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The pseudo-ultraspherical polynomial of degree n is defined by C̃
(λ)
n (x) =

(−i)nC(λ)
n (ix) where C(λ)

n (x) is the ultraspherical polynomial. We derive a simple 
expression linking the polynomials C(λ)

n and C̃( 1
2−λ−n)

n and show how to derive 
various properties of the zeros of C̃(λ)

n when λ < 1 − n from properties of the zeros 
of C(λ)

n when λ > − 1
2 .

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The sequence of ultraspherical polynomials belongs to the class of sequences of classical orthogonal 
polynomials whose orthogonality depends on the values of one or more parameters being constrained to lie 
within a specified range. The ultraspherical sequence {C(λ)

n }∞n=0, given by

C(λ)
n (x) =

�n/2�∑
m=0

(−1)m(λ)n−m

m!(n− 2m)! (2x)n−2m, (1.1)

is orthogonal on (−1, 1), with respect to the weight function (1 − x2)λ−1/2, provided λ > −1/2.
For values of the parameter outside the range that ensures orthogonality, the sequence of ultraspherical 

polynomials can be defined by the three term recurrence relation that holds when the sequence is orthogonal 
or by an appropriate generating function, see [2,11]. When λ > −1

2 , C(λ)
n has n real, simple zeros which lie in 

the open interval (−1, 1) and are symmetric about the origin. As λ decreases below −1/2, the zeros of C(λ)
n

depart from the interval (−1, 1) through the endpoints −1 and 1 with an additional two zeros leaving [−1, 1]
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each time λ decreases through −k+1/2, k = 1, 2, . . . , �n/2�. A full description of the departure of the zeros, 
as well as the kinematics of the collisions of zeros at ±1, when λ = −3/2, −5/2, . . . can be found in [4]. 
An unusual phenomenon occurs as λ decreases below −[(n + 1)/2], namely, the zeros of C(λ)

n appear on the 
imaginary axis with an additional pair of zeros joining the imaginary axis each time λ decreases through 
successive negative integers. When λ < 1 − n, all n zeros of the polynomial C(λ)

n (x) are simple and lie on 
the imaginary axis (see [4, Th. 3]).

Using the definition of Ismail [9, (20.1.1)] for pseudo-Jacobi polynomials, we define the pseudo-
ultraspherical polynomial C̃(λ)

n by

C̃(λ)
n (x) := (−i)nC(λ)

n (ix) =
�n/2�∑
m=0

(λ)n−m

m!(n− 2m)! (2x)n−2m. (1.2)

Since it is known [3, Th. 3] that the polynomial C̃(λ)
n has n real, simple zeros for each fixed λ < 1 − n, 

a natural question is whether the (finite) sequence {C̃(λ)
n }−�λ+1�

n=1 is orthogonal for each fixed λ < 1 −n. The 
three term recurrence relation satisfied by the sequence of pseudo-ultraspherical polynomials, that follows 
via a simple substitution from the recurrence relation satisfied by the sequence of ultraspherical polynomials 
{C(λ)

n }∞n=0, is given by [5, (4.1)]:

(n + 1)C̃(λ)
n+1(x) = 2x(n + λ)C̃(λ)

n (x) + (n + 2λ− 1)C̃(λ)
n−1(x). (1.3)

One might expect that since n + 2λ − 1 < 0 for each n ∈ N, n ≥ 1, λ < 1 − n, the sequence {C̃(λ)
n }−�λ+1�

n=1
is orthogonal with respect to the weight function (1 + x2)λ−1/2 for each fixed λ < 1 − n. A positive result 
in this direction was proved by Richard Askey, [1, (1.8)], in the context of the complex orthogonality of 
Jacobi polynomials. However, the Askey integral [1, (1.8)] converges for a more restricted range of λ values, 
namely λ < −n, and diverges when −n < λ < 1 −n. Although a finite sequence of polynomials that satisfies 
a three term recurrence relation of appropriate type can be embedded in an infinite sequence of orthogonal 
polynomials, the restriction n < 1 − λ that applies in this instance does not make the process meaningful 
and the measure of orthogonality is not unique since there are infinitely many choices of coefficients in the 
three term recurrence relation that generates the polynomials of degree greater than n.

