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1. Introduction

It is well known that every complete doubling metric space carries a doubling measure [7,11,16] and that
doubling measures are rich when the underlying doubling metric space has no dense isolated points [8]. In
the Euclidean n-space, a measure, defined by integrating an A., weight, is doubling [4]. These measures
form a subclass of absolutely continuous doubling measures on R™. Examples of singular doubling measures
can be obtained from self-similar measures on the unit square [3,20]. The existence of singular doubling
measures have also been studied extensively in general metric spaces [8,15,19]. Recall that a Borel regular
measure p on a metric space X is doubling, if there is a constant C' > 1 such that

0 < u(B(z,2r)) < Cu(B(z,r)) < oo for all x € X and r > 0. (1)

Doubling measures naturally arise in the study of the gradients of convex functions on the Euclidean
n-space. See [9,10], where it is showed that, in many cases, the gradient of a convex function is a quasisym-
metric self-homeomorphism of R™, by which the pullback measure of the Lebesgue measure is doubling.
Doubling measures can be applied to classify subsets of a metric space, in which, for example, a subset is
called very thin, if it is null for all doubling measures on the metric space. This leads to the study on fat
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and thin sets [1,5,12]. Doubling measures can also be used to construct quasisymmetric deformations of
the underlying metric space, so that the objective space is in some sense better than the original space, for
example, it can be proved that, if a metric space is uniformly perfect and carries a doubling measure, then
it is quasisymmetrically equivalent to an Ahlfors regular space [6].

Though examples of doubling measures are rich, a complete description for doubling measures on a given
metric space is usually difficult. It is clear that a measure on the real line R is doubling if and only if it
is a pullback measure of a quasisymmetric self-homeomorphism of R. However, this is not true for higher
dimensional Euclidean space. In the present paper, we study doubling measures on uniform Cantor sets.
We shall give a sufficient and necessary condition for the doubling property of a measure on an arbitrarily
given uniform Cantor set. The question of which doubling measure on such a Cantor set can be extended to
a doubling measure on [0, 1] is also discussed. For the related papers on Cantor sets and doubling measures
on [0, 1], we refer to [2,13,14,17].

We begin with uniform Cantor sets. Let n = {ns}32, be a sequence of integers, where n; > 2. Let
c = {cx}32, be a sequence of real numbers in (0,1) such that (ny — 1)cx < 1 for all £ > 1. The uniform
Cantor set E(n,c) is defined by

E(n,c) = ﬂ Ey, (2)
k=0

where {E}} is a sequence of nested compact sets in [0,1], Ey = [0,1], and Ej, is obtained by deleting from
every component I of Ex_1 (ng — 1) open intervals of equal length cg|I|, such that the remaining ny, closed
intervals are of equal length. A component of E}, will be called a component of level £ and a component of
Ej_1\ Ex will be called a gap of level k. Denote by Ny, O, and ey, respectively, the number of components
of level k, the length of a component of level k, and the length of a gap of level k. Then, from the definition

b b 1-— (nz - 1)Ci
Ne=]]n: o =]] — . &k =Gkt (3)
i=1 i=1 '

Note that the uniform Cantor set E(n,c) is of Lebesgue measure

L(E(n,c)) = H(l — (n; — D)ey).
Therefore
L(E(n,c)) >0 < {nge,} € 22, (4)

where (7 denotes the set of real sequences {ay}72, with >~ |ax|P < oo.

For a uniform Cantor set E(n,c) we denote by 7 the family of its components of level k and by Gy, the
family of its gaps of level k. Then $7; = Nj and $G; = Ni_1(nx — 1), where £ denotes the cardinality. Let
7 = U321 and G = U2, Gy To label these components and gaps, we relate a word to each of them as
follows: Let

Wk:{i1i2~~ik:1§ijSnj,lgjgk}andW:U,?‘;lwk. (5)
A member in Wy, is called a word of length k£ and a member in W is called a word of finite length. Let the

words in W be ordered in the lexicographic order. Then the first n; words are 1,2, ---,n;. We denote, from
left to right, by Iy, Is,---,I,, the n; components in Z; and by G1,Ga,:--,Gp,—1 the ng — 1 gaps in Gy.
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Inductively, supposing that I, has been defined for a word w € Wy_1, we denote, from left to right, by
L1, L2, -+ Lyn, the ng members of 7y in I, and by Gu1,Guw2, +; Gu(n,—1) the ngy —1 members of Gy
in I,,. With the above notation, once a word w € W}, is specified, the relative position of the component
I, of level k is determined. For example, the minimal word 11---1 of length k£ corresponds to the leftmost
component in Z; and the maximal word nins---ny of length & corresponds to the rightmost component
in Z,. We say that two components I, and I,, are adjacent, if w,u € W are adjacent in the sense of the
lexicographic order. For example, given w € Wj_; and 1 < i < ny, the maximal word wing41 - --ng4e of
length k + ¢ with prefix wi and the minimal word w(i + 1)1---1 of length k + ¢t with prefix w(i + 1) are
adjacent. They correspond to two adjacent components in Zj . Note that

E(n,c) = ﬁ U L
k=1weWy

and that
I,=1,1U Gwl Ul U Gw2 U---u Iw(nkfl) U Gw(nkfl) U Iwn;C

for all w € Wy_1, where, if k = 1, then I,, = [0,1] and wi = 1.

