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This paper is concerned with the 3D incompressible Navier–Stokes equations with 
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of strong solutions is established for the case when the bound of density is suitably 
small, or when the total mass is small with large oscillations. The vacuum is allowed 
in both cases.
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1. Introduction

The present paper is devoted to the study of the incompressible Navier–Stokes equations in R3:⎧⎪⎪⎨⎪⎪⎩
ρt + div(ρu) = 0,

(ρu)t + div(ρu⊗ u) + ∇Π = div(μ(ρ)∇u),

divu = 0,

(1.1)

with the initial-boundary conditions:

(ρ, u)|t=0 = (ρ0, u0)(x) in Ω, u = 0 on Ω × (0, T ). (1.2)

Here, ρ, u, and Π denote the density, velocity and pressure of the fluid, respectively. μ(ρ) is the viscosity 
coefficient assumed to satisfy

μ(ξ) ∈ C1[0,∞) and 0 < μ ≤ μ(ξ) ≤ μ̄ for ∀ ξ ∈ [0,∞). (1.3)
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The mathematical study of nonhomogeneous incompressible fluids was initiated by Kazhikov, who proved 
the global existence of weak solutions as well as strong ones when μ(ρ) is a constant and ρ0 has a positive 
lower bound, see [3,4,14]. The unique solvability of (1.1) is first addressed by Ladyzenskaja and Solonnikov 
[16]. In particular, they proved the global existence of weak solutions and local existence of strong ones 
of the initial/initial-boundary value problem of (1.1) with large data in dimension N ≥ 2. It is also well 
known that the local strong solution is indeed a global one in two dimensions or three dimensions with small 
data. The global well-posedness for initial data belonging to certain scale invariant spaces, see for example 
[1,2,8,18].

For the case when the initial data may contain vacuum and the viscosity coefficient μ(ρ) is still a positive 
constant, Simon [19] constructed the global weak solutions. By imposing some compatibility condition, 
Choe–Kim [6] established the local existence of strong solutions. Huang–Wang [11] showed that the local 
strong solution obtained in [6] is indeed a global one in dimension two. For the three-dimensional case, 
Kim [15] proved that if ‖∇u0‖L2 is sufficiently small, then (1.1) has a unique strong solution, which was 
generalized by Craig et al. [7] by requiring ‖u0‖Ḣ1/2 small.

When the viscosity coefficient μ(ρ) depends on ρ, Lions [17] derived the global existence of weak solutions. 
Later, Desjardins [9] proved the global weak solution with more regularity for the two-dimensional case 
provided that μ(ρ) is a small perturbation of a positive constant in L∞-norm. As for strong solutions away 
from vacuum, Gui–Zhang [10] obtained the global well-posedness in the case when the initial density ρ0 is 
a small perturbation around a positive state in Hs with s ≥ 2. To overcome the difficulties caused by the 
presence of vacuum, analogously to [6], Choe–Kim [5] proposed a compatibility condition:

−div(μ(ρ0)∇u0) + ∇Π0 = ρ
1/2
0 g for some (∇Π0, g) ∈ L2, (1.4)

and established the local existence of strong solutions. Recently, Huang–Wang [12] obtained the global strong 
solutions in dimension two, provided ‖∇μ(ρ0)‖Lq (q > 2) is small enough, which had been generalized to 
the 3D case by Zhang [20] and Huang–Wang [13] when ‖∇u0‖L2 is small.

The main result in this paper is to establish global strong solutions under the assumption that the mass 
or the bound of density is suitably small, which reads as follows.

Theorem 1.1. For some q > 3, assume that the initial data (ρ0, u0) satisfies

{
0 ≤ inf ρ0 ≤ ρ0 ≤ sup ρ0 ≤ ρ̄ < ∞, ‖ρ0‖L1 = m,

ρ0 ∈ W 1,q, ‖∇μ(ρ0)‖Lq ≤ M, u0 ∈ H1
0,σ ∩H2,

(1.5)

and that the compatibility condition (1.4) holds for some (∇Π0, g) ∈ L2. Then there exist positive constants
ε and C̃, depending only on Ω, μ̄, q, μ, M , g and ‖∇u0‖L2 , such that the initial-boundary value problem 
(1.1)–(1.4) has a global strong solution on Ω × (0, T ), satisfying