The weight function of orthogonality for the ultraspherical sequence {C(λ)
n }∞n=0 when λ > −1

2 is 
(1 − x2)λ−1/2 while the weight function of orthogonality for the (finite) pseudo-ultraspherical sequence 
{C̃(λ)

n }−�λ+1�
n=1 is (1 + x2)λ−1/2 provided λ < −n so the connection between the two weight functions is to 

replace x by ix. However, there is no reason to suppose that a connection exists between the zeros of C(λ)
n

when λ > −1
2 and the zeros of C̃(λ′)

n when λ′ < 1 − n.
Note that a proof of the orthogonality of the pseudo-ultraspherical polynomials using differential equa-

tions can be found in [5, §2.1]. A proof starting from the Rodrigues formula for ultraspherical polynomials 
is given in [6].

In Section 2, we derive an identity between the two ultraspherical polynomials C(λ)
n and C

( 1
2−λ−n)

n . Using 
this identity, we find a simple and explicit algebraic relationship between the zeros of C(λ)

n and those of C̃(λ′)
n

where λ′ = 1
2 − λ − n. In Sections 3 and 4, we show how our identity can be used to derive monotonicity 

properties of zeros of pseudo-ultraspherical polynomials from similar properties of the zeros of ultraspherical 
polynomials (and vice-versa).

2. A connection between C(λ)
n and C(1/2−λ−n)

n

We shall make use of the Gauss hypergeometric function 2F1(a, b; c; z) (see, for example [10, Ch. 4] for a 
definition) in polynomial form with the numerator parameter a = −n, n ∈ N.
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Theorem 2.1. Suppose C(λ)
n (z) is the ultraspherical polynomial of degree n where z is arbitrary, complex and 

not equal to 0 or ±1, λ ∈ R, n ∈ N, and let λ′ = 1
2 − λ − n. Then

(λ + 1/2)nznC(λ)
n

(
z + 1/z

2

)
= (2λ)n(1 − z2)n2−2nC(λ′)

n

(
z2 + 1
z2 − 1

)
, (2.1)

or, equivalently,

(2λ + n)nC(λ)
n (cos θ) = (λ)n(−i2 sin θ)nC(λ′)

n (−i cot θ), (2.2)

or

(2λ + n)nC(λ)
n (x) = (λ)n(−2i

√
1 − x2)nC(λ′)

n (−ix/
√

1 − x2), |x| ≤ 1. (2.3)

Proof. For each fixed λ and any complex z, z �= 0, we have [3, Lemma 2]

(2λ)n2F1(−n, λ; 2λ; 1 − z2) = n!znC(λ)
n

(
z + 1/z

2

)
, (2.4)

where 2F1 is the Gauss hypergeometric function and (−)n is the Pochhammer symbol. The identity (2.4)
was pointed out by Richard Askey [personal communication] and follows from the generating function for 
the ultraspherical polynomials. �

A second relationship between the ultraspherical polynomial C(λ)
n (z) and the hypergeometric polynomial 

2F1(−n, λ; 2λ; z) follows from [3, (2)]:

(2λ)2n2F1(−n, λ; 2λ; z) = (λ)nn!znC(λ′)
n

(
1 − 2

z

)
, (2.5)

where λ′ = 1
2 − λ − n. This result follows also from [11, (4.7.6), second equation]. Replacing z by 1 − z2

in (2.5), we have

2F1(−n, λ; 2λ; 1 − z2) = (λ)nn!(1 − z2)n

(2λ)2n
C(λ′)

n

(
z2 + 1
z2 − 1

)
, (2.6)

where λ′ = 1
2 − λ − n. From (2.4) and (2.6), we obtain

(2λ + n)nznC(λ)
n

(
z + 1/z

2

)
= (λ)n(1 − z2)nC(λ′)

n

(
z2 + 1
z2 − 1

)
, (2.7)

which is equivalent to (2.1).
Putting z = eiθ in (2.1) and simplifying, we obtain (2.2) and (2.3).

