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In this paper we consider scalar parabolic equations in a general non-smooth setting 
emphasizing interface conditions and mixed boundary conditions. In particular, we 
study dynamics and diffusion on a Lipschitz interface and on the boundary, where 
the diffusion coefficients are only assumed to be bounded, measurable and positive 
semidefinite. In the bulk, we consider diffusion coefficients which may degenerate 
towards a Lipschitz surface. For this problem class, we introduce a unified functional 
analytic framework based on sesquilinear forms and show maximal Lp-regularity and 
bounded H∞-calculus for the corresponding operator, providing well-posedness for 
a large class of initial conditions and external forces.
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1. Introduction

This paper presents a unified framework for a general class of linear inhomogeneous mixed initial–
boundary value problems of the form

ζ∂tu− div(μΩ∇u) = fΩ in J × (Ω \ Σ), (1.1)

u = 0 on J × ΓD, (1.2)

ν · μΩ∇u = 0 on J × ΓN , (1.3)

ζ∂tu− divΓd(μΓd∇Γdu) + ν · μΩ∇u = fΓd on J × Γd, (1.4)

ζ∂tu− divΣ(μΣ∇Σu) + [νΣ · μΩ∇u] = fΣ on J × Σ, (1.5)

u(0) = u0 in (Ω \ Σ) × Γd × Σ. (1.6)
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Fig. 1. Example of a domain Ω with interface Σ and boundary ∂Ω = ΓD ∪̇ΓN ∪̇Γd.

Here J = (0, T ) is a time interval and Ω ⊂ R
d is a bounded domain with boundary ∂Ω and with outer unit 

normal vector field ν. The boundary is disjointly decomposed into a closed Dirichlet part ΓD, a Neumann 
part ΓN and a dynamic part Γd (see Fig. 1), i.e.,

∂Ω = ΓD ∪̇ΓN ∪̇Γd.

Moreover, Σ ⊂ Ω is a (d − 1)-dimensional hypersurface with unit normal vector field νΣ, on which a further 
dynamic condition is imposed, and [νΣ ·μΩ∇u] denotes the jump of νΣ ·μΩ∇u across Σ. The surface gradients 
on Γd and on Σ are denoted by ∇Γd and ∇Σ. Accordingly, we write divΓd and divΣ for the surface divergences, 
such that ΔΓd = divΓd∇Γd and ΔΣ = divΣ∇Σ are the Laplace–Beltrami operators. The diffusion coeffi-
cients μΩ, μΓd and μΣ are matrix-valued, and the relaxation coefficient ζ is positive, bounded, and bounded 
away from zero. The external forces fΩ, fΓd and fΣ as well as the initial data u0 are assumed to be given. Ini-
tial data have to be prescribed at Ω \Σ, Γd and Σ due to the corresponding dynamic equations on these sets.

Well-posedness and qualitative properties of parabolic problems with dynamic boundary conditions are 
well-studied, see for example [3,5,6,10,11,14,16,17,23–25,35,44,46,47]. Here, mostly the case of a smooth 
boundary is considered. Nonlinear degeneracy in the diffusion is treated in [3,16,25]. Mixed boundary con-
ditions on non-smooth domains and dynamical Robin conditions are also treated in [38,39], in a setting 
which may include inhomogeneities in the Neumann or Dirichlet parts. Mixed Dirichlet–Wentzell boundary 
conditions with a smooth Wentzell boundary are treated in [47].

Here, we define and study surface diffusion on Lipschitz boundaries and interfaces with diffusion coef-
ficients which may degenerate arbitrarily, and establish a framework in which we allow the bulk diffusion 
coefficients to degenerate moderately towards another Lipschitz hypersurface. In addition, we take into 
account mixed boundary conditions nonsmooth diffusion and relaxation coefficients. In particular, we gen-
eralize the results in [10]. Inhomogeneous Neumann boundary conditions, as well as boundary parts and 
interfaces evolving in time are not included in our approach, compare [38].

We say that diffusion is “degenerate”, if the coefficient matrices μΩ, μΓd , μΣ are not strongly elliptic. In 
fact, we only require μΓd , μΣ to be non-negative, and thus surface diffusion may be absent or degenerate in a 
very general sense. The bulk coefficient matrix μΩ may also degenerate but must still imply bulk regularity 
of the solution which allows for a trace function at Γd, Σ. Examples of this situation are given below.

We present a unified setting based on recent abstract results for sesquilinear forms from [4], which handles 
all these nonsmooth scenarios and their combinations at once.

Let us give more details on the assumptions for the geometry and the coefficients. The boundary parts ΓD, 
ΓN and Γd are allowed to meet, and also the interface Σ may meet any of the boundary parts ΓD, ΓN , Γd. 
Except at points close to the remainder of ∂Ω, no conditions on the Dirichlet part ΓD are imposed.

The diffusion coefficients μΩ, μΓd and μΣ do not have to be symmetric and are assumed to be measurable, 
bounded and non-negative. To describe their degeneracies in a precise way, we assume pointwise estimates 
of the form
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(μ(x)ξ, ξ) ≥ c1μ
∗(x)|ξ|2, ξ ∈ R

d, ‖μ(x)‖L(Rd) ≤ c2μ
∗(x),

where μ stands for μΩ, μΓd or μΣ, respectively, and μ∗ is in each case a measurable, bounded and non-
negative function. Regarding surface diffusion, we may allow for arbitrary supports of μ∗

Γd
and μ∗

Σ. This is 
to be expected as the well-posedness of equations (1.1)–(1.6) should not depend on the presence of surface 
diffusion. However, it is a considerable part of our work to give a suitable definition of surface gradients 
which captures the exact presence of diffusion on arbitrary subsets of the surface, which may still yield reg-
ularization where diffusion is present and which still allows us to show maximal regularity of the abstract 
Cauchy problem.

Concerning bulk diffusion, our setting is naturally more restrictive and we only consider a class of examples 
of degenerate diffusion. For the function μ∗

Ω, we assume that

μ∗
Ω(x) = dist(x, S)γ , x ∈ Ω, (1.7)

where S ⊂ Ω is an arbitrary (d −k)-dimensional Lipschitz submanifold of Rd, 1 ≤ k ≤ d, and the exponent is 
in the range 0 < γ < k, which makes μ∗

Ω a Muckenhoupt weight of class A2. We are motivated by the study 
of damaged materials or materials with cracks and hope that our assumptions on diffusion coefficients and 
the general setting may be helpful in this context. Of particular interest is the case when S ∩ (Γd ∪ Σ) 
= ∅, 
i.e., when diffusion degenerates towards Γd or Σ, but may or may not occur along Γd or Σ. In general, in 
this case we will have to assume that γ < 1.

We describe the setting in which (1.1)–(1.6) is realized. The basis of the approach is the sesquilinear form

t(u, v) =
∫
Ω

(μΩ∇u,∇v) dx +
∫
Γd

(
μΓd∇Γdu,∇Γdv

)
dHd−1 +

∫
Σ

(
μΣ∇Σu,∇Σv

)
dHd−1, (1.8)

where Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. The surface gradients ∇Γd and ∇Σ on the 
Lipschitz surfaces Γd and Σ are introduced in a simple, straightforward way in terms of local coordinates, 
such that the definitions coincide with the corresponding well-known objects in a smooth situation (see 
Section 3). In order to obtain a suitable weak formulation of (1.1)–(1.6), we define the domain of the form t

as the completion of

C∞
D (Ω) :=

{
u|Ω : u ∈ C∞

c (Rd), (suppu) ∩ ΓD = ∅
}
,

with respect to

‖u‖2
Dom(t) := ‖u‖2

W 1,2(Ω,μ∗
Ω) + ‖∇Γdu‖2

L2(Γd,μ∗
Γd

) + ‖∇Σu‖2
L2(Σ,μ∗

Σ).

Here, W 1,2(Ω, μ∗
Ω) is a Sobolev space with weight μ∗

Ω in the gradient norm, and L2(Γd, μ∗
Γd

) and L2(Σ, μ∗
Σ)

are Lebesgue spaces equipped with the weights μ∗
Γd

and μ∗
Σ.