⎧⎪⎪⎨⎪⎪⎩
0 ≤ ρ(x, t) ≤ ρ̄, ‖∇μ(ρ)‖Lq ≤ 2M, ∀ (x, t) ∈ Ω × [0,∞),

(ρ, μ(ρ)) ∈ C([0,∞);W 1,q), (∇u,Π) ∈ C([0,∞);H1) ∩ L1(0,∞;W 1,r),

ρt ∈ C([0,∞);Lq), √
ρut ∈ L∞(0,∞;L2), ut ∈ L2(0,∞;H1

0 ),

for 3 < r < min{q, 6}, provided

Λ � (ρ̄m2) 1
6 ρ̄

5r−6
4r max

{
ρ̄

7r+6
4r (1 + ρ̄)(ρ̄m2) 1

6 , Λ1, (ρ̄m2) 1
6 Λ2

}
≤ ε,

where
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Λ1 � (1 + ρ̄2) exp
{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

+ ρ̄
15r−18

4r (ρ̄m2) 1
6 ,

Λ2 � (1 + ρ̄2) exp
{

3C̃
2 ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

+ ρ̄
15r−18

4r .

The main result in Theorem 1.1 is obtained by some delicate analysis for the bound of density ρ̄ and 
the mass m. Inspired by [13,20], we first assume that ‖∇μ(ρ)‖Lq ≤ 2M . Then, we can make use of the 
regularity results of Stokes equations (cf. Lemma 2.1) and energy estimate (cf. Lemma 3.2) to deduce the 
desired bound for ‖∇u‖L2 under the assumption that ρ̄ or m is suitably small. Based on some t-weighted 
estimates, similarly to [13], we get time independent bound for ‖∇u‖L1(0,T ;L∞), which is actually controlled 
by both ρ̄ and m (cf. Lemma 3.5). With the smallness of ‖∇u‖L1(0,T ;L∞) at hand, we can show that the 
quantity ‖∇μ(ρ)‖Lq is in fact strictly less than 2M .

2. Preliminaries

Throughout this paper, we assume Ω is a smooth bounded domain in R3. For simplicity, we denote∫
fdx �

∫
Ω

fdx.

For 1 ≤ r ≤ ∞ and k ∈ N, the Sobolev spaces are defined in a standard way.

Lr � Lr(Ω), W k,r � {f ∈ Lr : Dαf ∈ Lr, |α| ≤ k}, Hk � W k,2.

Moreover, H1
0 and H1

0,σ represent the closure of C∞
0 and C∞

0,σ � {f ∈ C∞
0 : divf = 0} in H1, respectively.

The derivations of high-order estimates rely on the following regularity results for density-dependent 
Stokes equations.

Lemma 2.1. [13,20] Assume that ρ ∈ W 1,q for some 3 < q < ∞, and 0 ≤ ρ ≤ ρ̄. Let (u, Π) be the unique 
weak solution to the boundary value problem:

−div(μ(ρ)∇u) + ∇Π = F, divu = 0 in Ω,

∫
Π/μ(ρ)dx = 0,

where

μ ∈ C1[0,∞), μ ≤ μ(ρ) ≤ μ̄ on [0, ρ̄].

Then we have the following results:
(1) If F ∈ L2, then (u, Π) ∈ H2 ×H1 and

‖u‖H2 + ‖Π/μ(ρ)‖H1 ≤ C‖F‖L2(1 + ‖∇μ(ρ)‖Lq )
q

q−3 . (2.1)

(2) If F ∈ Lr for some r ∈ (3, q), then (u, Π) ∈ W 2,r ×W 1,r and

‖u‖W 2,r + ‖Π/μ(ρ)‖W 1,r ≤ C‖F‖Lr(1 + ‖∇μ(ρ)‖Lq )
qr

2(q−r) . (2.2)

Here, the constant C depends on Ω, q, r, μ̄ and μ.

Theorem 1.1 will be proved by combining the global a priori estimates with the following local existence 
results [5].
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Lemma 2.2. For q > 3, assume that the initial data (ρ0, u0) satisfies

0 ≤ ρ0 ≤ ρ̄, ρ0 ∈ W 1,q, ‖∇μ(ρ0)‖Lq ≤ 2M, u0 ∈ H1
0,σ ∩H2,

and that (1.4) holds for some (∇Π0, g) ∈ L2. Then there exists a positive small time T ∗ and a unique strong 
solution (ρ, u, Π) of (1.1)–(1.3) such that for 3 < r < min{q, 6},⎧⎪⎪⎨⎪⎪⎩

0 ≤ ρ(x, t) ≤ ρ̄, ‖∇μ(ρ)‖Lq ≤ 2M, ∀ (x, t) ∈ Ω × [0, T ∗],

(ρ, μ(ρ)) ∈ C([0, T ∗];W 1,q), (∇u,Π) ∈ C([0, T ∗];H1) ∩ L1(0, T ∗;W 1,r),

ρt ∈ C([0, T ∗];Lq), √
ρut ∈ L∞(0, T ∗;L2), ut ∈ L2(0, T ∗;H1

0 ).

