) g(s)g(t) = g(s + t) for all s, t ∈ R (Cauchy’s functional equation, also called the exponential equation),
(ii) g(0) = e.
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A family {c(t)}t∈R in A is called a one-parameter cosine family if

(i) 2c(s)c(t) = c(s + t) + c(s − t) for all s, t ∈ R (d’Alembert’s functional equation, also called the cosine 
functional equation),

(ii) c(0) = e.

Given a normed linear space X, L(X) is the normed algebra of all bounded linear operators on X. The 
identity operator IX on X is the unity of L(X).

An L(X)-valued group (cosine family), where X is a normed space, is termed a group (cosine family) 
on X.

A family {xλ}λ∈Λ with values in a normed space is said to be bounded if supλ∈Λ ‖xλ‖ < ∞.

3. A distance result

We first establish an auxiliary result from harmonic analysis.
We recall that a character of R is a function χ: R → C \{0} satisfying χ(s +t) = χ(s)χ(t) for any s, t ∈ R. 

A character χ of R is unitary if |χ(t)| = 1 for every t ∈ R.
The result to be proved is as follows.

Theorem 1. If a ∈ R and χ is a character, continuous or not, of R such that

sup
t∈R

∣∣∣∣12(χ(t) + χ(−t)) − cos at
∣∣∣∣ < 8

3
√

3
,

then χ(t) = eiat for all t ∈ R or χ(t) = e−iat for all t ∈ R.

For the proof we shall need two ingredients, and these will be presented in two separate subsections.

3.1. First ingredient

The first ingredient is embodied in the following result.

Theorem 2. We have

inf
a,b∈R
|a|�=|b|

sup
t∈R

|cos at− cos bt| = 8
3
√

3
.

As a first step towards the proof, for any pair a, b ∈ R, we define a function fa,b: R → R by

fa,b(t) = cos at− cos bt (t ∈ R).

If we let

K := inf
a,b∈R
|a|�=|b|

‖fa,b‖∞,

where ‖ · ‖∞ denotes the standard supremum norm, then Theorem 2 can be formulated as saying that 
K = 8/(3

√
3).

Given that ‖fa,b‖∞ ≤ 2 for any a, b ∈ R, we have K ≤ 2. Furthermore, since fa,b = f−a,b = fa,−b = f−a,−b

and |fa,b| = |fb,a| for any a, b ∈ R, it follows that
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K = inf
a>b≥0

‖fa,b‖∞.

Now, ‖fa,0‖∞ = 2 for any a �= 0, and if b �= 0, then ‖fa,b‖∞ = ‖fa/b,1‖∞ for any a ∈ R. This together with 
the previous observations implies that

K = inf
c>1

‖gc‖∞,

where, for any c ∈ R, gc is short for fc,1.

Lemma 1. We have

‖g3‖∞ = 8
3
√

3
.

Proof. For each t ∈ R,

g3(t) = −2 sin 2t sin t = −4 sin2 t cos t

and

g′3(t) = −4(2 − 3 sin2 t) sin t.

Being a bounded periodic function, g3 attains its extrema at points t satisfying sin t = 0 or sin2 t = 2/3. As 
g3(t) = 0 if sin t = 0, g3 attains in fact its extrema at points t satisfying sin2 t = 2/3. Now, if t is any such 
point, then

|g3(t)| = 4 sin2 t| cos t| = 4 sin2 t
√

1 − sin2 t = 4 · 2
3 · 1√

3
= 8

3
√

3
.

This establishes the lemma. �
Lemma 2. Let c = p/q > 1 be a rational number, with p and q relatively prime positive integers. Then

(i) ‖gc‖∞ = 2 if either p or q is even;
(ii) ‖gc‖∞ ≥ 1 + cos(π/p) if both p and q are odd.

Proof. To prove assertion (i), note first that, being relatively prime, p and q cannot be both even. Thus if 
either p or q is even, then p and q have different parity. This implies that, with t = qπ, we have

gc(t) = cos pπ − cos qπ = (−1)p − (−1)q,

so that |gc(t)| = 2 and further ‖gc‖∞ = 2.
To prove assertion (ii), assume that both p and q are odd. Since p and q are relatively prime, there exist 

integers m and n such that pm + qn = 1. Setting t = qnπ/p, we obtain

gc(t) = cosnπ − cos qnπ
p

= (−1)n − cos
(

1
p
−m

)
π.