Based on the results of [4], to the form t, we associate an operator A2 on the Lebesgue space

L
2 = L2((Ω \ Σ) ∪ Γd ∪ Σ, (dx + dHd−1)

)
= L2(Ω \ Σ) ⊕ L2(Γd) ⊕ L2(Σ).

In order to realize this setting, one must make sure that for every v ∈ Dom(t), there are traces trΣ v ∈ L2(Σ)
and trΓd v ∈ L2(Γd) such that we obtain a triple (v, vΣ, vΓd) ∈ L

2, where here and in the following, we often 
use the notation vM to indicate the restriction or trace of v on a set M if it is well-defined. The constitutive 
relation for A2u is then given by

〈A2u, (φΩ, φΣ, φΓd)〉L2 = t(u, φ), (1.9)

for all test functions φ ∈ C∞
D (Ω).



K. Disser et al. / J. Math. Anal. Appl. 430 (2015) 1102–1123 1105
If bulk diffusion degenerates towards Γd or Σ as in (1.7), we rely on the weighted Sobolev embedding

W 1,2(Rd, dist(·, S)γ) ⊂ W θ,q(Rd), 1 − d + γ

2
≥ θ − d

q
, q ≥ 2,

which seems to be new in this explicit form and is deduced from the very general embedding results in [20]
(see Proposition 5.3 and [1,42] for related results about traces of Muckenhoupt weighted spaces). Here, 
W θ,q(Rd) denotes the usual Slobodetskii space.

It turns out that −A2 generates an analytic C0-semigroup T2(·) of contractions on L2, see Proposition 4.7. 
This already yields the solvability of our realization of (1.1)–(1.6) for external forces (fΩ, fΓd , fΣ) in L2(J ; L2)
and initial data u0 ∈ L

2. We emphasize that the components of the initial data need not be related, but 
that the semigroup regularizes to u(t) ∈ Dom(t) for all t > 0.

In order to treat semilinear problems, L2-estimates of the solution will in general not be sufficient, due to 
the lack of embeddings for the fractional power domains of A2 into spaces of bounded functions. Thus, we 
first extend the definition of A2 consistently to the whole Lp-scale, p ∈ [1, ∞]. This is achieved by showing 
that T2(·) is L∞-contractive (see Proposition 4.8), which implies the existence of a consistent contraction 
semigroup Tp(·) on Lp by interpolation and duality. For p ∈ (1, ∞), the negative generator Ap of the analytic 
semigroup Tp(·) is then the desired consistent extension/restriction of A2 to Lp. The analyticity of Tp(·)
for p ∈ (1, ∞) together with the contractivity of Tp(·) for p ∈ [1, ∞] now allows us to apply a deep result 
from harmonic analysis due to [9,28,31,32,48] (see also [33, Proposition 2.2]) to conclude that Ap admits 
a bounded holomorphic functional calculus and maximal Lebesgue regularity (see [8,30,41] for surveys on 
these topics).

Hence, from an abstract point of view, the realization is as good as it can be, despite of the variety 
of nonsmooth effects it takes into account. The precise formulation is given in Theorems 4.11 and 5.7. 
Employing again that Ap is given on a scalar Lp-space, we show that the multiplication with the inverse 
relaxation coefficient ζ−1 does not change the described properties. Finally, embeddings of the type

Dom(Aθ
p) ⊂ L

∞, (1.10)

for p > 2 sufficiently large and θ sufficiently close to 1 are obtained in Section 6 from semigroup estimates 
and an integral formula for negative fractional powers of Ap. We can quantify how the presence of surface 
diffusion may improve (1.10), whereas degeneracy in the bulk diffusion may clearly decrease the integrability 
exponent. It is an advantage of our unified framework that we can see how these effects may interact locally. 
In essence, we restrict our considerations to the linear case in this paper, and refer e.g. to [22, Ch. 2], [34]
for results on how embeddings of type (1.10) quantify the solvability of related semilinear problems.

This paper is organized as follows. We start in Section 2 with a heuristic of how our functional analytic 
setting is related to (1.1)–(1.6). In Section 3, we introduce tangent spaces and the surface gradient for 
Lipschitz hypersurfaces in graph representation. In order to separate technical difficulties, in Section 4 we 
consider the case of nondegenerate bulk diffusion only, while in Section 5 we treat degenerate bulk diffusion. 
In Section 6, embeddings of fractional power domains into spaces of bounded functions are investigated.

Notation. Generic positive constants are denoted by C or c. By L(Rd) we designate the space of linear 
operators on Rd, which we may identify with the set of (d × d)-matrices via the canonical basis. The 
Euclidian scalar product of x, y ∈ R

d is denoted by x · y or (x, y). For p ∈ [1, ∞], the usual complex 
Lebesgue space is denoted by Lp(Ω).

2. Heuristics

Since the form method in [4] is very recent and presently not commonly known we give a detailed heuristics 
why the definition of the form t, together with the relation (1.9) provides the adequate functional analytic 
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setting for equations (1.1)–(1.6). This is closely related to the classical arguments for weak formulations 
of boundary value problems, cf. for example [15, Ch. II.2]. In this section, we make additional regularity 
assumptions. Let Ω be a smooth domain and let Σ be extendible to a Lipschitz hypersurface Λ = Σ∪ (Λ \Σ)
which cuts Ω into two Lipschitz subdomains Ω = Ω+ ∪Λ ∪Ω−. Let νΣ denote the outer normal vector field 
of Ω+ at all of Λ. Assume that the equation

A2u = f (2.1)

is satisfied in L2 and let φ ∈ C∞
D (Ω) with the canonical embedding (φΩ, φΣ, φΓd) ∈ L

2. Then by definition,

〈f, φ〉L2 =
∫
Ω

fφ dx +
∫
Σ

fΣφΣ dHd−1 +
∫
Γd

fΓdφΓd dHd−1, (2.2)

and

〈A2u, φ〉L2 =
∫
Ω

(μΩ∇u,∇φ) dx +
∫
Γd

(
μΓd∇Γdu,∇Γdφ

)
dHd−1 +

∫
Σ

(
μΣ∇Σu,∇Σφ

)
dHd−1. (2.3)

Now we additionally assume that the restrictions u+ and u− of u to Ω+ and Ω− satisfy u+ ∈ C1(Ω+) and 
u− ∈ C1(Ω−) and that on Ω \ Σ, we have u ∈ C2(Ω \ Σ). We note that∫

Ω

(μΩ∇u,∇v) dx =
∫

Ω+

(μΩ∇u+,∇φ+) dx +
∫

Ω−

(μΩ∇u−,∇φ−) dx

and apply Gauss’ Theorem to each of these terms to get∫
Ω

(μΩ∇u,∇v) dx =
∫

Ω+

−div(μΩ∇u+)∇φ+ dx +
∫

Ω−

−div(μΩ∇u−)φ− dx

+
∫

ΓN

(ν · μΩ∇u)φΓN
dHd−1 +

∫
Γd

(ν · μΩ∇u)φΓd
dHd−1

+
∫
Σ

[νΣ · μΩ∇u]φΣ dHd−1 +
∫

Λ\Σ

[νΣ · μΩ∇u]φΛ\Σ dHd−1,

where it follows from the regularity assumptions on u that the last term vanishes. Additionally applying 
the manifold Gauss Theorem, cf. [36] for a non-smooth version, to the last two integrals in (2.3), we derive 
the expression

〈A2u, φ)〉L2 =
∫
Ω

−div(μΩ∇u)φdx +
∫

ΓN

(ν · μΩ∇u)φΓN
dHd−1

+
∫
Γd

(ν · μΩ∇u)φΓd dHd−1 +
∫
Σ

[νΣ · μΩ∇u]φΣ dHd−1

+
∫
Γd

−divΓd(μΓd∇Γdu)φΓd dHd−1 +
∫
Σ

−divΣ(μΣ∇Σu)φΣ dHd−1

+
∫

∂Γd

(ν∂Γd · μΓd∇ΓduΓd)φ∂Γd dHd−2 +
∫
∂Σ

(ν∂Σ · μΣ∇ΣuΣ)φ∂Σ dHd−2 (2.4)

to be balanced with (2.2).
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Choosing φ ∈ C∞
c (Ω) yields

fΩ = −div(μΩ∇u) ∈ L2(Ω).