3. Proof of Theorem 1.1

In this section, we establish some time-weighted a priori estimates, which together with the local existence 
(cf. Lemma 2.2) will complete the proof of Theorem 1.1. To this end, we assume that the following a priori 
hypothesis holds for some T > 0:

sup
0≤t≤T

‖∇μ(ρ)‖Lq ≤ 2M for q > 3. (3.1)

For simplicity, we shall use the same letter C to denote some positive constant which maybe dependent 
on Ω, μ̄, q, μ, u0, g and M , but is independent of m, ρ̄ and T .

Let (ρ, u, Π) be a strong solution of (1.1)–(1.5) on Ω × (0, T ).
We begin with the upper bound of density, which is an easy consequence of the transport equation (1.1)1.

Lemma 3.1. It holds that

0 ≤ ρ ≤ ρ̄, (3.2)

for all (x, t) ∈ Ω × (0, T ).

Note that ‖√ρ0u0‖L2 ≤ ‖√ρ0‖L3‖u0‖L6 . The following lemma comes easily from the basic energy esti-
mate and (3.2).

Lemma 3.2. It holds that

sup
0≤t≤T

‖√ρu‖2
L2 + μ

T∫
0

‖∇u‖2
L2dt ≤ C(ρ̄m2) 1

3 ‖∇u0‖2
L2 . (3.3)

We now give the upper bound for the L2-norm of the gradient of velocity, which does not to be small 
under the small assumption on ρ̄ or m.

Lemma 3.3. Assume (3.1) holds and

μ sup
0≤t≤T

‖∇u‖2
L2 ≤ 3‖

√
μ(ρ0)∇u0‖2

L2 . (3.4)

There exists an absolute positive constant ε1 depending Ω, μ̄, μ, q, M and ‖∇u0‖L2 , such that if

ρ̄3(1 + ρ̄)(ρ̄m2) 1
3 ≤ ε1,
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then

μ sup
0≤t≤T

‖∇u‖2
L2 +

T∫
0

‖√ρut‖2
L2dt ≤ 2‖

√
μ(ρ0)∇u0‖2

L2 . (3.5)

Moreover,

μ sup
0≤t≤T

t‖∇u‖2
L2 +

T∫
0

t‖√ρut‖2
L2dt ≤ C(ρ̄m2) 1

3 . (3.6)

Proof. Note that

μ(ρ)t + u · ∇μ(ρ) = 0,

due to (1.1)1. Multiplying (1.1)2 by ut, we have after integration by parts that

1
2
d

dt

∫
μ(ρ)|∇u|2dx +

∫
ρ|ut|2dx

≤
∣∣∣∣12

∫
(2ρu · ∇u · ut + u · ∇μ(ρ)|∇u|2)dx

∣∣∣∣
≤ ‖√ρut‖L2‖√ρu‖L6‖∇u‖L3 + C‖∇μ(ρ)‖L3‖u‖L6‖∇u‖2

L4

≤ 1
4‖

√
ρut‖2

L2 + Cρ̄‖∇u‖3
L2‖∇u‖H1 + C‖∇u‖

3
2
L2‖∇u‖3/2

H1

≤ 1
4‖

√
ρut‖2

L2 + δ‖∇u‖2
H1 + C(δ−1ρ̄2 + δ−3)‖∇u‖6

L2 , (3.7)

where we have used the Young and Gagliardo–Nirenberg inequalities. Applying Lemma 2.1 with F =
ρut + ρu · ∇u, we derive that

‖∇u‖H1 ≤ C‖F‖L2(1 + ‖∇μ(ρ)‖Lq)
q

q−3

≤ Cρ̄
1
2 ‖√ρut‖L2 + Cρ̄‖u‖L6‖∇u‖L3

≤ Cρ̄
1
2 ‖√ρut‖L2 + Cρ̄‖∇u‖

3
2
L2‖∇u‖

1
2
H1 ,

which implies

‖∇u‖2
H1 ≤ C1ρ̄‖

√
ρut‖2

L2 + Cρ̄4‖∇u‖6
L2 . (3.8)

