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© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This paper is devoted to the study of free probability analogues of so called Matsumoto–Yor property. 
In [15] Matsumoto and Yor noted an interesting independence property of Generalized Inverse Gaussian 
(GIG) and Gamma distributions, namely if X has GIG(−p, a, b) distribution, where p, a, b > 0 and Y has 
Gamma distribution G(p, a) then

U = 1
X + Y

and V = 1
X

− 1
X + Y

are independent and distributed GIG(−p, b, a) and G(p, b) respectively.
By a Generalized Inverse Gaussian distribution GIG(p, a, b), p ∈ R, a, b > 0 we understand here a 

probability measure given by the density

f(x) = 1
K(p, a, b)x

p−1e−ax− b
x I(0,+∞)(x),
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where K(p, a, b) is a normalization constant. A Gamma distribution G(p, a), p, a > 0 is given by the density

g(x) = ap

Γ(p)x
p−1e−axI(0,+∞)(x).

In [13] Letac and Wesołowski proved that the above independence property characterizes GIG and 
Gamma laws, i.e. for independent X and Y random variables U and V defined as above are indepen-
dent if and only if X has GIG(−p, a, b) distribution and Y has G(p, a) distribution, for some p, a, b > 0. In 
the same paper authors proved similar result for real symmetric matrices.

It is remarkable that many characterizations of probability measures by independence properties have 
parallel results in free probability. A basic example of such analogy is Bernstein’s theorem which says that 
for independent random variables X and Y , random variables X+Y and X−Y are independent if and only 
if X and Y are Gaussian distributed. A free probability analogue proved in [16] gives a characterization of 
Wigner semicircle law by similar properties where the independence assumptions are replaced by freeness 
assumptions. Another well studied example of such analogy is Lukacs theorem which characterizes the 
Gamma law by independence of X + Y and X/(X + Y ) for independent X and Y (cf. [14]). The free 
analogue (see [4,20]) turns out to characterize a Marchenko–Pastur law which is also known as the free 
Poisson distribution.

In this paper we will be particularly interested in characterizations of probability measures by regression 
assumptions. Well known example of such characterization is provided by so called Laha–Lukacs regressions 
[12] which characterize Meixner distributions by assumption that for independent X and Y the first condi-
tional moment of X given by X + Y is a linear function of X + Y and the second conditional moment of 
the same type is a quadratic function of X + Y . In [4,6] authors studied free analogues of Laha–Lukacs re-
gressions, which characterize free Miexner distribution defined in [2]. This result motivated a more intensive 
study of regression characterizations in free probability (see [7,8,21]).

The aim of this paper is to settle a natural question whether also the Matsumoto–Yor property possesses a 
free probability analogue. The answer turns out to be affirmative. We prove a free analogue of the regression 
version of this property proved in [25], where instead of assuming independence of U and V , constancy of 
regressions of V and V −1 given U is assumed. The role of the Gamma law is taken as in the case of Lukacs 
theorem by the Marchenko–Pastur distribution. The free probability analogue of the GIG distribution turns 
out to be a measure defined in [9], where it appears as a limiting empirical spectral distribution of complex 
GIG matrices. The proof of the main result partially relies on the technique which we developed in our 
previous papers [21,19], however some new ideas were needed. As a side product we prove that the free GIG 
and the Marchenko–Pastur distributions have a free convolution property which mimics the convolution 
property of the classical GIG and Gamma distributions.

The paper is organized as follows, in Section 2 we give a brief introduction to free probability and we 
investigate some basic properties of the free GIG distribution, Section 3 is devoted to proving that the 
Marchenko–Pastur and the free GIG distributions have the freeness property which is an analogue of the 
classical Matsumoto–Yor property. Section 4 contains the main result of this paper which is a regression 
characterization of the Marchenko–Pastur and the free GIG distributions.

2. Preliminaries

In this section we will give a short introduction to free probability theory, which is necessary to understand 
the rest of the paper. Next we give the definitions of the Marchenko–Pastur and the free GIG distribution. 
Since the free GIG appears for the first time in the context of free probability, we study some basic properties 
of this distribution.
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2.1. Non-commutative probability space and distributions

The following section is a brief introduction to free probability theory, which covers areas needed in this 
paper. A comprehensive introduction to this subject can be found in [17,24].

By a (non-commutative) �-probability space we understand a pair (A, ϕ), where A is a unital �-algebra, 
and ϕ : A → C is a linear functional such that ϕ (1A) = 1, moreover we assume that ϕ is faithful, normal, 
tracial and positive. Elements of A are called random variables.