The Neumann and Dirichlet boundary conditions on ΓN and ΓD follow, for example, as in [15, Ch. II.2], 
using that each Neumann part of the boundary of Ω satisfies an extension property. The remaining equalities

fΓd = −divΓd(μΓd∇ΓduΓd) + ν · μΩ∇u ∈ L2(Γd)

and

fΣ = −divΣ(μΣ∇ΣuΣ) + [νΣ · μΩ∇u] ∈ L2(Σ)

are then identified accordingly. The last two terms in (2.4) require some more explanation. If ∂Γd ∪ ∂Σ ⊂
Ω \ ΓD, we consider them to be enforcing (generalized) homogeneous Neumann boundary conditions on 
∂Γd and ∂Σ. At points where ∂Γd or ∂Σ and ΓD intersect, we assign homogeneous Dirichlet boundary 
conditions. In particular, in the definition of C∞

D (Ω), any subset of points in ∂Γd and ∂Σ may be included 
to enforce these Dirichlet conditions. We did not include these conditions in equations (1.1)–(1.6) to keep 
the presentation simple and because in general, our regularity assumptions on Γd and Σ are insufficient to 
deduce them in the usual way.

3. The surface gradient on Lipschitz hypersurfaces

In order to define surface diffusion on Σ and Γd, in this section we introduce tangent spaces and the 
surface gradient for a Lipschitz hypersurface S in graph representation in an elementary way. The idea is 
that Lipschitz coordinates are differentiable almost everywhere, which allows us to give definitions in coor-
dinates analogous to the smooth case. Hence for smooth S we automatically recover the standard notions, 
see [2, Chapter VII] and [21,27] for basic accounts. For Lipschitz surfaces we also refer to [12,19,37,43].

3.1. Lipschitz hypersurfaces

Let S ⊂ R
d be a Lipschitz hypersurface in graph representation. This means that for each x ∈ S there 

are Lipschitz-graph coordinates (g, U) and an open neighbourhood V of x in Rd such that U ⊂ R
d−1 is open 

and g : U → S ∩ V is bijective and of the form

g(y) = Q

(
y

h(y)

)
+ x∗, y ∈ U,

where Q ∈ L(Rd) is orthogonal, x∗ ∈ R
d is a fixed vector and h : U → R is Lipschitz continuous. For 

this and equivalent definitions we refer to [37, Section 2]. We endow S with the Hausdorff measure Hd−1. 
Employing that the topology of Rd has a countable basis, standard arguments show that there is an at 
most countable number of Lipschitz graph coordinates (gα, Uα) such that S ⊆

⋃
α gα(Uα), see the proof 

of [37, Theorem 2.15].
By Rademacher’s Theorem (see [12, Theorem 3.1.2]), Lipschitz coordinates g are almost everywhere 

differentiable on U in the classical sense and one has g ∈ W 1,∞(U, Rd), where

g′(y) = Q

(
idd−1
′

)
∈ L(Rd−1,Rd)
h (y)
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at points y ∈ U where g is differentiable. Observe that g′(y) is injective and has rank d − 1. Hence the 
corresponding metric tensor G : U → L(Rd−1), defined by

G(y) = g′(y)T g′(y) =
(
(∂ig(y), ∂jg(y))

)
ij
,

is for almost all y ∈ U symmetric and positive definite. With the usual abuse of notation we write G = (gij)ij , 
and G−1 = (gij)ij for the pointwise inverse of G.

We call Lipschitz-graph coordinates g regular for x ∈ S if g is differentiable at y = g−1(x). If such regular 
coordinates exist, we call x regular.

Lemma 3.1. Let S be a Lipschitz hypersurface in graph representation. Then Hd−1-almost every point x ∈ S
is regular.

Proof. Let N ⊂ S be the set of points which are not regular. Take at most countable many coordinates 
(gα, Uα) such that S ⊆

⋃
α Vα for Vα = gα(Uα). Then Hd−1(N) ≤

∑
α Hd−1(N ∩ Vα). Let further Nα ⊂ Uα

be the set of points where gα is not differentiable. Then Hd−1(Nα) = 0 by Rademacher’s Theorem. Using 
N ∩ Vα ⊆ gα(Nα) and [12, Theorem 2.4.1/1], for each α we obtain

Hd−1(N ∩ Vα) ≤ Hd−1(gα(Nα)) ≤ Lip(gα)d−1Hd−1(Nα) = 0,

where Lip(gα) is the Lipschitz constant of gα. This shows Hd−1(N) = 0. �
As another preparation we consider the properties of transition maps.

Lemma 3.2. Let (gα, Uα) and (gβ , Uβ) be Lipschitz-graph coordinates for S which are both regular for x ∈ S. 
Set yα = g−1

α (x) ∈ Uα and yβ = g−1
β (x) ∈ Uβ. Then the following assertions hold true.

(a) The transition map g−1
β ◦gα is differentiable at yα. The derivative (g−1

β ◦gα)′(yα) ∈ L(Rd−1) is invertible 
with inverse (g−1

α ◦ gβ)′(yβ).
(b) The derivatives g′α(yα) and g′β(yβ) have the same images in Rd. We have v = g′α(yα)ξα for ξα ∈ R

d−1

if and only if v = g′β(yβ)ξβ for ξβ = (g−1
β ◦ gα)′(yα)ξα.

(c) For the metric tensors Gα and Gβ corresponding to gα and gβ we have

Gα(yα) = (g−1
β ◦ gα)′(yα)TGβ(yβ)(g−1

β ◦ gα)′(yα).

Proof. We write Φ = g−1
β ◦ gα for the transition map. Observe that Φ is a homeomorphism on a neighbour-

hood of yα with inverse Φ−1 = g−1
α ◦ gβ .

(a) The form of gβ shows that Φ(y) is given by the first d − 1 entries of QT
β (gα(y) − x∗

β). Hence Φ
is differentiable at yα. In the same way we obtain the differentiability of Φ−1 at yβ . Therefore Φ′(yα) is 
invertible with inverse as asserted.

(b) This follows from g′α(yα) = g′β(yβ)Φ′(yα) and the invertibility of Φ′(yα).
(c) We can repeat the short argument from [27, Section 1.4]. For arbitrary ξα, ηα ∈ R

d−1 we use (b) to 
obtain

(Gα(yα)ξα, ηα) =
(
g′α(yα)ξα, g′α(yα)ηα

)
=

(
g′β(yβ)Φ′(yα)ξα, g′β(yβ)Φ′(yα)ηα

)
= (Φ′(yα)TGβ(yβ)Φ′(yα)ξα, ηα).

This implies the asserted formula. �
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3.2. Tangent space and surface gradient

Now we can introduce the following notions.

Definition 3.3. Let S be a Lipschitz hypersurface in graph representation.

(a) Let x ∈ S be regular with Lipschitz graph coordinates (g, U). The tangent space at x is

TxS =
{
v ∈ R

d : there is ξ ∈ R
d−1 with v = g′(g−1(x))ξ

}
.

(b) A function u ∈ L1
loc(S) is called weakly differentiable, if for all Lipschitz graph coordinates (g, U) for S

the function u ◦ g is weakly differentiable on U ⊂ R
d−1.

(c) Let u ∈ L1
loc(S) be weakly differentiable. Then for a regular point x ∈ S the surface gradient ∇Su(x) ∈

TxS is given by

∇Su(x) = g′(y)G−1(y)∇(u ◦ g)(y) =
d−1∑
i,j=1

gij(y)∂j(u ◦ g)(y)∂ig(y),

where (g, U) are arbitrary regular Lipschitz graph coordinates for x and y = g−1(x).

These notions coincide with the usual ones if S is smooth, see, e.g., [2, Remark VII.10.11] for the rep-
resentation of the surface gradient in coordinates. As in the smooth case one shows that these notions are 
well-defined.

Lemma 3.4. At a regular point x ∈ S, the tangent space as well as the surface gradient of a weakly differen-
tiable function are independent of the chosen regular graph coordinates.

Proof. The assertion for the tangent space follows from Lemma 3.2(b). For the surface gradient we let gα
and gβ be regular for x, set yα = g−1

α (x), yβ = g−1
β (x) and

vα = g′α(yα)G−1
α (yα)∇(u ◦ gα)(yα), vβ = g′β(yβ)G−1

β (yβ)∇(u ◦ gβ)(yβ).