By choosing δ = (4C1ρ̄)−1, we obtain from (3.7) and (3.8) that

d

dt

∫
μ(ρ)|∇u|2dx +

∫
ρ|ut|2dx ≤ Cρ̄3(1 + ρ̄)‖∇u‖6

L2 . (3.9)

From the Gronwall inequality, (3.3) and (3.4), we infer

μ sup
0≤t≤T

‖∇u‖2
L2 +

T∫
0

‖√ρut‖2
L2dt

≤ ‖
√
μ(ρ0)∇u0‖2

L2 exp
{
C2‖∇u0‖4

L2 ρ̄3(1 + ρ̄)(ρ̄m2) 1
3

}
,
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which deduces (3.5), provided ρ̄3(1 + ρ̄)(ρ̄m2) 1
3 ≤ ε1 � min{1, C−1

2 ‖∇u0‖−4
L2 ln 2}. Furthermore, multiplying 

(3.9) by t, we similarly obtain

μ sup
0≤t≤T

t‖∇u‖2
L2 +

T∫
0

t‖√ρut‖2
L2dt

≤ C exp
{
C2‖∇u0‖4

L2 ρ̄3(1 + ρ̄)(ρ̄m2) 1
3

} T∫
0

‖∇u‖2
L2dt

≤ C(ρ̄m2) 1
3 ,

where (3.3) has been used. �
Lemma 3.4. Let (3.1) hold. There exists a positive constant C̃ as described in Theorem 1.1, such that

sup
0≤t≤T

t‖√ρut‖2
L2 +

T∫
0

t‖∇ut‖2
L2dt ≤ C(ρ̄m2) 1

3 (1 + ρ̄4) exp
{

2C̃ρ̄2
[
ρ̄(ρ̄m2) 1

3 + 1
]}

, (3.10)

sup
0≤t≤T

t2‖√ρut‖2
L2 +

T∫
0

t2‖∇ut‖2
L2dt ≤ C(ρ̄m2) 1

3 (1 + ρ̄4) exp
{

3C̃ρ̄2
[
ρ̄(ρ̄m2) 1

3 + 1
]}

, (3.11)

provided ρ̄3(1 + ρ̄)(ρ̄m2) 1
3 ≤ ε1.

Proof. Differentiating (1.1)2 with respect to t, multiplying it by ut in L2 and integrating by parts, we find

1
2
d

dt

∫
ρ|ut|2dx +

∫
μ(ρ)|∇ut|2dx

=
∫

u · ∇μ(ρ)∇u · ∇utdx− 2
∫

ρu · ∇ut · utdx

−
∫

ρut · ∇u · utdx−
∫

ρu · ∇(u · ∇u · ut)dx �
4∑

i=1
Ii. (3.12)

We estimate the right-hand side of (3.12) terms by term. Firstly, based on (3.1), (3.8), the Young and 
Sobolev inequalities, we get

I1 ≤ ‖u‖L∞‖∇μ(ρ)‖L3‖∇u‖L6‖∇ut‖L2

≤ C‖∇ut‖L2‖∇u‖2
H1

≤
μ

8 ‖∇ut‖2
L2 + Cρ̄2‖√ρut‖4

L2 + Cρ̄8‖∇u‖12
L2 .

The Gagliardo–Nirenberg and Young inequalities together with (3.8) lead to

I2 ≤ Cρ̄1/2‖√ρut‖L3‖∇ut‖L2‖u‖L6

≤ Cρ̄1/2‖√ρut‖1/2
L2 ‖√ρut‖1/2

L6 ‖∇ut‖L2‖∇u‖L2

≤
μ
‖∇ut‖2

L2 + Cρ̄3‖√ρut‖2
L2‖∇u‖4

L2 ,
8
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I3 ≤ C‖√ρut‖2
L4‖∇u‖L2

≤ Cρ̄
3
4 ‖√ρut‖

1
2
L2‖∇ut‖

3
2
L2‖∇u‖L2

≤
μ

8 ‖∇ut‖2
L2 + Cρ̄3‖√ρut‖2

L2‖∇u‖4
L2 ,

and

I4 ≤ Cρ̄‖∇u‖2
L2‖∇u‖H1‖∇ut‖L2

≤
μ

8 ‖∇ut‖2
L2 + Cρ̄3‖√ρut‖2

L2‖∇u‖4
L2 + Cρ̄6‖∇u‖10

L2 .