The oddness of p and q implies that m and n are of different parity. Thus, if m is odd, then n is even and 
we have
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gc(t) = 1 + cos π
p

;

and if m is even, then n is odd and we have

gc(t) = −1 − cos π
p
.

In both cases, ‖gc‖∞ ≥ |gc(t)| = 1 + cos(π/p). �
Proposition 1. We have

inf
c∈Q
c>1

‖gc‖∞ = min
c∈Q
c>1

‖gc‖∞ = ‖g3‖∞ = 8
3
√

3
.

Proof. In view of Lemma 1, it suffices to show that ‖gc‖∞ > 8/(3
√

3) whenever c is a rational number 
different from 3. Let c = p/q > 1, with p and q relatively prime positive integers, be different from 3. If 
either p or q is even, then, by assertion (i) of Lemma 2, we have ‖gc‖∞ = 2 and a fortiori ‖gc‖∞ > 8/(3

√
3). 

If both p and q are odd, then, since c > 1 and c �= 3, we have p ≥ 5, and further, by assertion (ii) of 
Lemma 2,

‖gc‖∞ ≥ 1 + cos π
p
> 1 + cos π4 = 1 +

√
2

2 >
8

3
√

3
.

Since p and q cannot be simultaneously even, the lemma is established. �
Let T denote the unit circle {z ∈ C | |z| = 1}.

Proposition 2. We have

inf
c∈R\Q
c>1

‖gc‖∞ = 2.

Proof. Let c > 1 be an irrational number. As is well known, the image of the mapping R 
 t �→ (eit, eict) ∈ T
2

is dense in T2 (see e.g. [1, Example 4.4.10] or [3, Example 2.3.10]). In particular, there exists a sequence 
{tn}n∈N of real numbers such that limn→∞ eitn = −1 and limn→∞ eictn = 1. Now, limn→∞ gc(tn) = 2, and 
this implies that ‖gc‖∞ = 2. �

At this stage, it is clear that Theorem 2 is an immediate consequence of Propositions 1 and 2.
We have the following direct corollary to Theorem 2.

Corollary 1. If a, b ∈ R are such that

sup
t∈R

|cos at− cos bt| < 8
3
√

3
,

then a = b or a = −b, and in either case cos at = cos bt for all t ∈ R.

3.2. Second ingredient

We start with an auxiliary result.
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Proposition 3. If χ is a discontinuous unitary character of R, then every element of T is a cluster point of 
the net {χ(t)}t→0.

Proof. Let χ be a discontinuous character of R, and let C be the set of all cluster points of the net 
{χ(t)}t→0, which is the same as the set of all limits limn→∞ χ(tn) of converging sequences {χ(tn)}n∈N, 
where {tn}n∈N is a sequence of real numbers tending to zero. If c and d are in C and c = limn→∞ χ(sn)
and d = limn→∞ χ(tn), where {sn}n∈N and {tn}n∈N are two sequences of real numbers converging to zero, 
then c−1 = limn→∞ χ(−sn) and cd = limn→∞ χ(sn)χ(tn) = limn→∞ χ(sn + tn), so both c−1 and cd belong 
to C. In other words, C is a group under multiplication. Clearly, C is also a closed subset of T. Thus C is 
a closed subgroup of the circle group T, and as such it is either finite or all of T (see e.g. [15, Section 2, 
Corollary 3]).

Suppose that the first possibility holds. Then there exists k ∈ N such that ck = 1 for all c ∈ C. Fix c ∈ C

arbitrarily and let {tn}n∈N be a sequence of real numbers converging to zero such that c = limn→∞ χ(tn). 
By the compactness of T, there exists a sequence {nm}m∈N of positive integers diverging to infinity such 
that {χ(tnm

/k)}m∈N converges. Consequently, d = limm→∞ χ(tnm
/k) belongs to C. Clearly, c = dk. On the 

other hand, d, as any other member of C, obeys dk = 1, so c = 1. Thus C = {1}, and this implies that 
χ is continuous at 0, and hence everywhere on R, contrary to the assumption. It follows that the other 
possibility concerning the form of C holds, namely C = T. �

We are now ready to present the second ingredient needed for the proof of Theorem 1.