We also need some terminology on vectors. A vector P = (p1,pa, -+, pk) is called a positive probability, if
its components are all positive and Zle p; = 1. A positive probability vector P = (p1,pe,---,px) is called
C-uniform, where C' > 1 is a constant, if

o-1 < Pit + o+ Dig
I RS S e b VR Y

<Cwhenever 0 <i<j<i+1<j+1<k. (6)

The condition means that two sums of consecutive [ components of P are comparable, if they are adjacent.
Clearly, the vector P is l-uniform if and only if p; = py = - - - = px. We say that P is (C, s)-uniform, where
1 < s < k, if the condition (6) holds only for s <[ < k. Thus, the (C, 1)-uniformness and the C-uniformness
are the same. We say that a sequence P = { Py} of positive probability vectors is C-uniform, if each Py is
C-uniform. We say that P is ultimately C-uniform, if there is an integer kg > 1 such that Py is C-uniform
for each k > k.

Let E(n,c) be a uniform Cantor set. Let P = {P;}72, be a sequence of positive probability vectors,
where

Py = (Pk,1, P2, > Phong)

has nj components. Such a sequence of vectors will be called n-matching. Given an n-matching sequence P
of vectors, there is a unique probability measure on E(n,c), denoted by up, satisfying

wp(Lwi) = pripp(Ly) for all w € Wy_q and 1 < i < n. (7)

The positivity assumption of probability vectors is reasonable. Otherwise, the corresponding measure would
support on a proper compact subset of E(n,c).
The following data of the uniform Cantor set E(n,c) are crucial in stating our results. Denote

A:{k2126k<(5k}. (8)

Thus, a gap in Gi is shorter than a component in Zj at every level k € A. For each k € A let my be the
unique positive integer such that
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6k+mk S €k < 5k+mk—1a (9)

and let s be the unique positive integer such that

SkO0k+m, + (Sk — 1)5k+mk <ep < (Sk + 1)6k+mk + SkEk4my, - (10)
Write E(n,c, A, {my}rea, {sk}rea) for E(n,c), when these related data are emphasized.

Theorem 1. Let E = E(n, c, A, {my}ren, {Sk}rea) be a uniform Cantor set. Let up be a measure determined
by an n-matching sequence P of positive probability vectors. Then up is doubling on E if and only if there
is a constant C' > 1 such that P is C-uniform and satisfies, for each k € A, the following conditions:

(@) (Prtt, Pege) is C-uniform and

t t t

c! Hpk+j,1 < Hpk+j,nk+j < CHpkﬂ-J for all1 <t < my. (11)
j=1 j=1 j=1

(b) (Pk-i-mkapk:-‘rmk) 18 (C,Sk)—uniform.
Hereafter, ZfP = (p17p25"'7pj)7 then (p’ P) = (p17p27"'apjaplap27"'7pj)'

From Theorem 1 some easier conditions for the doubling property of the measure pup on E can be
formulated.

Corollary 1. If supy>; ng < oo, then the measure pp is doubling on E if and only if there is a constant
C > 1 such that

(@) C™'pri < priv1 < Cpyi for all 1 <i < ny and for all k, and
(b) the condition (11) is satisfied for all 1 <t < my and for all k € A.

Corollary 2. If sup;cp mi < 00, then the measure up is doubling on E if and only if there is a constant
C > 1 such that

(a) P is C-uniform, and
(b) for every integer k € A, (Pitt, Piyt) is C-uniform for all 1 < t < myg and (Piymy, Pitm,) 18
(C, s)-uniform.

Corollary 3. If P is an ultimately 1-uniform, then up is doubling on E.

Theorem 1 can be generalized. Let p be a Borel probability measure on E with p(I,,) > 0 for all w € W.
For each k£ > 1 and for each w € W1 let

1<4<ng. (12)

Then there is a one-to-one correspondence between the set of Borel probability measures p on E, with
p(Iy) > 0 for all w € W, and the set of sequences {py wew, with > i% py; = 1 and 0 < py; < 1 for all
w € Wi_q1 and k > 1. Write

P, = (pwlapw%"';pwnk) (13)
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for each w € Wy_;. Then p is a measure considered in Theorem 1, provided that for every fixed integer
k > 1, the vectors P, are the same for all w € Wj_;. Write wiu; for the maximal word in Wy, with prefix
wi and wil® the minimal word in Wy, with prefix wi. Our next theorem gives a complete description of
doubling measures on a uniform Cantor set.

Theorem 2. Let E = E(n,c, A, {mg}rea, {sktrea) be a uniform Cantor set. Let u be a Borel probability
measure on E with u(I,) > 0 for all w € W. Let {py}wew be the corresponding sequence. Then u is
doubling on E if and only if there is a constant C > 1 such that P, is C-uniform for all w € W and
satisfies, for each k € A, the following conditions:

(@) (Pwiuy_y» Pw(it1y1e-1) is C-uniform and

t t t
C_l priuJ- < pr(i+1)lj < c priuj (14)
j=1 j=1 j=1

forallwe Wi_1, 1 <i<ng, and 1 <t < my.
(b) (R,,mm,k_l,Pw(iﬂ)lmkfl) is (C, sk )-uniform.