Substituting all the above estimates into (3.12), using (3.5), we arrive at

d

dt
‖√ρut‖2

L2 + ‖∇ut‖2
L2

≤ Cρ̄3‖√ρut‖2
L2‖∇u‖2

L2 + Cρ̄2‖√ρut‖4
L2 + Cρ̄6(1 + ρ̄2)‖∇u‖6

L2 .

(3.13)

By the Gronwall inequality, we get from (3.3) and (3.5) that

sup
0≤t≤T

‖√ρut‖2
L2 +

T∫
0

‖∇ut‖2
L2dt

≤ C

⎛⎝‖√ρ0g‖2
L2 + ρ̄6(1 + ρ̄2)

T∫
0

‖∇u‖2
L2dt

⎞⎠ exp

⎧⎨⎩C

T∫
0

(ρ̄3‖∇u‖2
L2 + ρ̄2‖√ρut‖2

L2)dt

⎫⎬⎭
≤ C[1 + ρ̄3(1 + ρ̄)] exp

{
C̃
[
ρ̄3(ρ̄m2) 1

3 + ρ̄2
]}

≤ C(1 + ρ̄4) exp
{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

,

(3.14)

where we have used ρ̄3(1 + ρ̄)(ρ̄m2) 1
3 ≤ 1. Hence, multiplying (3.13) by t and applying the Gronwall 

inequality, we obtain from (3.3), (3.6) and (3.14) that

sup
0≤t≤T

t‖√ρut‖2
L2 +

T∫
0

t‖∇ut‖2
L2dt

≤ C

T∫
0

(ρ̄6(1 + ρ̄2)t‖∇u‖6
L2 + ‖√ρut‖2

L2)dt exp
{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

≤ C

T∫
0

(ρ̄m2) 1
3 (ρ̄6(1 + ρ̄2)‖∇u‖2

L2 + ‖∇ut‖2
L2)dt exp

{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

≤ C(ρ̄m2) 1
3

[
(ρ̄m2) 1

3 ρ̄6(1 + ρ̄2) + (1 + ρ̄4) exp
{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}]

× exp
{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

≤ C(ρ̄m2) 1
3 (1 + ρ̄4) exp

{
2C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

.

(3.15)

In a similar manner, we deduce from (3.3), (3.6), (3.14) and (3.15) that
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sup
0≤t≤T

t2‖√ρut‖2
L2 +

T∫
0

t2‖∇ut‖2
L2dt

≤ C

T∫
0

(
ρ̄6(1 + ρ̄2)t2‖∇u‖6

L2 + t‖√ρut‖2
L2

)
dt exp

{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

≤ C

T∫
0

(
(ρ̄m2) 2

3 ρ̄6(1 + ρ̄2)‖∇u‖2
L2 + (ρ̄m2) 1

3 t‖∇ut‖2
L2

)
dt exp

{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

≤ C(ρ̄m2) 2
3 (1 + ρ̄4) exp

{
3C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

.

The proof of this lemma is finished. �
With the t-weighted estimates in Lemma 3.4 at hand, we now deal with ‖∇u‖L∞ , which is similar to 

[13].

Lemma 3.5. Let (3.1) hold. It has for any r ∈ (3, min{q, 6}) that

T∫
0

‖∇u‖L∞dt ≤ CΛ, (3.16)

provided ρ̄3(1 + ρ̄)(ρ̄m2) 1
3 ≤ ε1.

Proof. Let F = ρut + ρu · ∇u. Applying Lemma 2.1, we have

‖∇u‖W 1,r ≤ C‖F‖Lr(1 + ‖∇μ(ρ)‖Lp)
qr

2(q−r)

≤ C(‖ρut‖Lr + ‖ρu · ∇u‖Lr)

≤ C(‖ρut‖
6−r
2r

L2 ‖ρut‖
3(r−2)

2r
L6 + ρ̄‖u‖L6‖∇u‖

L
6r

6−r
)

≤ C

(
‖ρut‖

6−r
2r

L2 (ρ̄‖∇ut‖L2)
3(r−2)

2r + ρ̄‖∇u‖
6(r−1)
5r−6

L2 ‖∇u‖
4r−6
5r−6
W 1,r

)
,

which deduces

‖∇u‖W 1,r ≤ C

(
ρ̄

5r−6
4r ‖√ρut‖

6−r
2r

L2 ‖∇ut‖
3(r−2)

2r
L2 + ρ̄

5r−6
r ‖∇u‖

6(r−1)
r

L2

)
.