Theorem 3. If a ∈ R and χ is a discontinuous unitary character of R, then

lim sup
t→0

∣∣∣∣12(χ(t) + χ(−t)) − cos at
∣∣∣∣ = 2.

Proof. Let a ∈ R and let χ be a discontinuous unitary character of R. By Proposition 3, there exists a 
sequence {tn}n∈N of real numbers tending to zero such that limn→∞ χ(tn) = −1. Now, limn→∞ χ(−tn) =
limn→∞(χ(tn))−1 = −1 and limn→∞ cos atn = 1. Hence

lim
n→∞

∣∣∣∣12(χ(tn) + χ(−tn)) − cos atn
∣∣∣∣ = 2

and further

lim sup
t→0

∣∣∣∣12(χ(t) + χ(−t)) − cos at
∣∣∣∣ ≥ 2.

But |(χ(t) + χ(−t))/2 − cos at| ≤ 2 for all t ∈ R, so in fact

lim sup
t→0

∣∣∣∣12(χ(t) + χ(−t)) − cos at
∣∣∣∣ = 2,

as was to be proved. �
As a side remark, we point out that Theorem 3 can be reformulated as follows.

Theorem 4. If a ∈ R and {c(t)}t∈R is a real-valued bounded discontinuous cosine family, then

sup
t∈R

|c(t) − cos at| = 2.
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To see that Theorems 3 and 4 are in fact equivalent, we first recall a few facts. The complex-valued cosine 
families are precisely the families {c(t)}t∈R of the form

c(t) = 1
2(χ(t) + χ(−t)) (t ∈ R), (3.1)

where χ is a possibly non-unitary character of R [14, Theorem 2]. The representation (3.1) is essentially 
unique in that if χ and γ are two characters of R satisfying χ(t) + χ(−t) = γ(t) + γ(−t) for all t ∈ R, then 
either γ = χ or γ = χ̌, where χ̌ is the character of R defined by χ̌(t) = χ(−t) for all t ∈ R [14, Theorem 3]. 
A complex-valued cosine family {c(t)}t∈R is continuous (at a single point, or, equivalently, everywhere) if 
and only if the corresponding character χ is continuous [14, Theorem 1]. A complex-valued cosine family 
{c(t)}t∈R is bounded if and only if χ is bounded, which happens precisely when χ is unitary (see e.g. 
[5, proof of Theorem 10]). It follows that a bounded complex-valued cosine family is in fact real-valued.

In light of the preceding remarks, if c = {c(t)}t∈R is a real-valued bounded discontinuous cosine family, 
then c has a representation as per (3.1) with χ being unitary and discontinuous. Conversely, if χ is a 
discontinuous unitary character of R, then the cosine family given by (3.1) is bounded and discontinuous. 
Now the equivalence of Theorems 3 and 4 is clear.

3.3. Proof of Theorem 1

We are now in position to present the proof of Theorem 1.

Proof of Theorem 1. Let a ∈ R and let χ be a character of R such that

sup
t∈R

∣∣∣∣12(χ(t) + χ(−t)
)
− cos at

∣∣∣∣ < 8
3
√

3
. (3.2)

Then, clearly, the cosine family {(χ(t) + χ(−t))/2}t∈R is bounded, and, in accordance with remarks made 
earlier, χ is unitary. Since 8/(3

√
3) < 2, it follows from Theorem 3 that χ is continuous. Consequently, there 

exists b ∈ R such that χ(t) = eibt for all t ∈ R. Now, as (χ(t) + χ(−t))/2 = cos bt for all t ∈ R, Corollary 1
jointly with (3.2) implies that a = b or a = −b, yielding the assertion of the theorem. �
4. A generalisation of a theorem of Gelfand

We next establish an auxiliary result from Banach algebra theory.
For an element a of a complex normed algebra A, we denote the resolvent set and spectrum of a by ρ(a)

and σ(a), respectively; when more specificity is required, the notation ρA(a) and σA(a) is used instead.
We recall that an invertible element a of a normed algebra with unity is termed doubly power bounded if 

supn∈Z ‖an‖ < ∞. From the spectral radius formula it follows that the spectrum of a doubly power bounded 
element of a complex Banach algebra with unity is contained in T.