In this paper we will consider only compactly supported probability measures on the real line. Such 
measures are uniquely determined by the sequence of moments. Thus for a self-adjoint random variable 
X ∈ A we can define the distribution of X as a unique, real, compactly supported probability measure μ for 
which we have

ϕ (Xn) =
∫

tndμ(t),

if such measure exists.
The joint distribution of random variables is identified with the collection of joint moments. More precisely 

for an n-tuple of random variables (X1, . . . ,Xn), n ≥ 2 by the joint distribution we understand the linear 
functional μ(X1,...,Xn) : C 〈x1, . . . , xn〉 → C, where C 〈x1, . . . , xn〉 is a space of polynomials with complex 
coefficients in non-commuting variables x1, . . . , xn, such that

μ(X1,...,Xn)(P ) = ϕ (P (X1, . . . ,Xn)) ,

for any P ∈ C 〈x1, . . . , xn〉.
When we deal with random variables, whose one dimensional marginal distributions have compact sup-

port, we can understand the notion of classical independence as a rule of calculating mixed moments. In 
the non-commutative probability theory there are several notions of independence which for compactly 
supported random variables are also nothing else but rules of calculating joint moments from marginal mo-
ments. The most important notion of independence in the non-commutative probability is freeness defined 
by Voiculescu in [23].

Let I be an index set. For a non-commutative probability space (A, ϕ) we call unital subalgebras (Ai)i∈I

free if for every n ∈ N we have

ϕ(X1 · . . . · Xn) = 0,

whenever:

• ϕ (Xi) = 0 for i = 1, . . . , n,
• Xi ∈ Aj(i) for i = 1, . . . , n,
• j(1) �= j(2) �= . . . �= j(n).

The last condition means that neighbouring random variables are from different subalgebras.
Random variables X and Y are free if algebra generated by {X, I} is free from algebra generated by {Y, I}.
If X has distribution ν and Y has distribution μ and X and Y are free we call the distribution of X + Y

the free convolution of ν and μ and denote by ν � μ.
We will use in this paper the notion of asymptotic freeness for random matrices. For any n = 1, 2, . . . , let 

(X(n)
1 , . . . , X(n)

q ) be a family of random variables in a non-commutative probability space (An, ϕn). The se-
quence of distributions (μ(X(n)

i , i=1,...,q)) converges as n → ∞ to a distribution μ if μ(X(n)
i , i=1,...,q)(P ) → μ(P )

for any P ∈ C 〈x1, . . . , xq〉. If additionally μ is a distribution of a family (X1, . . . , Xq) of random variables in 
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a non-commutative space (A, ϕ) then we say that (X(n)
1 , . . . , X(n)

q ) converges in distribution to (X1, . . . , Xq). 
Moreover, if X1, . . . , Xq are freely independent then we say that X(n)

1 , . . . , X(n)
q are asymptotically free.

In particular we will need the following result, let (XN)N≥1 and (YN )N≥1 be independent sequences 
of hermitian random matrices. Assume that for every N the distribution (in classical sense) of XN and 
YN is unitarily invariant, moreover assume that for both sequences, the corresponding empirical eigenvalue 
distribution converges almost surely weekly. Then sequences (XN )N≥1 and (YN )N≥1 are almost surely 
asymptotically free under the states ϕN = 1/NTr(·). More precisely for any polynomial P ∈ C 〈x1, x2〉
in two non-commuting variables we have almost surely limN→∞ ϕN (P (XN ,YN )) = ϕ(P (X, Y)), where 
distributions of X and Y are the limits of empirical eigenvalue distributions of (XN ) and (XN ) respectively 
and X and Y are free. The proof of this fact can be found in [10] chapter 4.

2.2. Free cumulants

Calculations of mixed moments of higher order for free random variables are usually tedious. So called 
free cumulants defined by Speicher in [18] give a handy combinatorial description for freeness.

Let χ = {B1, B2, . . . , Bl} be a partition of the set of numbers {1, . . . , k}. A partition χ is a crossing 
partition if there exist distinct blocks Br, Bs ∈ χ and numbers i1, i2 ∈ Br, j1, j2 ∈ Bs such that i1 < j1 <

i2 < j2. Otherwise χ is called a non-crossing partition. The set of all non-crossing partitions of {1, . . . , k} is 
denoted by NC(k).