For a uniform Cantor set E(n,c) it is known that v(E(n,c)) = 0 for all doubling measures v on [0, 1]
if and only if {nrer}pe, & Ug>1£7 [5]. As a consequence, if E(n,c) carries a doubling measure which can
be extended to a doubling measure on [0, 1], then {nxcr}; € Ug>1£%. Our main result on the extension
question of doubling measures on a uniform Cantor set is the following theorem.

Theorem 3. Let E = E(n,c) be a uniform Cantor set. Let up be a measure determined by an ultimately
1-uniform n-matching sequence P of positive probability vectors. Then up can be extended to a doubling
measure on [0,1] if and only if {nxci}>, € £*.

2. Proof of Theorem 1

In what follows C' will denote a constant depending only on the constants in question and it may be
different in every appearance. Write A ~ B for C™'B < A < CB, and A < B for A < CB, when A, B are
quantities. For an interval I, denote by z~(I) and =™ (I), respectively, the left and the right endpoints of I.

Proof of the ‘only if’ part. Let £ = E(n,c, A, {my}rea, {Sk}rea) be a uniform Cantor set. Let up be
a measure determined by to an n-matching sequence P of positive probability vectors. Suppose that up
is doubling on E. We are going to show that the sequence P satisfies the conditions of Theorem 1. The
doubling property of the measure up will be used frequently in the following equivalent form:

w(B(z, 7)) ~ u(B(y,t)) for all z,y € E and r,s > 0 with |z —y| < r ~ s.

Note that, for all kK > 1, the endpoints of components of level k of E belong to E. The proof consists of the
following claims.

Claim 1. py 2 < Cpg1 and pin—1 < Cpion, for all k> 1.

Proof of Claim 1. Let w € Wy_1 be the minimal word of length £ — 1. Then the corresponding component
I, is the leftmost component of level k£ — 1. We easily see that

Iyt = Ex N B(x™ (Ly1), 0k + €) and Iye € B(x™ ({w2), 0k + €k)-

Please cite this article in press as: C. Wei et al., Doubling measures on uniform Cantor sets, J. Math. Anal. Appl. (2015),
http://dx.doi.org/10.1016/j.jmaa.2015.05.002




Doctopic: Real Analysis YJMAA:19471

6 C. Wei et al. / J. Math. Anal. Appl. e e e (6 e ee) o0 e—0ee

Observing that = (Iy1), 2~ (Iw2) € F and |~ (Iy1) — @~ (Tw2)| = 0k + €k, it follows from the doubling
property of up that

pp(Lw2) < pp(B(x™ (Lw2), 0k +€k)) < Cup(B(x™ (Lw1), 0k +€x)) = Cup(Lw1),

giving py 2 < Cpy.1 by (7). Similarly, we have pg ,,—1 < Cpg,n, by considering the maximal word w € Wi,_q
and the rightmost two components of level k. This proves Claim 1. O

Claim 2. py ; ~ pgi+1 for all 1 <i <ny and k > 1.

Proof of Claim 2. Let k be given. When nj = 2, Claim 2 follows from Claim 1 directly. Next we assume
that ng > 2. Consider the components I,,; and Lyt of level k, where w € Wy_1 and 1 < i < ng. Then
G ;i is the gap of level k between them. Three possible cases may happen.

Case 1. e > 0p.
Since €, > Jy, we easily see that
I,i = FELN B(x+(1wi)7€k) and Iw(i—i—l) = FEi N B((,E_(Iw(i_;'_l)),!fk) (15)

for 1 <i < ny — 1. Observing that 2 (L), 2~ (Iy@i41)) € E and |27 (L) — 27 (Ly(it1))| = €k, we get from
doubling property of up that

,U]P‘(Iwi) ~ ,U/]P’(Iw(iJrl))a

which yields px; ~ pg,i+1 by (7). For i = 1, letting w be the minimal word in Wj_1, the relationship (15)
remains to be true, and so py 1 ~ pi 2. For i = n; — 1, considering the maximal word in Wj_;, we get
Dk,ni—1 ~ Dk,n, i the same way.

Case 2. g}, < 0 and ngyq > 2.
Consider balls B(z,r) and B(y,r), where

Nk+1 — 1

r=2 (Gui) =71 y=2"(Gui) +7, 7= 5

1(0k41 + €kp1)-

We see that x is an endpoint of a component of level k+ 1 in I,,; and that y is an endpoint of a component
of level k + 1 1in I,,(;41), so x,y € E. Note also that

B(x,r) C Ly and B(y,r) C Ly(it1)-
Since ng41 > 3, we have 4[”’“+TH} > Mgy, SO 4r > Oy, giving
Iyi € B(xz,4r) and I,41) € B(y, 4r).
Therefore
pp(Lwi) ~ pp(B(z, 7)) and pp(Lyiv1)) ~ pe(B(y,7))-

Additionally, since e < d; has been assumed, we have |z — y| = 2r + &, < 67, so pup(B(x,r)) ~ up(B(y,r))
by the doubling property of up. It then follows that pp(lwi) ~ pip(Lw(i+1)), EIVIN Pri ~ Priv1 by (7).
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Case 3. g < 0 and ng41 = 2.