A result of significance for us concerning doubly power bounded elements is the following.

Theorem 5. (See Gelfand [9].) Let A be a complex Banach algebra with a unity e and let a be a doubly power 
bounded element of A. If σ(a) = {1}, then a = e.

Gelfand’s theorem can be proved in a number of different ways (see e.g. [2, Theorem 1.1], [9], 
[17, Corollary 4.2]). The result has various generalisations, of which one is due to Hille [10] (see also 
[11, Theorem 4.10.1]) and is usually referred to as the Gelfand–Hille theorem; it states that if a is an 
element of a complex Banach algebra with a unit e such that σ(a) = {1}, then (a − e)r = 0 for some 
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r ∈ N if and only if ‖an‖ = O(nr−1), or ‖an‖ = o(nr), as |n| → ∞. For an informative account of various 
developments related to the Gelfand–Hille theorem, see [22]; and for modern generalisations of this theorem, 
see [8] and the references therein.

Below we establish a generalisation of Gelfand’s theorem tailored specifically to the needs of the current 
exposition.

Theorem 6. Let A be a complex Banach algebra with a unity e, and let a be a doubly power bounded element 
of A with a finite spectrum σ(a) = {λ1, . . . , λn} ⊂ T, λk �= λl for k �= l. Then there exist idempotents 
p1, . . . , pn in A such that 

∑n
k=1 pk = e, pkpl = 0 for k �= l, and a =

∑n
k=1 λkpk.

Proof. Let B be the Banach algebra generated by all elements of the form (λe −a)−1, λ ∈ ρA(a). Then B is 
a commutative algebra, and, since limλ→∞ λ(λe −a)−1 = e and limλ→∞[λ2(λe −a)−1−λe] = a, B contains 
e and a.

The single-variable analytic functional calculus guarantees the existence of idempotents p1, . . . , pn in A
with the following properties:

(i)
∑n

k=1 pk = e, pk �= 0 for 1 ≤ k ≤ n, and pkpl = 0 for 1 ≤ k, l ≤ n with k �= l;
(ii) σA(apk) ⊂ {0, λk} for 1 ≤ k ≤ n;
(iii) each pk is contained in the closed linear span of all elements of the form (λe − a)−1, λ ∈ ρA(a).

(Cf. [13, Theorem 3.2.9] and [18, Proposition 3.4.1].) Note that condition (iii) implies that all the pk’s belong 
to B.

Given 1 ≤ k ≤ n, let

Ik = {c ∈ B | c = bpk, b ∈ B}.

Ik is a closed ideal of B and hence a commutative Banach algebra, and pk is the unity of Ik. For any c ∈ Ik, 
we have σIk(c) ⊂ σA(c). Indeed, if λ ∈ ρA(c), then

pk = (λe− c)−1(λe− c)pk = (λe− c)−1pk(λpk − c),

so (λe − c)−1pk is the inverse of λpk − c in Ik and hence λ ∈ ρIk(c); in other words, ρA(c) ⊂ ρIk(c) which 
is equivalent to σIk(c) ⊂ σA(c). In particular,

σIk(apk) ⊂ σA(apk) = {λk, 0}. (4.1)

As a−1pkapk = pk, a−1pk is the inverse of apk in Ik. Therefore 0 is outside σIk(apk), and relation (4.1)
reduces to σIk(apk) ⊂ {λk}. As σIk(apk) is non-void, we in fact have σIk(apk) = {λk}. Consider now the 
element ck = λkapk. Clearly, σIk(ck) = {1}. The inverse of ck in Ik equals λka

−1pk. Moreover,

sup
n∈Z

‖cnk‖ ≤ ‖pk‖ sup
n∈Z

‖an‖,

so ck is doubly power bounded. By Gelfand’s theorem, ck coincides with the unity of Ik, that is, ck = pk. 
Hence apk = λkpk.