For any k = 1, 2, . . . , (joint) free cumulants of order k of non-commutative random variables X1, . . . , Xn

are defined recursively as k-linear maps Rk : Ak → C through equations

ϕ(Y1 . . .Ym) =
∑

χ∈NC(m)

∏
B∈χ

R|B|(Yi, i ∈ B),

holding for any Yi ∈ {X1, . . . , Xn}, i = 1, . . . , m, and any m = 1, 2, . . . , with |B| denoting the size of the 
block B.

Freeness can be characterized in terms of behaviour of cumulants in the following way: consider unital 
subalgebras (Ai)i∈I of an algebra A in a non-commutative probability space (A, ϕ). Subalgebras (Ai)i∈I are 
freely independent iff for any n = 2, 3, . . . and for any Xj ∈ Ai(j) with i(j) ∈ I, j = 1, . . . , n any n-cumulant

Rn(X1, . . . ,Xn) = 0,

if there exist k, l ∈ {1, . . . , n} such that i(k) �= i(l).
In the sequel we will use the following formula from [5] which connects cumulants and moments for 

non-commutative random variables

ϕ(X1 . . .Xn) =
n∑

k=1

∑
1<i2<...<ik≤n

Rk(X1,Xi2 , . . . ,Xik)
k∏

j=1
ϕ(Xij+1 . . .Xij+1−1) (1)

with i1 = 1 and ik+1 = n + 1 (empty products are equal 1).

2.3. Conditional expectation

The classical notion of conditional expectation has its non-commutative counterpart in the case (A, ϕ)
is a W ∗-probability space, that is A is a von Neumann algebra. We say that A is a von Neumann algebra 
if it is a weakly closed unital ∗-subalgebra of B(H), where H is a Hilbert space.

If B ⊂ A is a von Neumann subalgebra of the von Neumann algebra A, then there exists a faithful 
normal projection from A onto B, denoted by ϕ(·|B), such that ϕ(ϕ(·|B)) = ϕ. This projection ϕ(·|B)
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is a non-commutative conditional expectation given subalgebra B. If X ∈ A is self-adjoint then ϕ(X|B)
defines a unique self-adjoint element in B. For X ∈ A by ϕ(·|X) we denote conditional expectation given 
von Neumann subalgebra B generated by X and I. Non-commutative conditional expectation has many 
properties analogous to those of classical conditional expectation. For more details one can consult e.g. [22]. 
Here we state two of them we need in the sequel. The proofs can be found in [4].

Lemma 2.1. Consider a W ∗-probability space (A, ϕ).

• If X ∈ A and Y ∈ B, where B is a von Neumann subalgebra of A, then

ϕ(XY) = ϕ(ϕ(X|B)Y). (2)

• If X, Z ∈ A are freely independent then

ϕ(X|Z) = ϕ(X) I. (3)

2.4. Functional calculus in C∗-algebras

We also will use functional calculus in C∗-algebras, for the details we refer to chapter 1 in [22] or chapter 5 
in [1]. We say that A is a C∗-algebra if it is a Banach space equipped with the involution ∗ : A → A satisfying 
the following properties:

• ‖XY‖ ≤ ‖X‖‖Y‖,
• ‖X∗‖ = ‖X‖,
• ‖XX∗‖ = ‖X‖2.

The functional calculus in C∗-algebras says that for any normal element X ∈ A and any function f continuous 
on sp(X) we can define a homomorphism π : C(sp(X)) → C∗(I, X), where C∗(I, X) is the C∗ algebra 
generated by X and I. This homomorphism is such that π(id) = X and ‖f(X)‖ = ‖f‖∞. For any polynomial 
p(z, ̄z) we have π(p) = p (X,X∗) and for f(x) = 1/x we have π(f) = X

−1.
For a C∗-probability space (A, ϕ), i.e. ∗-probability space where A is a C∗-algebra we have |ϕ(X)| ≤ ‖X‖.
For fixed N if we consider N × N matrices then they form a C∗–algebra with ‖ · ‖ being the spectral 

radius.
Moreover if we define ‖X‖p = (

∑n
k=1 σ

p
k)

1/p, where σ1, . . . , σn are singular values of X, then we have (see 
[1] Appendix A)

‖XY‖r ≤ ‖X‖p‖XY‖q, (4)

for 1/p + 1/q = 1/r where 1 ≤ p, q, r ≤ ∞.
We also have ∣∣∣∣ 1

N
Tr(X)

∣∣∣∣ ≤ ‖X‖1. (5)

2.5. Analytic tools

Now we introduce basic analytical tools used to deal with non-commutative random variables and their 
distributions.