In the case of ex41 > g1, consider B(z™ (Iyi2),r) and B(z* (Iy(i41)1),7), where 7 = 8,1 + &= Since
r < Op+1+ % < k41 + €k+1, We see that

Tyio C Ex N B(x™ (Iyi2),7) € Lyi
and
L+ = B N B(@" (Lpi+1)1),7) € Lu(it1)-
Observing that |2 (Iy(i41)1 — 2~ (Lwiz)| = 20k41 + €x < 37, we get from the doubling property of yp that
pp(B(x™ (Twiz), 7)) ~ pe(B(a* (o), 7).
Since ng41 = 2, we have pp(lyi2) ~ pp(lwi) and pp(Lyi41y1) ~ pp(Lwi+1)) by Claim 1. Therefore pup (L) ~

pe(Lw(iv1)), and 80 pri ~ prit1 by (7).
In the case of €41 < dgt1, since ngy1 = 2, we have

B(z™ (Twi2), 0k+1) C Twi € B(x™ (Lwiz2), 30k+1)
and
Bz (Ly(i+1)1) Ok41) € Tw(i1) € B(@* (Ly(ig1)1)s 30k41)-

Since g5 < 0, we get |£L‘+(Iw(i+1)1 — 27 (Iyi2)| = 2011 + €k < 50k 41. Then pp(lyi) ~ pp(ly+1)) by the
doubling property of pp, giving px; ~ pk,i+1. This completes the proof of Claim 2. O

Claim 3. P is C-uniform.
Proof of Claim 3. Since the C-uniformness of P is equivalent to that every Py satisfies

Dkyi+1 + =+ Dk,itl ~ Phyit+i+1 + - + Prital (16)

forall 4 > 0 and [ > 1 with i +2] < ny, it suffices to show (16). Fix k. When | = 1 or ny < 3, the relationship
(16) follows from Claim 2 directly. Next we assume that [ > 2 and ng > 3. Let w € Wi_1 and i > 0 be given
such that ¢ 4+ 21 < ny. Observing that there are balls B(z,r) and B(y,r) with 2,y € F and |z — y| < 3r
such that

Ex N B(x,7) C Lyig1) U U Lyiyy) € B(z,3r)
and
Ex N B(y,r) C Lyitj+1) Y- Ulygirz) € By, 3r),
we immediately get
e (Lwig1y U U Luigg)) ~ e (Logirin) U U Luiiv2))),

giving the relationship (16) by (7). This completes the proof of Claim 3. O
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Claim 4. H§-:1 Dk+j,1 ~ H;:1 Phijngs, Jor allk € A and 1 <t <my,.

Proof of Claim 4. Let k € A be fixed. Without loss of generality, assume that my > 1. Let 1 <t < my be
given. Then €} < 04+ by the definition of my. Let w € W_; and 1 < i < ny, be given. Let wiu € Wy be
the maximal word with prefix wi and w(i + 1)v € Wi+ be the minimal word with prefix w(i 4+ 1). Then,

by (7)

t
,U]P’(I'wiu) = ,UIP(Iw)pk,i Hpk+j,nk+j
j=1
and

t
pe (L)) = wp(Lw)Pr it Hpk—i-j,l-
j=1

Note that the gap between Iy, and L1y 15 Gui. Since e < dg1¢, one has |Guil < [Twiu| = [Twit1)ol-
To complete this proof, we consider two cases:

Case 1. npqeq1 > 2.

Arguing as Case 2 of Claim 2, we have two balls, B(z,r) and B(y,r), with 2,y € E and |z — y| < 6r,
such that

B(.T,T) g Iwiu g B(l’,4’l") and B(y,r) g I’w(i-‘rl)v g B(y,4r),
which, combined with the doubling property of up, yields pp(Lwiu) ~ pp(Lw(it1)w)-
Case 2. ngyi41 = 2.

Consider two subcases: €g4i41 > Opti41 and €gpy1 < Oge41. In the first subcase, arguing as Case 3 of
Claim 2, we have two balls, B(x,r) and B(y,r), with z,y € E and |z — y| < 3r, such that

Twiva € Epyt N B(x,7) C Lyiy and Ly(ip1y01 = Erye 0 By, 7) € Lyit1)o-

In the second subcase, arguing as Case 3 of Claim 2, we have two balls, B(z,r) and B(y,r), with x,y € F
and |z — y| < 5r, such that

B(x,r) C Lyiw € B(x,3r) and B(y,r) C Ly@+1)e € B(y,3r).