3. Zeros of C(λ)
n and C̃(λ′)

n

In what follows we consider the nontrivial x-zeros of C(λ)
n (x) and C̃(λ′)

n (x). Figures 1 and 2 illustrate 

the zeros as functions of λ and λ′, respectively, in the case n = 12. We have C(λ)
n (x) ≡ C̃

(λ′)
n (x) ≡ 0, for 

λ = 0, −1, . . . , −�(n − 1)/2�. For each such value λ∗ of λ we define the zeros by a limiting process:

z(λ∗) = lim
λ→λ∗

z(λ).
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Fig. 1. The real x-zeros of C(λ)
12 (x), for 0 < x < 1.5, plotted (using MAPLE) as functions of λ, −6 < λ < 1. Zeros leave the interval 

(0, 1) as λ decreases through the values −1/2, −5/2, −9/2. In addition, as λ decreases through the values −3/2, −7/2, −11/2, pairs 
of formerly real zeros collide at 1, becoming complex.

Fig. 2. The real x-zeros of C̃(λ′)
12 (x), for 0 < x < 3.5, plotted (using MAPLE) as functions of λ′, −18 < λ′ < −6. As λ′ increases 

through the values −11, −10, −9, −8, −7, −6 a positive zero goes to infinity. There is a similar picture for the negative zeros. 
For λ′ ≥ −6, the nonzero zeros are non-real.

Theorem 3.1. Let C(λ)
n and C̃(λ′)

n denote, respectively, the ultraspherical polynomial and pseudo-ultraspherical 
polynomial of degree n where λ′ = 1

2 − λ − n. Then x is a zero of C̃(λ′)
n if and only if x/

√
1 + x2 is a zero 

of C(λ)
n .

Proof. From (2.2), we see that x = cos θ is a zero of C(λ)
n if and only if −i cot θ = −ix/

√
1 − x2 is a 

zero of C(λ′)
n . Further, from the definition (1.2), we see that x is a zero of C̃(λ′)

n if and only if ix is a 

zero of C(λ′)
n which, in turn, holds if and only if −i(ix)/

√
1 − (ix)2 = x/

√
1 + x2 is a zero of C(λ)

n , where 
λ′ = 1

2 − λ − n. �
We use the notation xnk(λ), k = 1, . . . , �n/2� for the positive zeros in decreasing order of C(λ)

n (x), and 

x̃nk(λ′), k = 1, . . . , �n/2� for the positive zeros in decreasing order of C̃(λ′)
n (x) where λ′ = 1/2 − λ − n

(or, equivalently, λ = 1
2 − λ′ − n).

From Theorem 3.1, we get

xnk(λ) = [x̃nk(λ′)−2 + 1]−1/2, x̃nk(λ′) = [xnk(λ)−2 − 1]−1/2. (3.1)
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In [11, §6.72] there is a detailed discussion of the numbers of x-zeros of the general Jacobi polynomial 
P

(α,β)
n (x) in (−1, 1), (1, ∞), and (−∞, −1). Specializing [11, Theorem 6.72] to the case α = β = λ − 1/2, 

−n < λ < 1/2, we find that the number of x-zeros of C(λ)
n on (0, 1) is �(X + 1)/2� for n even and �X/2� for 

n odd, where X = E(n + 2λ) and the function E : R → R is defined by

E(u) =
{

0, u ≤ 0,
−1 − �−u�, u > 0.

(3.2)

This leads immediately to:

Corollary 3.2. The number of x-zeros of C(λ)
n on (0, 1) is

(i) �n/2�, for λ > −1/2;
(ii) �n/2� − k, for −1

2 − k < λ < 1
2 − k, k = 1, 2, . . . , �n/2� − 1, and

(iii) 0, for λ < 1/2 − �n/2�.

Corollary 3.3. The number of x-zeros of C̃(λ′)
n on (0, ∞) is

(i) �n/2� for λ′ < 1 − n,
(ii) �n/2� − k, for −n + k < λ′ < −n + k + 1, k = 1, 2, . . . , �n/2� − 1, and
(iii) 0 for λ′ > −n + �n/2�.