As above we write Φ = g−1
β ◦ gα for the transition map. By Lemma 3.2(b) we have vα = vβ if and only if

G−1
β (yβ)∇(u ◦ gβ)(yβ) = Φ′(yα)G−1

α (yα)∇(u ◦ gα)(yα).

But this is a consequence of the identities

∇(u ◦ gα)(yα) = Φ′(yα)T∇(u ◦ gβ)(yβ), G−1
β (yβ) = Φ′(yα)G−1

α (yα)Φ′(yα)T ,

where the latter follows from Lemma 3.2(c). �
4. Non-degenerate bulk diffusion

In this section we consider (1.1)–(1.6) with a uniformly elliptic diffusion coefficient μΩ in the bulk. The 
case when μΩ degenerates towards a compact Lipschitz surface is investigated in the next section.
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4.1. Assumptions on the geometry and the coefficients

In case 1 ≤ k ≤ d − 1, we say that the set S is a (d − k)-dimensional Lipschitz submanifold if for all 
x ∈ S there is an open neighbourhood V of x in Rd and a bi-Lipschitz mapping ϕ from V to Rd such that 
ϕ(S ∩ V ) = ]0, 1[d−k × {0Rk}. By a compact 0-dimensional Lipschitz submanifold S we mean a finite union 
of points. Throughout the paper, we impose the following.

Assumption 4.1.

(a) Ω ⊂ R
d is a bounded domain, d ≥ 2.

(b) Γd ⊂ ∂Ω and Σ ⊂ Ω are Lipschitz hypersurfaces in graph representation. They are endowed with the 
(d − 1)-dimensional Hausdorff measure Hd−1.

(c) ΓN is a (d − 1)-dimensional Lipschitz submanifold of Rd.
(d) Additionally, the closures ΓN , Γd and Σ are contained in (d − 1)-dimensional Lipschitz submanifolds, 

respectively.

We emphasize that for the Dirichlet part ΓD, there are only assumptions in a neighbourhood of points 
where ΓD meets ΓN or Γd. In particular, in the pure Dirichlet case ΓD = ∂Ω there are no assumptions on 
the boundary. It is not excluded that one or more of the sets ΓD, ΓN , Γd or Σ are empty.

Assumption 4.2.

(a) The coefficient μΩ : Ω → L(Rd) is measurable, bounded and there is a constant μ∗
Ω > 0 such that

(
μΩ(x)ξ, ξ

)
≥ μ∗

Ω|ξ|2, x ∈ Ω, ξ ∈ R
d.

(b) Let S be either Γd or Σ. Then μS : S → L(Rd) is measurable, and there are a measurable, bounded, 
nonnegative function μ∗

S : S → R and constants c1, c2 > 0 such that

(
μS(x)ξ, ξ

)
≥ c1μ

∗
S(x)|ξ|2, ‖μS(x)‖L(Rd) ≤ c2μ

∗
S(x), x ∈ S, ξ ∈ TxS.

(c) The relaxation coefficient ζ : Ω ∪ Γd → R is measurable, bounded and there is a constant c > 0 such 
that ζ(x) ≥ c for all x ∈ Ω ∪ Γd ∪ Σ.

The functions μ∗
Γd

and μ∗
Σ describe where diffusion takes place on Γd and Σ, and where diffusion de-

generates. There are no restrictions on the support of these functions. An example we have in mind is 
μ∗
S(x) = dist(x, M)γ for a subset M ⊂ S and γ > 0, which indicates that diffusion degenerates towards M

and is impossible along and across M .

Remark 4.3. The above assumptions cover a large class of nonsmooth scenarios. However, our realization 
of (1.1)–(1.6) developed below also works under more general conditions. For instance, the interface Σ must 
only be a Lipschitz hypersurface in graph representation in a neighbourhood of the support of μ∗

Σ. Away 
from the support, as in [10] it suffices that Σ is a (d − 1)-set (see [26, Section VII.1.1]). To avoid too many 
technical difficulties we do not take these issues into account.

4.2. The realization on L2

We construct the operator A2 which yields a realization of the elliptic part of (1.1)–(1.6) on a suitable 
L2-space, cf. Section 2. The approach based on sesquilinear forms is similar to the one used in [10].
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For p ∈ (1, ∞) we denote by W 1,p(Ω) the usual complex Sobolev space over Ω. We further define W 1,p
D (Ω)

as the closure in W 1,p(Ω) of

C∞
D (Ω) =

{
u|Ω : u ∈ C∞

c (Rd), (suppu) ∩ ΓD = ∅
}
.

Roughly speaking, elements of W 1,p
D (Ω) vanish on the Dirichlet part ΓD of ∂Ω.

Let trΓd and trΣ be the trace operators for Γd and Σ. Then [10, Proposition 2.8] implies the continuity of

trΓd : W 1,2
D (Ω) → L2(Γd), trΣ : W 1,2

D (Ω) → L2(Σ). (4.1)

As in the Introduction and Heuristics sections, we use the notation uΓd = trΓdu and uΣ = trΣu for the 
traces, and sometimes write only u for uΓd or uΣ.

Definition 4.4.

(a) On C∞
D (Ω) we introduce the scalar product (·, ·)Dom(t) by

(u, v)Dom(t) = (u, v)W 1,2(Ω) +
∫
Γd

(
∇Γdu,∇Γdv

)
μ∗

Γ dHd−1 +
∫
Σ

(
∇Σu,∇Σv

)
μ∗

Σ dHd−1,

where (·, ·)W 1,2(Ω) is the usual scalar product on W 1,2(Ω). The corresponding Hilbert norm is denoted 
by ‖ · ‖Dom(t).

(b) The Hilbert space Dom(t) is defined by

Dom(t) = completion of C∞
D (Ω) with respect to ‖ · ‖Dom(t).

(c) For p ∈ [1, ∞] we set Lp = Lp
(
(Ω \ Σ) ∪ Γd ∪ Σ, (dx + Hd−1)

)
.

(d) The map J : Dom(t) → L
2 is given by J(u) = (u, uΓd , uΣ).

For S ∈ {Γd, Σ} we will also write

‖f‖2
L2(S,μ∗

S) =
∫
S

|f |2 μ∗
S dHd−1,

such that the Hilbert norm may be expressed as

‖u‖2
Dom(t) = ‖u‖2

W 1,2(Ω) + ‖∇Γdu‖2
L2(Γd,μ∗

Γd
) + ‖∇Σu‖2

L2(Σ,μ∗
Σ). (4.2)

In view of Dom(t) ⊆ W 1,2
D (Ω) and the continuity of the traces (4.1), the map J is indeed well-defined. The 

space Lp can be identified as

L
p = Lp(Ω \ Σ) ⊕ Lp(Γd) ⊕ Lp(Σ).

Remark 4.5. The space Dom(t) includes an implicit definition of a weak surface gradient, even if μ∗
Γd

, μ∗
Σ

are only non-negative, as the operator

∇Σ : {ψ|Σ : ψ ∈ C∞
D (Ω)} → L2(μ∗

Σ,Σ)

continuously extends to Dom(t) by density (analogously for Γd). This implies our concept of degenerate 
diffusion on Σ and Γd. The regularity of elements u of Dom(t) on Γd and Σ is determined by the supports 



1112 K. Disser et al. / J. Math. Anal. Appl. 430 (2015) 1102–1123
of μ∗
Γd

and μ∗
Σ. On subsets where these are strictly positive, uΓd and uΣ have square integrable weak surface 

gradients in the sense of Section 3.

The operator A2 will be derived from the sesquilinear form

t(u, v) =
∫
Ω

(μΩ∇u,∇v) dx +
∫
Γd

(
μΓd∇Γdu,∇Γdv

)
dHd−1 +

∫
Σ

(
μΣ∇Σu,∇Σv

)
dHd−1,

which is originally defined for u, v ∈ C∞
D (Ω).

Lemma 4.6. The form t extends continuously to a sesquilinear form on Dom(t). It is J-elliptic, i.e., there 
is c > 0 such that

Re t(u, u) + ‖Ju‖2
L2 ≥ c‖u‖2

Dom(t), u ∈ Dom(t).

Moreover, the map J : Dom(t) → L
2 has dense range and is continuous and compact.