Therefore, in both subcases, we have pp(Lwiu) ~ pp(Ly(it1))-
Now pp(Lwiu) ~ pe(Lw@i+1)w) is proved. Since pr; ~ priy1 has been proved in Claim 2, we get
H§'=1 Dhgj1 ~ H§'=1 Pk .y, - Lhis completes the proof of Claim 4. O

Claim 5. (Pytt, Pett) @8 C-uniform for all k € A and 1 <t < my,.

Proof of Claim 5. Since P has been proved to be C-uniform, it suffices to show that the sum of the first
j terms of P4+ is comparable to the sum of the last j terms of Py4; for all £ € A, 1 < ¢ < my, and
1 < j < ng4e. Let these integers be given. Let w € Wi and 1 < i < ny be given. Let v € W41 be the
maximal word with prefix wi and v € Wy1;_1 be the minimal word with prefix w(i + 1). Then G,; is the
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gap between I, and I,,. Consider components Lun, ,, Lu(nyi—1)s * s Lu(nppo+1—j) and Ip1, Lo, -+, Ly of
level k + t. Since € < x4+, by the same argument as that of Claim 2 we get

:LLIP’(IUTL]C+¢ U e U Iu(nk+t+17j)) ~ ,UIP’(Ivl U et U IUj))

which, together with Claim 2 and Claim 4, yields

DPhttngre t o+ Phttng i +1—5 ~ Dhtt,1 T+ Phgt 5
This completes the proof of Claim 5. O
Claim 6. (Pitm,, Prtm,) @ (C, sk)-uniform for all k € A.

Proof of Claim 6. Since P has been proved to be C-uniform, it suffices to show that the sum of the first j
terms of Py, is comparable to the sum of the last j terms of Py, for all k£ € A and s < 7 < Ngpmy,
where, by the definition, s; satisfies

Sk0kmp + (& — 1)ektm, < ek < (8k 4+ 1)0ktmy, + Sk€ktmy-

Let k£ and j be given. Let w € Wy_; and 1 < i < ny. Let v € Wiy, —1 be the maximal word with prefix
wi and let v € Wi, —1 be the minimal word with prefix w(i + 1). Then G,,; is the gap between I,
and I,7.

Nk+my,

Case 1. s = j = 1. In this case, drptm, < €k < 20k+m, + Ek+m,, SO We have

1

UNfrmy,

Ul

u(nk+mk -1)

C ENB(@ (Gui)sek) € Lunyyn,
and

Iy CENB@™ (Gui)ser) C Iyt Ulys.
From Claim 2 and Claim 4 we get

MP(Iunk+mk) ~ ,U'IP’(]unk_'.mk U Iu(n;c_*_mkfl)) and MIP)(IUI) ~ M]P’(Ivl U Iv2))~

Since 7 (Gui), 7 (Gwi) € E and |27 (Gui) — 7 (Guwi)| = &k, it follows from the doubling property of up
that up(B(z™ (Guwi),ek)) ~ pp(B(xt(Guwi), ex)), so

NIP(Iunk+mk) ~ N]P([vl)y
which, together with Claim 4, yields Pltmp,npsm, ~ Phtmy,1-
Case 2. s > 1 or j > 1. In this case, arguing as we did in Claim 3, we get
1 (Luny sy, U Uiy, 1)) ~ pp(Lo1 U e U Lyj),
which, combined with Claim 4, yields
Phtmy,nesm, T T Phtmy,npgmy, +1—5 ~ Phtmy,1 T+ Dedmy -

This completes the proof of Claim 6 and the ‘only if’ part is thus proved. O
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Proof of the ‘if’ part. Suppose that P meets the conditions of Theorem 1. We are going to show that up is
doubling on E.

Let B(x,r) be a ball of the real line with x € E and r € (0,1). Let I be the smallest component such
that I O ENB(x,2r). Suppose that I is at the level k — 1. Then B(x, 2r) intersects at least two components
of level k, so 2r > ;. Denote

A={L:L eIy, LNB(z2r)+#0}.

Then UpeaL C I and 4r > (84— 2)dk, + (A — 1)eg, where £ denotes the cardinality. We consider four cases
as follows.

Case 1. f4 > 4.

In this case, we see that 44 ~ §{L € A : L C B(z,r)}. Since Py is C-uniform, we get pp(B(z,r)) ~
wp(B(x,2r)).

Case 2. 4 = 3.

Nk+1
4

k+1in L(z), where L(z) € A is the component of level k containing x. Since Py and Py, are C-uniform,

In this case, 4r > ;. When ngy1 > 4, we see that B(z,r) contains at least | ] components of level

we have

pe(B(z,r)) ~ pp(L(x)) ~ pp(B(z,2r)).

When ny41 = 2 or 3, we see from §.4 = 3 that B(x,r) contains at least a component of level k+ 1. Therefore
the last relationship remains true.

Case 3. f4 = 2 and ¢ > .

In this case, since 2r > &, we have 2r > ;. By the same argument as that of Case 2 we get up(B(x,7)) ~
wp(B(x,2r)).

Case 4. f4 = 2 and ¢ < dy.