This agrees with [5, Theorem 3.5], obtained from the explicit representation (1.2).
Corollaries 3.2 and 3.3 show that, for k = 1, . . . , �n/2�, xn,k(λ) is defined on the interval 1/2 −k < λ < ∞

and x̃n,k(λ′) is defined on the interval −∞ < λ′ < k − n.
We see that the second expression in (3.1) can be written

x̃n,k(λ′)−2 = xn,k(λ)−2 − 1. (3.3)

From this it is clear that if xn,k(λ) is an increasing (decreasing) function of λ on an interval a < λ < b, then 
x̃n,k(λ′) is a decreasing (increasing) function of λ′ on the corresponding interval 1/2 −b −n < λ′ < 1/2 −a −n. 
It follows that the well-known [11, Theorem 6.21.1] decrease of the positive zeros xnk(λ) of C(λ)

n as functions 
of λ, λ > −1/2 implies the increase of the positive zeros x̃nk(λ) as functions of λ, λ < 1 −n. This monotonicity 
result was proved in a different way in [5, Theorem 3.4]. A further result [5, Theorem 3.3] covers the case 
where only some of the zeros are real and, using (3.1), this gives the (apparently new) result that, even for 
λ ≤ −1

2 , the positive zeros xnk(λ) of C(λ)
n that lie within the interval (0, 1) are decreasing functions of λ.

4. Scaled monotonicity

Let f(λ) be a decreasing function of λ and let g(λ′) = f(λ), λ′ = 1/2 − λ − n. Then (3.3) gives

g(λ′)[x̃nk(λ′)−2 + 1] = f(λ)xnk(λ)−2 (4.1)

and we immediately obtain

Theorem 4.1. If f(λ)xnk(λ)−2 is a decreasing function of λ on a subinterval of (−1/2, ∞), then 
g(λ′)[x̃nk(λ′)−2 + 1] is an increasing function of λ′ on the corresponding subinterval of (−∞, 1 − n).
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Given that xn,k(λ) is a decreasing function of λ, it is a natural question to find a function f(λ) such 
that the product f(λ)xn,k(λ) is increasing. It was shown by Á. Elbert and P.D. Siafarikas [8] that, for 
n = 2, 3, . . . ,

(
λ + n2 + 1/2

2n + 1

)
xn,k(λ)2 increases with λ, −1/2 < λ < ∞. (4.2)

This monotonicity result was the culmination of a series of gradual improvements in papers published in 
the 1980s and 1990s (see [7, §2.2]) and an improvement on the simpler result

(λ + 1/2)xn,k(λ)2 increases with λ, −1/2 < λ < ∞. (4.3)

In the cases n = 2, 3 the explicit expression (1.1) shows that (1 + λ) x21(λ)2 and (2 + λ) x31(λ)2 are 
increasing functions of λ on (−1, ∞) and (−2, ∞), respectively, whereas (4.2) gives the weaker results that 
(9/10 +λ) x21(λ)2 and (19/14 +λ) x31(λ)2 are increasing functions of λ on (−1/2, ∞). But, although it can 
be improved in special cases, there does not appear to be any generally stronger version of (4.2) known to 
be valid for all integers n ≥ 2.

Theorem 4.1 can be used to get analogues of these results for the zeros of the corresponding pseudo-
ultraspherical polynomials. If we choose

f(λ) =
(
λ + n2 + 1/2

2n + 1

)−1

,

the result (4.2) leads to

−
(
λ′ + n2 − 1

2n + 1

)−1

[x̃n,k(λ′)2 + 1] increases with λ′, −∞ < λ′ < 1 − n. (4.4)

Similarly, if we choose f(λ) = (λ +1/2)−1, we have g(λ′) = (1 −λ′−n)−1. Then it follows from (4.3) that 
f(λ)xnk(λ)−2 is an increasing function of λ on (−1/2, ∞), so Theorem 4.1 gives, after some simplification, 
that (1 −λ′−n)−1[x̃nk(λ′)−2 +1] is an increasing function of λ′ on the interval (−∞, 1 −n) where x̃nk(λ′)−2

is decreasing.
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