Proof. The continuity and the compactness of J follow from Dom(t) ⊆ W 1,2
D (Ω) and [10, Lemma 2.10]. The 

proof in [10] also shows that JC∞
D (Ω) is dense in L2, hence J Dom(t) is dense since C∞

D (Ω) ⊂ Dom(t).
It is clear that t : C∞

D (Ω) × C∞
D (Ω) → C is sesquilinear. Given u, v ∈ C∞

D (Ω) we use the assumption 
‖μS(x)‖L(Rd) ≤ c2μ

∗
S(x) for S ∈ {Γd, Σ}, Hölder’s inequality and (4.2) to estimate

|t(u, v)| ≤ ‖μΩ‖∞‖∇u‖L2(Ω)‖∇v‖L2(Ω)

+ c2‖∇Γdu‖L2(Γd,μ∗
Γd

)‖∇Γdv‖L2(Γd,μ∗
Γd

) + c2‖∇Σu‖L2(Σ,μ∗
Σ)‖∇Σv‖L2(Σ,μ∗

Σ)

≤ C‖u‖Dom(t)‖v‖Dom(t).

Hence t extends continuously to a sesquilinear form on Dom(t). To show its J-ellipticity, for u ∈ C∞
D (Ω) we 

use the assumption (μSξ, ξ) ≥ c1μ
∗
S |ξ|2 for S ∈ {Γd, Σ} to get

Re t(u, u) + ‖Ju‖2
L2 ≥ μ∗

Ω‖∇u‖2
L2(Ω) + c1‖∇Γdu‖2

L2(Γd,μ∗
Γd

) + c1‖∇Σu‖2
L2(Σ,μ∗

Σ) + ‖u‖2
L2(Ω)

≥ c‖u‖2
Dom(t).

This inequality carries over to all u ∈ Dom(t) by density and the continuity of J. �
Now the operator A2 can be derived from t as follows.

Proposition 4.7. There is a closed, densely defined operator A2 on L2 associated with the form t. For 
ϕ, ψ ∈ L

2 we have ϕ ∈ Dom(A2) and A2ϕ = ψ if and only if there is u ∈ Dom(t) such that ϕ = Ju and

(ψ, Jv)L2 = t(u, v) for all v ∈ Dom(t).

The operator −A2 generates an analytic C0-semigroup

T2(·) = (T2(t))t≥0

of contractions on L2. Furthermore, A2 has compact resolvent.
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Proof. All assertions except the contraction property are a consequence of Lemma 4.6 and the general 
results of [4, Theorem 2.1, Lemma 2.7]. For the contractivity we observe that for ϕ ∈ Dom(A2) with ϕ = Ju

for u ∈ Dom(t) we have Re (A2ϕ, ϕ) = Re t(u, u) ≥ 0. Hence the vertex of A2 is zero and the contractivity 
of the semigroup follows from [29, Theorem IX.1.24]. �
4.3. Properties of A2 and extension to Lp

The key to the extension of A2 to all Lp-spaces is the L∞-contractivity of the semigroup T2(·). For the 
contractivity we will employ that A2 is associated with the form t. In this situation, suitable invariance 
criteria for closed convex sets are available.

By L2
R

we denote the subspace of real-valued elements of L2.

Proposition 4.8. The semigroup T2(·) generated by −A2 leaves L2
R

invariant, it is L∞-contractive and posi-
tive.

Proof. The set L2
R

is closed and convex, and ϕ �→ Reϕ is the orthogonal projection onto L2
R
. For u ∈ C∞

D (Ω)
we have Re t(u, u − Reu) ≥ 0, and this inequality carries over to all u ∈ Dom(t) by density. Hence each 
T2(t) leaves L2

R
invariant by [4, Proposition 2.9(iii)].

For the L∞-contractivity and the positivity, as in [10, Prop. 2.16] it suffices to show that T2(·) leaves the 
closed and convex set C = {ϕ ∈ L

2
R

: ϕ ≤ 1} invariant. Again, we apply a criterion from [4], on a dense 
subset of Dom(t).

For a real-valued function u we define u ∧ 1 by (u ∧ 1)(x) = min(u(x), 1). The orthogonal projection P
of L2 onto C is given by Pϕ = (Reϕ) ∧ 1. Moreover, for u ∈ C∞

D (Ω) one has PJu = J((Reu) ∧ 1) and

Re t((Reu) ∧ 1, u− (Reu) ∧ 1) = 0.

Hence, [4, Proposition 2.9(iv)] yields the invariance of C. �
Now standard interpolation and duality arguments together with [40, Proposition 3.12] allow to extend 

T2(·) to the entire Lp-scale as follows.

Proposition 4.9. For all p ∈ [1, ∞] the semigroup T2(·) generated by −A2 extends consistently to a contraction 
semigroup Tp(·) on Lp, which is strongly continuous for p ∈ [1, ∞) and analytic for p ∈ (1, ∞).

We define

Ap is the negative generator of Tp(·).

Then Ap coincides with A2 on Dom(Ap) ∩ Dom(A2). Let the relaxation coefficient ζ ∈ L
∞ be as in As-

sumption 4.1. Rescaling in measure as in the proof of [10, Theorem 2.21] and using [10, Proposition 2.20], 
we obtain that the operators −ζ−1Ap generate consistent contractive semigroups on (the rescaled) Lp for 
p ∈ [1, ∞], which are analytic for p ∈ (1, ∞).

From the contractivity of the semigroup Tp(·) for any p ∈ [1, ∞], it follows that for any t ≥ 0, Tp(t) is 
contractively regular, see [33, Section 2]. We quote the following abstract result from [33, Proposition 2.2].

Proposition 4.10. Let (Π, τ) be a measure space and let T (·) be a bounded analytic semigroup on Lp(Π), 
p ∈ (1, ∞). Let −A be the generator of T (·). Assume that for any t ≥ 0, T (t) is contractively regular. Then 
A admits a bounded holomorphic functional calculus with angle θ strictly smaller than π2 .

We can now derive the main result of this section.
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Case (A) Case (B)

Fig. 2. Example domains with S ∩ (Γd ∪ Σ) = ∅, Case (A), and S ∩ (Γd ∪ Σ) 	= ∅, Case (B).

Theorem 4.11. For each p ∈ (1, ∞) the operator ζ−1Ap with domain Dom(Ap) admits a bounded holo-
morphic functional calculus on Lp, with angle strictly smaller than π

2 . As a consequence, ζ−1Ap enjoys 
maximal parabolic Ls-regularity for all s ∈ (1, ∞), and −ζ−1Ap generates an analytic C0-semigroup on Lp. 
Furthermore, the fractional power domains are given by complex interpolation, i.e.,

Dom(Aθ
p) = [Lp,Dom(Ap)]θ, θ ∈ [0, 1],

and the resolvent of ζ−1Ap is compact.

5. Degenerate bulk diffusion

In this section we generalize the above setting and allow for degeneracies in the bulk diffusion coeffi-
cient μΩ. Of special interest is the case when the degeneracy takes place at the dynamic boundary part Γd
or the dynamic interface Σ. In this case the continuity of the map J : Dom(t) → L

2, which is crucial for the 
approach used in the last section, depends on the degeneracy of the bulk diffusion.

Throughout we keep Assumption 4.1, but we replace the uniform ellipticity of μΩ by the assumption that 
there are constants c1, c2 > 0 such that

(
μΩ(x)ξ, ξ

)
≥ c1μ

∗
Ω(x)|ξ|2, ‖μΩ(x)‖L(Rd) ≤ c2μ

∗
Ω(x), x ∈ Ω, ξ ∈ R

d, (5.1)

where

μ∗
Ω(x) = dist(x, S)γ

for a compact (d − k)-dimensional Lipschitz submanifold S ⊂ Ω, 1 ≤ k ≤ d, and 0 ≤ γ < k for the distance 
exponent. We refer to Section 4 for a definition of a Lipschitz submanifold.

Observe that for γ = 0 we are in the nondegenerate situation of the previous section. We must distinguish 
the two cases

Case (A): μΩ degenerates at a distance from the dynamics surfaces only, S ∩ (Γd ∪ Σ) = ∅,
Case (B): μΩ degenerates directly at the dynamics surfaces, S ∩ (Γd ∪ Σ) 
= ∅,

see Fig. 2.