On the one hand, if 0 < T ≤ 1, we derive from (3.3), (3.5) and (3.10) that

T∫
0

‖∇u‖L∞dt ≤ C

T∫
0

‖∇u‖W 1,rdt

≤ Cρ̄
5r−6
4r

T∫
0

‖√ρut‖
6−r
2r

L2 ‖∇ut‖
3(r−2)

2r
L2 dt + C

T∫
0

ρ̄
5r−6

r ‖∇u‖
6(r−1)

r

L2 dt

≤ Cρ̄
5r−6
4r

⎛⎝ T∫
0

(t 1
2 ‖√ρut‖L2)

6−r
2r (t 1

2 ‖∇ut‖L2)
3(r−2)

2r t−
1
2 dt

⎞⎠
+ Cρ̄

5r−6
r ‖∇u‖

4r−6
r

L2

T∫
‖∇u‖2

L2dt (3.17)

0
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≤ Cρ̄
5r−6
4r (t1/2‖√ρut‖L2)

6−r
2r

⎛⎝ T∫
0

t‖∇ut‖2
L2dt

⎞⎠
3(r−2)

4r
⎛⎝ T∫

0

t−
2r

r+6 dt

⎞⎠
r+6
4r

+ Cρ̄
5r−6

r (ρ̄m2) 1
3

≤ C(ρ̄m2) 1
6 ρ̄

5r−6
4r

[
(1 + ρ̄2) exp

{
C̃ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

+ ρ̄
15r−18

4r (ρ̄m2) 1
6

]
.

On the other hand, for T > 1, (3.11) leads to

T∫
1

‖∇u‖L∞dt ≤ C

T∫
1

‖∇u‖W 1,rdt

≤ Cρ̄
5r−6
4r

T∫
1

‖√ρut‖
6−r
2r

L2 ‖∇ut‖
3(r−2)

2r
L2 dt + C

T∫
1

ρ̄
5r−6

r ‖∇u‖
6(r−1)

r

L2 dt

≤ Cρ̄
5r−6
4r

T∫
1

(t‖√ρut‖L2)
6−r
2r (t‖∇ut‖L2)

3(r−2)
2r t−1dt + Cρ̄

5r−6
r (ρ̄m2) 1

3

≤ Cρ̄
5r−6
4r (t‖√ρut‖L2)

6−r
2r

⎛⎝ T∫
1

t2‖∇ut‖2
L2dt

⎞⎠
3(r−2)

4r
⎛⎝ T∫

1

t−
4r

r+6 dt

⎞⎠
r+6
4r

+ Cρ̄
5r−6

r (ρ̄m2) 1
3

≤ C(ρ̄m2) 1
3 ρ̄

5r−6
4r

[
(1 + ρ̄2) exp

{
3C̃
2 ρ̄2

[
ρ̄(ρ̄m2) 1

3 + 1
]}

+ ρ̄
15r−18

4r

]
.

(3.18)

Combining (3.17) and (3.18) leads to (3.16). The proof of Lemma 3.5 is complete. �
In view of (3.16), one can prove the norm of ‖∇μ(ρ)‖Lq with 3 < q < ∞ is strictly less than 2M , provided 

ρ̄ or m is small enough. This particularly finishes the proof of the a priori assumption (3.1).

Lemma 3.6. Under the hypothesis (3.1), there exists a positive constant ε as described in Theorem 1.1, such 
that

‖∇μ(ρ)‖Lq ≤ 3M
2 , (3.19)

provided Λ ≤ ε. Moreover,

‖∇ρ‖Lq ≤ C‖∇ρ0‖Lq . (3.20)

Proof. It follows directly from (1.1)1 that

d

dt
‖∇μ(ρ)‖Lq ≤ C‖∇u‖L∞‖∇μ(ρ)‖Lq .

In view of (3.16), we find
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‖∇μ(ρ)‖Lq ≤ ‖∇μ(ρ0)‖Lq exp{C
T∫

0

‖∇u‖L∞dt}

≤ ‖∇μ(ρ0)‖Lq exp{C3Λ}

≤ 3M
2 ,

provided Λ ≤ ε � min{ε1, C−1
3 ln 3

2}. The proof of (3.20) is similar. �
Proof of Theorem 1.1. Thanks to all the a priori estimates established above, we now are ready to prove 
Theorem 1.1. In fact, this can be done in a similar manner as that in [13], we omit it here for simplicity. �
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