For a non-commutative random variable X its R-transform is defined as
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rX(z) =
∞∑

n=0
Rn+1(X) zn. (6)

In [23] it is proved that R-transform of a random variable with compact support is analytic in a neighbour-
hood of zero. From properties of cumulants it is immediate that for X and Y which are freely independent

rX+Y = rX + rY. (7)

This relation explicitly (in the sense of R-transform) defines free convolution of X and Y. If X has the 
distribution μ, then often we will write rμ instead of rX.

The Cauchy transform of a probability measure ν is defined as

Gν(z) =
∫
R

ν(dx)
z − x

, 
(z) > 0.

The Cauchy transform of a measure ν determines uniquely the measure. In particular the following Stieltjes 
inversion formula holds

dν(t) = − 1
π

lim
ε→0+


Gν(t + iε).

The Cauchy transforms and R-transforms are related by

Gν

(
rν(z) + 1

z

)
= z, (8)

for z in neighbourhood of 0, and

rν(Gν(z)) + 1
Gν(z)

= z, (9)

for z in a neighbourhood of infinity.
Finally we introduce the moment transform MX of a random variable X,

MX(z) =
∞∑

n=0
ϕ(Xn) zn. (10)

We will need the following lemma proved in [19].

Lemma 2.2. Let V be compactly supported, invertible non-commutative random variable. Define Cn =
Rn

(
V

−1,V, . . . ,V
)
, and C(z) =

∑∞
i=1 Ciz

i−1. Then for z in neighbourhood of 0 we have

C(z) = z + C1

1 + zr(z) , (11)

where r(z) is the R-transform of V. In particular,

C2 = 1 − C1R1(V), Cn = −
n−1∑
i=1

CiRn−i(V), n ≥ 2. (12)
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2.6. Marchenko–Pastur distribution

A non-commutative random variable X is said to be free-Poisson variable if it has the Marchenko–Pastur 
(or free-Poisson) distribution ν = ν(λ, γ) defined by the formula

ν = max{0, 1 − λ} δ0 + λν̃,

where λ ≥ 0 and the measure ν̃, supported on the interval (γ(1 −
√
λ)2, γ(1 +

√
λ)2), γ > 0, has the density 

(with respect to the Lebesgue measure)

ν̃(dx) = 1
2πγx

√
4λγ2 − (x− γ(1 + λ))2 dx.

The parameters λ and γ are called the rate and the jump size, respectively.
It is easy to see that if X is free-Poisson, ν(λ, α), then Rn(X) = αnλ, n = 1, 2, . . . . Therefore its 

R-transform has the form

rν(λ,α)(z) = λα

1 − αz
.

2.7. Free GIG distribution

The measure which plays the role of the GIG distribution in the free probability analogue of the 
Matsumoto–Yor property turns out to be known as an almost sure weak limit of empirical eigenvalue dis-
tribution of GIG matrices (see [9]). We will refer to this distribution as a free Generalized Inverse Gaussian 
(fGIG) distribution and we adopt the definition from [9].

Definition 2.1. By the free Generalized Inverse Gaussian distribution we understand the measure μ =
μ(λ, α, β), where λ ∈ R and α, β > 0 which is compactly supported on the interval [a, b] with the density

μ(dx) = 1
2π

√
(x− a)(b− x)

(
α

x
+ β√

abx2

)
dx,

where 0 < a < b are the solution of

1 − λ + α
√
ab− β

a + b

2ab = 0 (13)

1 + λ + β√
ab

− α
a + b

2 = 0. (14)

The Cauchy transform of a fGIG distribution was also calculated in [9], for X distributed μ(λ, α, β) its 
Cauchy transform is given by the formula

GX(z) =
αz2 − (λ− 1)z − β −

(
αz − β√

ab

)√
(z − a)(z − b)

2z2 ,

where a, b are as in the definition.
The next lemma gives the R-transform of the free GIG distribution.

Lemma 2.3. Let X have fGIG distribution μ(λ, α, β) then
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rX(z) =
−α + z(λ + 1) +

√
(α + z(λ− 1))2 − 4βz(z − α)(z − γ)

2z(α− z) , (15)

where

γ =
α2ab + β2

ab − 2αβ
(

a+b√
ab

− 1
)
− (λ− 1)2

4β . (16)

Proof. First we define KX(z) = rX(z) + 1/z, then by equation (8), we have

αK2
X
(z) − (λ− 1)KX(z) − β −

(
αKX(z) + β√

ab

)√
(KX(z) − a)(KX(z) − b)

2K2
X
(z) = z.