Finally, we have

a =
n∑

k=1

apk =
n∑

k=1

λkpk,

which is exactly what is needed to complete the proof. �
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5. Main result

This section contains the main result of the paper, which is as follows.

Theorem 7. Let A be a normed algebra with a unity e, let a ∈ R, and let {c(t)}t∈R be an A-valued cosine 
family such that

sup
t∈R

‖c(t) − (cos at)e‖ <
8

3
√

3
.

Then c(t) = (cos at)e for all t ∈ R.

Proof. Let l∞(R, A) be the space of all bounded functions from R to A, endowed with the norm

‖x‖∞ = sup
s∈R

‖x(s)‖ (x ∈ l∞(R,A)).

For an element a of A, let a denote the constant function on R with value a. For each t ∈ R, we define a 
linear operator C(t) on l∞(R, A) by

(C(t)x)(s) = c(t)x(s) (x ∈ l∞(R,A), s ∈ R).

Clearly, C(t) is bounded, with ‖C(t)‖ ≤ ‖c(t)‖. Since C(t)e = c(t) and ‖e‖∞ = 1, we see that in fact 
‖C(t)‖ = ‖c(t)‖. It is plain that {C(t)}t∈R is a cosine family on l∞(R, A). For each t ∈ R, we have

((C(t) − (cos at)Il∞(R,A))x)(s) = (c(t) − (cos at)e)x(s)

for any x ∈ l∞(R, A) and any s ∈ R, and this implies, as above, that

‖C(t) − (cos at)Il∞(R,A)‖ = ‖c(t) − (cos at)e‖.

Let 0 < δ < 8/(3
√

3) be such that ‖c(t) − cos(at)e‖ ≤ δ for all t ∈ R. Then, clearly,

‖C(t) − (cos at)Il∞(R,A)‖ ≤ δ (5.1)

for all t ∈ R.
Given t ∈ R, let Tt denote the operator of translation by t on l∞(R, A) defined by

(Ttx)(s) = x(s + t) (x ∈ l∞(R,A), s ∈ R).

Clearly, Tt is a surjective linear isometry, with inverse T−t.
As ‖c(t)‖ ≤ ‖c(t) − (cos at)e‖ + | cos at|‖e‖ ≤ δ + 1 for all t ∈ R, c = {c(t)}t∈R is bounded—that is, c is 

a member of l∞(R, A). Let Z be the linear space of all functions z in l∞(R, A) of the form

z =
n∑

k=1

αkTskc,

where αk ∈ C and sk ∈ R for k = 1, . . . , n. It is clear that Z is invariant under each Tt, t ∈ R. Given 
S ∈ L(X), where X is a linear space, and Y ⊂ X such that S(Y ) ⊂ Y , we denote by S|Y the restriction of 
S to Y . For each t ∈ R, let
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T̃t = Tt|Z .

The family {T̃t}t∈R is a one-parameter group with values in the normed algebra L(Z). Moreover, since 
‖T̃t‖ ≤ 1, ‖T̃−t‖ ≤ 1, and 1 = ‖IZ‖ ≤ ‖T̃t‖ ‖T̃−t‖, we see that ‖T̃t‖ = 1 for each t ∈ R.

For each t ∈ R, if z is a member of Z, z =
∑n

k=1 αkTskc, where αk ∈ C and sk ∈ R for k = 1, . . . , n, and 
if s ∈ R, then

(C(t)z)(s) = c(t)
n∑

k=1

αkc(s + sk)

= 1
2

(
n∑

k=1

αkc(s + sk + t) +
n∑

k=1

αkc(s + sk − t)
)

= 1
2(Ttz + T−tz)(s).

Thus Z is an invariant subspace for C(t) and we have

C(t)|Z = 1
2(T̃t + T̃−t).

Let B0 be the subalgebra of L(Z) generated by the T̃t’s. Obviously, B0 is a commutative normed algebra 
with unity, the unity element being the identity operator IZ. Let C̃ = {C̃(t)}t∈R be the B0-valued cosine 
family defined by

C̃(t) = 1
2(T̃t + T̃−t) (t ∈ R).