5.1. Weighted function spaces

In order to incorporate the degeneracy of μΩ into the domain of the sesquilinear form t we introduce 
weighted function spaces.
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We define W 1,2
D (Ω, μ∗

Ω) as the closure of C∞
D (Ω) with respect to the norm ‖ · ‖W 1,2

D (Ω,μ∗
Ω), which is given 

by

‖u‖2
W 1,2

D (Ω,μ∗
Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω,μ∗

Ω).

As before, here we write

‖f‖2
L2(Ω,μ∗

Ω) =
∫
Ω

|f |2μ∗
Ω dx.

Note that μ∗
Ω appears as a weight only in the gradient, the L2(Ω)-norm remains unweighted.

We record the following properties. For the general theory of Muckenhoupt weights we refer to 
[18, Chapter 9]. We recall that a weight 0 ≤ μ ∈ L1

loc(Rd), μ 
= 0 belongs to the Muckenhoupt class A2, if

sup
Q cube in Rn

( 1
|Q|

∫
Q

μ(x) dx
)( 1

|Q|

∫
Q

1
μ(x) dx

)
< ∞.

Lemma 5.1.

(a) The weight μ∗
Ω belongs to the Muckenhoupt class A2.

(b) One has the continuous embedding W 1,2
D (Ω, μ∗

Ω) ⊂ W 1,1(Ω).
(c) W 1,2

D (Ω, μ∗
Ω) is a Hilbert space with scalar product

(u, v)W 1,2
D (Ω,μ∗

Ω) = (u, v)L2(Ω) +
∫
Ω

(∇u,∇v)μ∗
Ω dx.

Proof. Assertion (a) follows from our assumption 0 ≤ γ < k, see [13, Lemma 2.3]. Using Hölder’s inequality, 
it is straightforward to check that L2(Ω, μ∗

Ω) ⊂ L1(Ω) (see also [18, Exercise 9.3.6]), which yields (b). Then 
(c) follows from (b). �

To prove the continuity of trΓd and trΣ on W 1,2
D (Ω, μ∗

Ω) we start with an extension operator of this space 
to W 1,2(Rd, μ∗

Ω). Here the norm is given by

‖u‖2
W 1,2(Rd,μ∗

Ω) = ‖u‖2
L2(Rd) + ‖∇u‖2

L2(Rd,μ∗
Ω).

Lemma 5.2. There is a continuous extension operator E : W 1,2
D (Ω, μ∗

Ω) → W 1,2(Rd, μ∗
Ω). For any u ∈

W 1,2
D (Ω, μ∗

Ω) we have that suppEu ⊂ B(0, 2R), where R = sup{|x| : x ∈ Ω}.

Proof. Step 1. From Assumption 4.1 we find a finite open covering 
⋃N

α=1 Vα ⊂ B(0, 2R) of Ω with the 
following properties. For α = 1, . . . , NΩ the sets Vα are strictly contained in Ω; for α = NΩ + 1, . . . , ND we 
have Vα ∩ ΓD 
= ∅ and Vα ∩ (ΓN ∪ Γd) = ∅; for α = ND + 1, . . . , N there is a bi-Lipschitz map ϕα from Vα

to the open unit cube Q in Rd such that

ϕα(Ω ∩ Vα) = Q−, ϕα(∂Ω ∩ Vα) = Q0,

where Q− ⊂ Q is the open lower half-cube in Rd and Q0 = {x ∈ Q : xd = 0}. We further take a smooth 
partition of unity (ψα)α for Ω subordinate to the cover 

⋃
α Vα, i.e., such that suppψα is contained in Vα.

Step 2. For any u ∈ C∞
D (Ω) and α = ND + 1, . . . , N we have that ψαu is compactly supported in Ω∩ Vα. 

Choose an open subcube Q̃ ⊂ Q such that ϕα(suppψα) ⊂ Q̃. Then Wα = ϕ−1
α (Q̃−) is a domain with 
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Lipschitz boundary which contains suppψα. Finally, take smooth cut-off functions φα such that φα ≡ 1 on 
suppψα and suppφα ⊂ Vα.

Step 3. Now for u ∈ C∞
D (Ω) we define Eu by

Eu =
NΩ∑
α=1

ψαu +
ND∑

α=NΩ+1
Eα(ψαu) +

N∑
α=ND+1

φαEα(ψαu|Wα
),

where the extensions Eα are given as follows. For α = NΩ + 1, . . . , ND we define Eα(ψαu) as the trivial 
extension by zero of ψαu from Vα ∩ Ω to Rd. Since Vα ∩ (ΓN ∪ Γd) = ∅ and u is supported away from ΓD, 
for those α we have

‖Eα(ψαu)‖W 1,2(Rd,μ∗
Ω) = ‖ψαu‖W 1,2(Ω,μ∗

Ω) ≤ C‖u‖W 1,2(Ω,μ∗
Ω).

For α = ND + 1, . . . N we let Eα : W 1,2(Wα, μ∗
Ω) → W 1,2(Rd, μ∗

Ω) be the extension operator from [7] for the 
Lipschitz domain Wα. Then

‖φαEα(ψαu|Wα
)‖W 1,2(Rd,μ∗

Ω) ≤ C‖Eα(ψαu|Wα
)‖W 1,2(Rd,μ∗

Ω) ≤ C‖ψαu|Wα
‖W 1,2(Wα,μ∗

Ω)

= C‖ψαu‖W 1,2(Ω,μ∗
Ω) ≤ C‖u‖W 1,2(Ω,μ∗

Ω).

Therefore E extends continuously from C∞
D (Ω) to E : W 1,2

D (Ω, μ∗
Ω) → W 1,2(Rd, μ∗

Ω), which gives the desired 
extension operator. �

In a next step we prove Sobolev embeddings of W 1,2(Rd, μ∗
Ω) into unweighted Slobodetskii spaces 

W θ,q(Rd), by using the criteria derived in [20].

Proposition 5.3. Assume q ∈ [2, ∞) and θ ∈ (0, 1) are such that 1 − d+γ
2 ≥ θ − d

q . Then

W 1,2(Rd, μ∗
Ω) ⊂ W θ,q(Rd).

Proof. Step 1. Let B1
2,2(Rd, μ∗

Ω) be the Besov space with respect to the weight μ∗
Ω. Since μ∗

Ω belongs to the 
Muckenhoupt class A2 by Lemma 5.1, it follows from Remark 1.7 and Proposition 1.8 of [20] that

W 1,2(Rd, μ∗
Ω) ⊂ B1

2,2(Rd, μ∗
Ω).

Moreover, W θ,q(Rd) = Bθ
q,q(Rd) for θ ∈ (0, 1) by [45, Section 2.3.1]. The asserted embedding will thus be a 

consequence of

B1
2,2(Rd, μ∗

Ω) ⊂ Bθ
q,q(Rd). (5.2)

Step 2. We derive this embedding from the sufficient condition given in [20, Proposition 2.1(i)]. Let 
Q(x, r) be the cube in Rd with edges parallel to the coordinate axes, centred at x ∈ R

d with edge length 
r > 0. According to [20], (5.2) holds true if we show that

sup
l∈N0,m∈Zd

2−l(1−θ+ d
q )
( ∫
Q(2−lm,2−l)

dist(x, S)γ dx
)−1/2

< ∞.

By the assumption 1 − d+γ ≥ θ − d , this will be a consequence of the estimate
2 q
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∫
Q(2−lm,2−l)

dist(x, S)γ dx ≥ c2−l(d+γ), l ∈ N, m ∈ Z
d, (5.3)

where c > 0 is independent of l and m. In the sequel we prove (5.3).
Step 3. Since S is Lipschitzian, there is a tube Sκ of width κ > 0 around S such that every Q(2−lm, 2−l) ⊂

Sκ lies in a neighbourhood V of S which is mapped to the unit cube in Rd by a bi-Lipschitz map ψ such 
that ψ(S ∩ V ) = (−1, 1)d−k × {0Rk}.

Choose l0 ∈ N such that 2−l0γ + 2−l0 ≤ κ. We claim that it suffices to prove (5.3) for l ≥ l0 and m such 
that Q(2−lm, 2−l) ⊂ Sκ, where c is independent of those l and m.