Let I,; and I,;11) be members of A, where w € Wy and 1 < i < ng. Without loss of generality,
assume that = € I,;. Let J(z) be the biggest component such that z € J(z) C B(x,r). Then J(x) = I or
J(x) C I It is obvious that pp(B(z,7)) = pp(B(z,2r)) for J(x) = I. Also, if J(x) = I, we easily see
from the C-uniformness of P, that

pe(B(2, 1)) = pp(lwi) = Cpp(lwi U Lyiy1)) = Cpp(B(w, 2r)).

Next assume J(z) # I,;. Thus J(x) is at the level k + ¢ for some ¢ > 1. Let I, be the component of level
k +t — 1 containing J(z), where u € Wyys—1. Then we have B(z,r) C I, UGU I, and r < di4;—1 by the
maximality of J(x), where I, is the nearest component of level k +¢ — 1 on the right of I,, and G is the gap
between I,, and I,. Therefore, B(x,2r) meets at most four components of level k + ¢ — 1, that is, 8 < 4,
where

B ={L: L is a component of Ey ;1 and L N B(x,2r) # (}.

Clearly, I, € B. We claim that up(L) ~ pp(l,) for all L € B. In fact, let L and K be two adjacent
components in B, then the gap between L and K is at the level k + j for some 0 < j7 < t—1. When the gap
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is at the level k 4+t — 1, we immediately get up(L) ~ pp(K) from the C-uniformness of Pyy:—1. The gap
being at the level k + j for some 1 < j <t — 2 is possible only when

Ek+j <2r< 25k+t—1 < 6k+j,

and if it happened, we may use the C-uniformness of (P4, Pr+;) and the condition (11) to get pup(L) ~
pup(K). Finally, we consider the case where the gap is at the level k. Note that ¢ < my + 1, in fact, if
not, we would get from the definition of my that 2r < 2051m,+1 < dk+m, < €k, contradicting 2r > e.
Also, if t = my, + 1 happened, (Pitm,, Pktm,) would have been C-uniform. In fact, if ¢ = my + 1 then
Oktmy < €k < 2r < 20k4m,, by the definition of my, so s = 1, and hence (Pgim,,, Prtm,) is C-uniform,
because it has been assumed to be (C, sy )-uniform. Then pp(L) ~ pp(K) follows from the above discussion
and the assumptions of Theorem 1. This proves the claim.
Now let

C ={L: L is a component of Eyy; and L C I, N B(z,r)}.
Two possible subcases may happen.

Subcase 1. B(z,2r) D I,,.

Nkt

In this subcase, we have {C > [~

]. It follows from the C-uniformness of Py; that
pp(B(x,r)) = Cpp(ly).

Since B < 4, we get from the above claim that up(B(z,7)) ~ pup(B(z, 2r)).
Subcase 2. B(z,2r) C I, UG U I,.

In this subcase, it is clear that 2r < |I,| = dx+¢—1, so we have ¢ < my by the definition of m;. We see
that I, C Ly and I, C Iy(i41), with u € W41 being the maximal word with prefix wi and v € W44
being the minimal word with prefix w(i + 1). Thus G is a gap of level k. When 1 < ¢ < my, we use the
assumption (a) to get up(B(x,r)) ~ up(B(x,2r)). When t = my, remembering that s; has been defined to
satisfy

SkO0kmy + (& — 1)ektmy, < €k < (Sk 4+ 1)0ktmy, + SkEktmys
which, together with 2r > e, yields 2r > $gdk1m, +(Sk —1)€k+m,, we may use the C-uniformness of Py, ,

the (C, s )-uniformness of (Py4m,, ; Pk+m, ), and the assumption (11) to get pup(B(x,r)) ~ pp(B(z,2r)). This
completes the proof of the ‘if’ part. O

3. Proof of Theorem 2

The proof of Theorem 2 may go in step as that of Theorem 1. For the proof of the ‘only if” part, suppose
that p is doubling on the uniform Cantor set E. We shall prove that the sequence { P, },cw satisfies the
conditions of Theorem 2. As we did in Theorem 1, the proof consists of the following claims.

Claim A. py2 < Cpuw1 and pyn,—1) < Cpun, for allw € Wiy and k > 1.

Claim B. pyi ~ py(it1) for allw € Wiy, 1 <i <ng, and k > 1.

Please cite this article in press as: C. Wei et al., Doubling measures on uniform Cantor sets, J. Math. Anal. Appl. (2015),
http://dx.doi.org/10.1016/j.jmaa.2015.05.002




Doctopic: Real Analysis YJMAA:19471

12 C. Wei et al. / J. Math. Anal. Appl. e e e (6 e ee) o0 e—0ee

Claim C. P, is C-uniform for allw e W.

Claim D. H;lew(i_‘_l)lj ~ H§:1 Pwiu; for allw € Wiy, 1 <i<ng, 1 <t <my, and k € A.
Claim E. (Pyiu,_,; Pu@it1)1t-1) 98 C-uniform for allw € Wy_q, 1 <i <mny, 1 <t <my, and k € A.
Claim F. (Pyiu,,, 1> Py(it1)1me—1) is (C, sg)-uniform for all k € A.