Then, for each t ∈ R,

C̃(t) = C(t)|Z ,

and further, on account of (5.1),

‖C̃(t) − (cos at)IZ‖ ≤ δ.

Let B denote the completion of B0, complexified if B0 is real. Clearly, B is a Banach algebra with unity, 
the unity element being again IZ . Let Δ(B) denote the set of all complex-valued homomorphisms on B, 
and let φ ∈ Δ(B). Then

φ(T̃s+t) = φ(T̃sT̃t) = φ(T̃s)φ(T̃t)

for any s, t ∈ R, so the function R 
 t �→ φ(T̃t) ∈ C is a character of R. Moreover, for each t ∈ R,
∣∣∣∣12 (

φ(T̃t) + φ(T̃−t)
)
− cos at

∣∣∣∣ =
∣∣∣∣φ

(
1
2(T̃t + T̃−t) − (cos at)IZ

)∣∣∣∣
≤ ‖φ‖ ‖C̃(t) − (cos at)IZ‖ ≤ δ,

where we used the fact that ‖φ‖ = 1 (see e.g. [13, Lemma 2.1.5]). Now, Theorem 1 guarantees that φ(T̃t) =
eiat for all t ∈ R or φ(T̃t) = e−iat for all t ∈ R. Fix t ∈ R arbitrarily. Then

σB(T̃t) = {φ(T̃t) | φ ∈ Δ(B)} ⊂ {eiat, e−iat},
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where the equality on the left hand side stems from the well-known fact that σC(c) = {φ(c) | φ ∈ Δ(C)} for 
any element c of a complex commutative Banach algebra C with unity (see e.g. [13, Theorem 2.2.5]). Since 
T̃t is doubly power bounded (recall that ‖T̃t‖ = 1 and ‖T̃−1

t ‖ = ‖T̃−t‖ = 1), it follows from Theorem 3 that 
there exists an idempotent Pt in B such that

T̃t = eiatPt + e−iat(IZ − Pt).

Note in passing that if σB(T̃t) consists of a single element, then Pt is either zero or IZ . Since

(eiatPt + e−iat(IZ − Pt))(e−iatPt + eiat(IZ − Pt))

= P 2
t + e−2ait(IZ − Pt)Pt + e2aitPt(IZ − Pt) + (IZ − Pt)2

= P 2
t + (IZ − Pt)2 = Pt + IZ − Pt = IZ ,

it follows that e−iatPt + eiat(IZ − Pt) is the inverse of eiatPt + e−iat(IZ − Pt). We thus have

T̃−t = e−iatPt + eiat(IZ − Pt).

Consequently,

C̃(t) = 1
2
(
eiatPt + e−iat(IZ − Pt) + e−iatPt + eiat(IZ − Pt)

)
= (cos at)IZ .

In particular, C̃(t)c = (cos at)c. But

(C̃(t)c)(0) = 1
2
(
c(t) + c(−t)

)
= c(t)

and

((cos at)c)(0) = (cos at)c(0) = (cos at)e.

Therefore c(t) = (cos at)e. Since t was arbitrary, the theorem is proved. �
We conclude the paper with two remarks.

Remark 1. For a �= 0, the constant 8/(3
√

3) in Theorem 7 is optimal and cannot be replaced by any larger 
number. This follows from Lemma 1 and the observation that

sup
t∈R

| cos 3at− cos at| = sup
t∈R

| cos 3t− cos t|

whenever a ∈ R \ {0}.

Remark 2. An immediate consequence of Theorem 7 is the fact that in the set of all bounded cosine families 
with values in a given normed algebra with a unity e, endowed with the metric of the uniform convergence 
corresponding to the norm of the algebra, any scalar cosine family of the form {(cosat)e}t∈R, a ∈ R, is an 
isolated point. A number of results related to this fact can be found in [5].

Note added in proof

Since submitting this work for publication, we have learnt that similar results were obtained indepen-
dently, but somewhat later, by J. Esterle [arXiv:1502.00150].
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