Assume (5.3) is proved for those l and m. Let l ≥ l0 and m be such that Q(2−lm, 2−l) is not contained 
in Sκ. Then we trivially have

∫
Q(2−lm,2−l)

dist(x, S)γ dx ≥ c2−ld2−l0γ ≥ c2−l(d+γ).

This yields (5.3) for l ≥ l0 and arbitrary m. Let l < l0. Then
∫

Q(2−lm,2−l)

dist(x, S)γ dx ≥
∫

Q(2−l0 (2l0−lm),2−l0 )

dist(x, S)γ dx ≥ c2−l0(d+γ) ≥ c̃2−l(d+γ),

where c̃ = 2−l0(d+γ) is independent of l and m.
Step 4. It remains to prove (5.3) for l ≥ l0 and m such that Q(2−lm, 2−l) ⊂ Sκ. The integral in (5.3)

transforms as ∫
Q(2−lm,2−l)

dist(x, S)γ dx =
∫

ψ(Q(2−lm,2−l))

dist(ψ−1(y), S)γ | detψ′(y)|−1 dy,

where | detψ′|−1 ≥ c can be uniformly chosen by compactness of S. From the bi-Lipschitz property of ψ it 
follows that dist(ψ−1(y), S) � dist(y, ψ(S)). Since ψ(S) ⊂ R

d−k × {0Rk}, we thus get
∫

Q(2−lm,2−l)

dist(x, S)γ dx ≥ c

∫
ψ(Q(2−lm,2−l))

(
|yd−k+1|γ + . . . + |yd|γ

)
dy.

Again the bi-Lipschitz property of ψ yields δ > 0, independent of l and m, such that Q(ψ(2−lm), δ2−l) is 
contained in ψ(Q(2−lm, 2−l)). It therefore remains to estimate

∫
Q(ψ(2−lm),δ2−l)

(
|yd−k+1|γ + . . . + |yd|γ

)
dy = δd−12−l(d−1)

k−1∑
j=0

ψj(2−lm)+δ2−l∫
ψj(2−lm)−δ2−l

|τ |γ dτ.

For each j, here the integral is given by

η(s, t) := 1
γ + 1(sign(s + t)|s + t|γ+1 − sign(s− t)|s− t|γ+1),

where s = ψj(2−lm) ∈ R and t = δ2−l > 0. By distinguishing the three cases s ≥ t, s ∈ (−t, t) and 
s ≤ −t and using the triangle inequality for the (γ + 1)-norm in R2, we see that η(s, t) ≥ ctγ+1, where c is 
independent of s. We thus obtain the estimate
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∫
Q(ψ(2−lm),δ2−l)

(
|yd−k+1|γ + . . . + |yd|γ

)
dy ≥ c2−l(d+γ),

independently of m, and this gives (5.3). �
Remark 5.4. A scaling argument gives necessary conditions on the parameters for embedding of the type 
given in Proposition 5.3 to hold, at least in the model case S = R

d−k × {0k}, where

dist(x, S)γ ∼ |x1|γ + . . . + |xk|γ . (5.4)

Assuming ‖u‖W θ,q(Rd) ≤ C‖u‖W 1,2(Rd;dist(·,S)γ) for a constant C independent of u, replacing u by u(λ·) with 
λ > 0 and rescaling y = λx such that dx = λ−ddx, we obtain

λ− d
q ‖u‖Lq(Rd) + λθ− d

q [u]W θ,q(Rd) ≤ C
(
λ− d

2 ‖u‖L2(Rd) + λ1− d+γ
2 ‖∇u‖L2(Rd;dist(·,S)γdx)

)
.

Letting λ → ∞, this shows that for any θ ∈ (0, 1) and q ≥ 2 the condition 1 − d+γ
2 ≥ θ − d

q is necessary.

We combine the above results to obtain the following properties of the traces.

Proposition 5.5. For 1 < r < 2(d−1)
d+γ−2 the trace operators trΓd and trΣ are continuous and compact maps

trΓd : W 1,2(Ω, μ∗
Ω) → Lr(Γd, dHd−1), trΣ : W 1,2(Ω, μ∗

Ω) → Lr(Σ, dHd−1).

Proof. We consider Σ, the arguments for Γd are the same. Let E be the extension operator for W 1,2(Ω, μ∗
Ω)

from Lemma 5.2. As in the proof of [10, Proposition 2.8] one can show that trΣ = trΣE . Proposition 5.3
together with the support property of E implies that there is ε > 0 such that E maps W 1,2(Ω, μ∗

Ω) compactly 
into W 1/r+ε,r(Rd) for r > 1, provided 1 − d+γ

2 > 1−d
r . Since d ≥ 2 and γ > 0 we have 1 − d+γ

2 < 0, such 

that this inequality is equivalent to r < 2(d−1)
d+γ−2 . Now [10, Lemma 2.7] implies that trΣ maps W 1/r+ε,r(Rd)

continuously into Lr(Σ, dHd−1) for those r. Altogether, trΣ is continuous and compact. �
5.2. The operators Ap on Lp

We modify Dom(t) from Definition 4.4 to take into account the degeneracy of the diffusion coefficient μΩ. 
We set

(u, v)Dom(t) = (u, v)W 1,2(Ω,μ∗
Ω) +

∫
Γd

(
∇Γdu,∇Γdv

)
μ∗

Γd
dHd−1 +

∫
Σ

(
∇Σu,∇Σv

)
μ∗

Σ dHd−1,

and define as before Dom(t) as the completion of C∞
D (Ω) with respect to the corresponding Hilbert norm 

‖ · ‖Dom(t). It is now given by

‖u‖2
Dom(t) = ‖u‖2

W 1,2(Ω,μ∗
Ω) + ‖∇Γdu‖2

L2(Γd,μ∗
Γd

) + ‖∇Σu‖2
L2(Σ,μ∗

Σ).

Recall that the map J is for u ∈ C∞
D (Ω) given by Ju = (u, uΓd , uΣ). In the following we distinguish 

between the cases when the surface S, where the bulk diffusion degenerates, is away from Γd and Σ, and 
where the relation between these sets is arbitrary. In the second case we have to restrict to γ < 1 for the 
distance exponent to obtain the continuity of J into L2.

Lemma 5.6. Assume either 0 < γ < d −k and S∩(Γd ∪ Σ) = ∅ (Case (A)), or assume 0 < γ < 1 (Case (B)). 
Then J : Dom(t) → L

2 is continuous and has dense range. If (additionally) 0 < γ < 2, then J is compact.



K. Disser et al. / J. Math. Anal. Appl. 430 (2015) 1102–1123 1119
Proof. Step 1. Since Dom(t) ⊂ W 1,2
D (Ω, μ∗

Ω), for continuity and compactness it suffices to consider J on 
W 1,2

D (Ω, μ∗
Ω) instead of Dom(t).

By definition we have W 1,2
D (Ω, μ∗

Ω) ⊂ L2(Ω). We claim that the latter embedding is also compact if γ < 2. 
Decompose the embedding into the extension E to W 1,2(Rd, μ∗

Ω) from Lemma 5.2 and the restriction to Ω. 
By Proposition 5.3 we have W 1,2(Rd, μ∗

Ω) ⊂ W θ,2(Rd) for some θ > 0, provided γ < 2. The support property 
yields that E is compact if θ is chosen slightly smaller. Hence W 1,2

D (Ω, μ∗
Ω) embeds compactly into L2(Ω)

for γ < 2.
Step 2. We show that the traces at Γd and Σ are continuous and compact from W 1,2

D (Ω, μ∗
Ω) into L2(Γd)

and L2(Σ), respectively. Assume γ < 1. Then 2(d−1)
d+γ−2 > 2, and the assertion follows from Proposition 5.5. 

Next assume S∩(Γd ∪ Σ) = ∅. Choose a smooth cut-off ψ such that ψ ≡ 0 on S and ψ ≡ 1 in a neighbourhood 
of Γd ∪ Σ. Then trΣu = trΣ(ψu) for all u ∈ W 1,2

D (Ω, μ∗
Ω). The multiplication with ψ is continuous from 

W 1,2
D (Ω, μ∗

Ω) into the unweighted space W 1,2
D (Ω), and trΣ is continuous and compact from W 1,2

D (Ω) to 
L2(Σ) by [10, Lemma 2.10], analogously for trΓd .