If, for every fixed integer k£ > 1, the vectors P, are the same for all w € Wjy_1, then the above claims are
exactly those in Theorem 1. Under this condition, Claim A has a simpler proof, because the word w € Wy_4
in question may be assumed to be the minimal or maximal words. Now, without assuming this condition,
we are going to prove Claim A. Instead, we will show the following

Lemma 1. py2 ~ puw1 and pyn,—1) ~ Pwn,, for allw € Wi_1 and k > 1.

Proof of Lemma 1. We only prove p,2 ~ py1. The proof of the other relationship is obviously similar. Let
k> 1 and w € Wi_; be given. To prove py,a ~ w1, it suffices to show p(Iye) ~ w(ly1). Without loss of
generality, assume that w € Wj_; is neither minimal nor maximal.

Case 1. g, > 0.
Let I, be the component of level k next to the left of I,,;. Let I, be the component of level k next to
the right of I,,2. Let G be the gap between I,, and I,,1. Let G’ be the gap between I, and I,,. Then G’ is a

gap of level k if and only if n; > 2. Remember that p is doubling on F and that g5 > J; has been assumed.
Noting that, if d; < |G| < & then

Iyi = Ex N B(z" (Iy1),|G|) and I, = E, N Bz~ (1.), |G]),
and that, if |G| < d; then
Lyt = Ex N B(z" (Iy1),01) and I, = Ey, N Bz~ (1,), 61),
we find that, if |G| < ek, then
(Tw1) ~ p(lu). (17)
Arguing as we just did, if |G’| < e, then
(Twz) ~ p(ly). (18)
Now we apply (17) and (18) to prove pu(ly1) ~ u(ly2). We consider nine subcases.

Subcase 1. |G| > ¢, and |G| > €.
Since € > 05 has been assumed, we have

I,1 = FEN B(er(le),ak) and I, = Ex N B(l‘7 (Iwg),ék),
and so p(Lyp1) ~ p(lw2)-

Subcase 2. |G| < 6, and |G'| < dj.
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In view of (17) and (18), u(I,) ~ p(lw1) and p(l,) ~ p(ly2). Since |G'] < & < &g, we have n = 2, as
we have said. We see that the gap next to the right of I, belongs to G. Then we have

p(lw1) + p(ly) = M(B($+(Iu)75k + k)
and
w(lw2) + p(ly) = p(B(x™ (L), e + k),

and so p(Ly1) ~ p(lw2).

Subcase 3. 0, < |G| < e and |G'| > ¢y,
In view of (17), u(Iy1) ~ u(I,). Observing that

Iyi C BN Bt (Iy1),e1) € L, ULy and Lo = Ex N B(z™ (Iy2), €x),

we get w(lp1) ~ p(Lyp2)-

Subcase 4. 0, < |G'| < ¢, and |G| > ¢
Arguing as we just did in Case 3, we have pu(Iy1) ~ p(Iy2).

Subcase 5. 0, < |G| < ¢ and |G'| < dj.
We have p(l,) ~ p(ly1) and p(I,) ~ p(l,2). We also have

L1 CExNB(x™ (Lp1),ex + 0k) C I, Ul
and
pLwa) + p(Ly) = p(B(z™ (1), ek + 0)),
and so p(Lyp1) ~ p(lw2)-

Subcase 6. 0, < |G'| < g and |G| < Jy.
We get pu(Iy1) ~ p(lp2) by an argument analogous to Case 5.

Subcase 7. 0y < |G| < e and §;, < |G'| < .
We have p(I,) ~ u(Iy1) and p(I,) ~ pu(I,2). We also have

Iyt CEyNB(x™ (Lw1),ex+6x) € L, Ul
and
Ly2 C Ep N B(x+(lw2)a€k + 61@) cLu Iw2>

giving pu(Lw1) ~ p(Lw2).

Subcase 8. |G| < 0 and |G'| > &.
We have p(I,) ~ pu(ly1). Noting that

L2 = EpN B(xi(IwQ)agk) and I,,; € BN B(37+(Iw1);5k) C IL,Uly,

we get fi(Lu1) ~ p(Lw2).
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Subcase 9. |G'| < 0 and |G| > ¢,.
Arguing as in Case 8, we have p(l1) ~ p(ly2).

Case 2. g, < 0k, Nk+1 = 2, and €41 > Og41-

We consider two subcases: e < 0p41 and € > dgy1. When e < g1, one has u(ly12) ~ u(lye1) by
comparing the sizes of B(x ™ (Iy12),0k+1) and B(x T (Iy21),0k+1) in measure p, which, combined with an
observation that I,,1 C B(z™ (Iy12),26k+1), yields

p1(lw1) < Cu(B(z™ (Lwi2),ek+1)) < Clp(lwi2) + p(lw21)) < Cu(lw2).

As pu(Iy2) < Cu(l,1) may be obtained similarly, we have p(l,1) ~ p(Ip2). When e > 041, since 3eg41 >
0k > € by the assumptions of Case 2, one also has p(l12) ~ p(Lw21) by comparing B(z ™ (Ly12), %) and
B(z" (Iy21),7k), where 7, = min{ey,eg41}. Therefore, arguing as in the previous subcase gives p(ly1) ~
f1(Lw2)-

Case 3. e < g, Ngt1 = 2, and Err1 < 5k+1~
Case 4. g}, < 0 and ngq > 2.