Step 3. By the proof of [10, Lemma 2.10] we have that JC∞
D (Ω) is dense in L2. Hence JW 1,2

D (Ω, μ∗
Ω) is 

dense since C∞
D (Ω) ⊂ W 1,2

D (Ω, μ∗
Ω). �

Now one can argue in the same way as in Lemma 4.6 to show that the sesquilinear form

t(u, v) =
∫
Ω

(μΩ∇u,∇v) dx +
∫
Γd

(
μΓd∇Γdu,∇Γdv

)
dHd−1 +

∫
Σ

(
μΣ∇Σu,∇Σv

)
dHd−1

extends continuously from C∞
D (Ω) to Dom(t), and that it is J-elliptic. Therefore, as in Proposition 4.7 we 

obtain a closed and densely defined operator A2 associated with t, which is the negative generator of an 
analytic C0-semigroup T2(·) on L2. In order to show that T2(·) is L∞-contractive, it suffices to see that as 
in the proof of Proposition 4.8, T2(·) leaves L2

R
and C invariant.

Then, as in Section 4.3, the semigroup T2(·) on L2 extends consistently to Tp(·) on Lp for p ∈ [1, ∞], and 
for the generators Ap and the relaxation coefficient ζ we obtain our main result.

Theorem 5.7. Assume either 0 < γ < d − k and S ∩ (Γd ∪ Σ) = ∅ (Case (A)), or assume 0 < γ < 1
(Case (B)). Then for each p ∈ (1, ∞) the operator ζ−1Ap with domain Dom(Ap) admits a bounded holo-
morphic functional calculus on Lp, with angle strictly smaller than π

2 . As a consequence, ζ−1Ap enjoys 
maximal parabolic Ls-regularity for all s ∈ (1, ∞) and −ζ−1Ap generates an analytic C0-semigroup on Lp. 
Furthermore, the fractional power domains are given by complex interpolation, i.e.,

Dom(Aθ
p) = [Lp,Dom(Ap)]θ, θ ∈ [0, 1].

The resolvent of ζ−1Ap is compact if γ < 2.

6. Embeddings for fractional power domains

Let Ap be the operator from Theorem 4.11 or Theorem 5.7. In this section we investigate conditions on 
p ∈ (2, ∞) and θ ∈ (0, 1) such that for the domain of the fractional power Aθ

p we have

Dom(Aθ
p) ↪→ L

∞. (6.1)

We in particular aim to quantify the conditions in dependence on whether diffusion is degenerate or not, 
and where it degenerates.

Our motivation is semilinear versions of (1.1)–(1.6), i.e., where the right-hand side (fΩ, fΓd , fΣ) depends 
nonlinearly on the solution itself. If (6.1) holds true, then the Nemytzkii operator induced by a nonlinearity 
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is well-defined on Dom(Aθ
p) with values in Lp, which in principle allows to apply the standard theory 

for semilinear parabolic equations to obtain local-in-time well-posedness (see the introduction for further 
references).

The key to the embedding (6.1) is the regularity of the image of J.

Lemma 6.1. Let p, r ∈ (2, ∞) and θ ∈ (0, 1) such that θ > r
(r−2)p . Assume

JDom(t) ⊂ L
r. (6.2)

Then Dom(Aθ
p) ⊂ L

∞.

Proof. Let Tp(·) be the semigroup on Lp generated by −Ap. The arguments given in the proof 
of [10, Lemma 2.19] show that there is C > 0 such that

‖e−tT2(t)ϕ‖L∞ ≤ Ct−
r

(r−2)2 ‖ϕ‖L2 , t > 0, ϕ ∈ L
2.

Interpolating this inequality with the L∞-contractivity of T2(·), we obtain that

‖e−tTp(t)ϕ‖L∞ ≤ Ct−
r

(r−2)p ‖ϕ‖Lp , t > 0, ϕ ∈ L
p. (6.3)

Since 1 + Ap is invertible, we have that

u �→ ‖(Ap + 1)θu‖Lp

defines an equivalent norm on Dom(Aθ
p). For θ ∈ (0, 1) it is further well-known that

(Ap + 1)−θ = Cθ

∞∫
0

tθ−1e−tTp(t) dt.

Using (6.3) for t ∈ (0, 1) and the contractivity of Tp(·) for t > 1, for u ∈ Dom(Aθ
p) we obtain

‖u‖L∞ ≤ C‖u‖Dom(Aθ
p)

1∫
0

tθ−1− r
(r−2)p dt + C‖u‖Dom(Aθ

p)

∞∫
1

e−t dt.

Here the first integral is finite if θ > r
(r−2)p . In this case the embedding Dom(Aθ

p) ⊂ L
∞ follows. �

In the sequel we determine r0 > 2 as large as possible such that (6.2) holds for all 2 < r < r0. Since

L
r = Lr(Ω) ⊕ Lr(Γd) ⊕ Lr(Σ),

the number r0 depends on how large r can be such that

Dom(t) ⊂ Lr(Ω), trΓd : Dom(t) → Lr(Γd), trΣ : Dom(t) → Lr(Σ),

are simultaneously continuous. In turn, this depends on whether the bulk diffusion degenerates or not, if it 
degenerates at Γd ∪ Σ where traces are taken, and where the surface diffusion on Γd and Σ degenerates.

It follows from Lemma 5.2 and Proposition 5.3 that

Dom(t) ⊂ W 1,2
D (Ω) ⊂ Lr(Ω)
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for r < rΩ := 2d
(d+γ−2)+ . If S = ∅ or S ∩ Γd ∪ Σ = ∅ (Case (A)), then by [10, Proposition 2.8] the traces are 

continuous from Dom(t) ⊂ W 1,2
D (Ω) into Lr(Γd) and Lr(Σ) for all r < rtr := 2(d−1)

(d−2)+ . In case S ∩Γd ∪ Σ 
= ∅
(Case (B)), where in Theorem 5.7 it is assumed that γ < 1, Proposition 5.5 shows that the traces are 
continuous only for r < rtr,γ := 2(d−1)

(d+γ−2)+ .
The regularity of the traces improves if surface diffusion is present. Assume that the surface diffusion 

is uniformly nondegenerate, i.e., μ∗
Γd
, μ∗

Σ ≥ η > 0. Then the traces belong to W 1,2(Γd) and W 1,2(Σ). By 

Sobolev embeddings, the traces are thus continuous into Lr for r < r∗tr := 2(d−1)
(d−3)+ . Observe that r∗tr > rtr, 

which quantifies the regularity improvement obtained from surface diffusion. Finally, assume that S ∩
Γd ∪ Σ 
= ∅ and that μ∗

Γd
, μ∗

Σ ≥ η > 0 in a neighbourhood of S ∩ Γd ∪ Σ. Then the traces belong to W 1,2 in 
this neighbourhood, such that they belong to Lr for r < min(rtr, r∗tr) = rtr. This improves the case without 
surface diffusion on the critical set S ∩ Γd ∪ Σ since rtr > rtr,γ .

Now the number r0 can be chosen as the minimum of rΩ and rtr, rtr,γ or r∗tr according to the cases 
described above. The following figure gives an overview.

One can check that if 0 ≤ γ < 1, in any case we have r0 > 2. Together with Lemma 6.1 we thus have the 
following result.

Theorem 6.2. Assume 0 ≤ γ < 1. Then there are θ0 ∈ (0, 1) and p0 ∈ (2, ∞) such that Dom(Aθ
p) ↪→ L

∞ for 
all θ ∈ (θ0, 1) and p ∈ (p0, ∞).

It is interesting to note that if diffusion is nowhere degenerate, then one can take r0 = 2d
(d−2)+ . In this 

case, by Lemma 6.1 we have Dom(Aθ
p) ↪→ L

∞ provided

2θ >
d

p
.

This is precisely the optimal relation for the embedding of H2θ,p into L∞. In a smooth situation one indeed 
expects that Dom(Ap) ⊂ H2,p(Ω) and thus Dom(Aθ

p) ⊂ H2θ,p(Ω), which shows that the above considerations 
are optimal at least in this case.
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