For Cases 3 and 4, the proof of pu(I,1) ~ u(lye) is the same as that of Claim 2 in Section 2. We omit
it. O

Based on Lemma 1, Claims B—F can be proved in the same way as Claims 2-6 of Section 2. This completes
the proof of the ‘only if’ part. O

For the proof of the ‘if” part, suppose that the sequence {P,, },ew satisfies the conditions of Theorem 2.
We have to prove that p is doubling on the uniform Cantor set F. Arguing as we did in the proof of
Theorem 1, the doubling property of p can be proved similarly, and so it is omitted here.

4. Proof of Theorem 3

Let E = E(n,c, A, {my}ren, {sk}rea) be a uniform Cantor set. The proof of Theorem 3 is based on the

following lemmas.

Lemma 2. If E carries a doubling measure which can be extended to a doubling measure on [0,1], then
{nkck Ry € U102

Proof. If {npci}pe, ¢ Ug>149, then we have v(E) = 0 for all doubling measures v on [0,1] (see [5]),
a contradiction. O

Lemma 3. Suppose that E carries a doubling measure which can be extended to a doubling measure on [0, 1]
and that supy~, ng < 0o. Then supyep my = 00.

Proof. If sup,c, my < oo, then there is an integer IV such that e > 0p4n for all £ > 1, ie.

gy 1-— (nl — 1)61
H —— < C.

n
i=k *
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It follows that

1 —sup;>q(n; — 1)c;

SUp;>1 1

N < e (19)

(

for all k > 1. Since E carries a doubling measure which can be extended to a doubling measure on [0, 1],
we have from Lemma 2 that {ngci}p2, € Ug>1£9. This implies supy~;(ny — 1)ci < 1, which, together with
(19) and the assumption sups; ni < 00, gives infy>1 ¢, > 0. Thisiimplies that E is porous, so we have
V(E) = 0 for all doubling measures v on [0, 1] (see [18]), a contradiction. O

Proof of Theorem 3. Suppose {nxci}3, € ¢'. Then L(E) > 0 by (4). Since P is an ultimately 1-uniform
n-matching probability sequence, there is an integer kg > 1 such that p; ; = nik forallk > kgand 1 <i < ng.
By this, we have

= 2 ﬁEmI Z(EnDFlenr

IEIkO 1

Let

Z EEHIE|I+ Z L.

T€lyy—1 JEGky—1

Since Zy,—1 U Gk,—1 forms a partition of [0,1] by finite intervals and the restrictions of the measure v to
these intervals are Lebesgue, we easily see that v is doubling on [0, 1]. Moreover, since £N(Ugeg,, ,G) =0,
we have pup = v|g. This proves that up can be extended to a doubling measure on [0, 1].

Conversely, suppose that up can be extended to a doubling measure v on [0,1]. Then we have from
Lemma 2 that {ngcx}3>, € €9 for some ¢ > 1, which yields limy_ oo nger = 0. We are going to show
{nkck}z"zl €.

Since limy_, o, nrcy = 0 and P is ultimately 1-uniform, we may choose an integer ky > 1 such that

nier < 1/3 for all k > ko (20)
and that
1 .
pri = — forall k > ko and 1 <4 < ng. (21)
ng

Therefore {k : k > ko} C A, where A is as in (8). Let k > ko be fixed. By the definitions of integers my, and

Sk, we have

SkO0k+m, + (Sk — 1)5k+mk <ep < (Sk + 1)5k+mk + SkEk4my, - (22)

Since e = cxdx—1 by the construction of the uniform Cantor set E, we see from (3) that the right-hand
inequality of (22) can be rewritten as

k+ —1
o < (sk + D) = (Mpgmy, = 1)Chgmy ) + SkMktmy Chim ﬁ 1—(n; —1)c
nk+mk i—Fk ng
Therefore
3s
NneCr S k . (23)

Ne+1Mk+2 * * * Mk+my,
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On the other hand, let w € Wi_1, 1 < i < ng, and let G,,; € Gx be the corresponding gap of level k. Then
|Gwil = k. Let J = [27 (Gui) — €k, & (Gy)] be an interval, where 2~ (Gy;) is the left endpoint. We see
from the left-hand inequality of (22) that J contains at least s components of level k + my, in I,,;. Since v
is an extension of up and v is doubling on [0, 1], we get from (21) that

AGi) > Cu(g) > —C3teui)
N1 Mty

Now, summing over all 1 <17 < ny, yields

nE—1 n;c 1
C'sy,

(U o) 2 g (U o (24)

Nk41 - nk+mk

Since P is ultimately 1-uniform, we have pp(U;* i) ~ pp(I,). Summing over all w € Wj,_1, we get from
(23) that

C'sy,
U J) > ———— > Cnycey.
JEG 'I’Lk;_i'_]_ nk-i—mk

Finally, summing over all k > kg yields

oo > v([0,1]) > i v( U J)>C i NEC.

k?:ko JEQk k:kO

This proves {ngc,} € £1. O
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