After simple transformations and taking square of both sides we get(
αKX(z) − β√

ab

)2

(KX(z) − a)(KX(z) − b) =
(
(α− 2z)K2

X
(z) − (λ− 1)KX(z) − β

)2
. (17)

Next we expand booth sides and compare coefficients of the Ki
X

for i = 0, 1, . . . , 4. We see that the coefficients
of constant on booth sides are equal to β2. The coefficients of KX(z) are equal on both sides of the equation 
if

2β(λ− 1) = 2αβ
√
ab− β2

(
a + b

ab

)
,

which is equivalent to (13).
The above observation and equations (13) and (14) allow us to writhe equation (17) as

(α2 − (α− 2z)2)K4
X
(z) − 4(α + z(λ− 1))K3

X
(z)+(

2β(α− 2z) + α2ab + β2

ab
− 2αβ

(
a + b√

ab

)
− (λ− 1)2

)
K2

X
(z) = 0

Solving the above equation for KX(z) we see that KX(z) = 0 is a double root, but in such case we would 
have rX(z) = −1/z which is impossible for a compactly supported random variable. The remaining roots 
are

K±
X

(z) =
(α + z(λ− 1)) ±

√
(α + z(λ− 1))2 − 4βz(z − α)(z − γ)

2z(α− z) ,

where γ is as in (16).
This means that the R-transform is of the following form

rX(z) =
−α + z(λ + 1) +

√
(α + z(λ− 1))2 − 4βz(z − α)(z − γ)

2z(α− z) ,

and we choose this branch of the square root for which r is analytic at the origin. �
The following elementary properties of the free GIG and free Poisson distributions will be useful for us. 

Note that these are analogues of known properties of classical GIG and Gamma distributions (see [13]).

Remark 2.1. Let X and Y be free, X free GIG distributed μ(−λ, α, β) and Y free Poisson distributed ν(1/α, λ)
respectively, for α, β, λ > 0 then X + Y is free GIG distributed μ(λ, α, β).
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Proof. This can be verified by a straightforward calculation on the R-transforms. The only point to note 
is, that if we consider the function under the square root in (15) as a polynomial in λ (taking into account 
the definition of γ) then the linear part in λ cancels, so this polynomial is an even function of λ. �
Remark 2.2. If X has the free GIG distribution μ(λ, α, β) then X−1 has the free GIG distribution μ(−λ, β, α).

Proof. Elementary calculation on the density of the free GIG distribution verifies this remark. �
Remark 2.3. In the case β = 0 and α > 0 the fGIG distribution is a Marchenko–Pastur distribution ν(1/α, λ). 
When α = 0 and β > 0, then fGIG distribution is the distribution of an inverse of a Marchenko–Pastur 
distribution.

3. The free Matsumoto–Yor property

As we mentioned in the Introduction, Matsumoto and Yor in [15] noted an interesting independence 
property of GIG and Gamma laws. Namely if X and Y are independent random variables, distributed 
GIG(−p, a, b) and G(p, a) respectively for p, a, b > 0, then random variables

U = 1
X + Y

and V = 1
X

− 1
X + Y

are independent, U is distributed GIG(p, b, a) and V is distributed G(p, b).
Letac and Wesołowski in [13] proved the following theorem which characterizes the distributions GIG 

and Gamma by the Matsumoto–Yor property.

Theorem 3.1. Let X and Y be real, positive, independent, non-degenerated random variables. If U = 1
X+Y

and V = 1
X − 1

X+Y are independent then Y has the gamma distribution with parameters (p, a) and X has 
the GIG distribution with parameters (−p, a, b).

In the same paper the authors consider the Matsumoto–Yor property on real, symmetric, positive def-
inite matrices. For our purposes more appropriate are complex Hermitian positive definite matrices, the 
Matsumoto–Yor property on general symmetric cones, in particular on Hermitian positive definite matrices 
was recently considered in [11]. To state the Matsumoto–Yor property on the cone of Hermitian positive 
definite matrices we need to define the Wishart and GIG distribution on this cone. In the following by the 
H+

N , we will denote the cone of Hermitian positive definite matrices of size N ×N , where N ≥ 1.

Definition 3.1. The GIG distribution with parameters A, B ∈ H+
N and λ ∈ R is defined by the density

f(x) = det(x)λ−N

KN (A,B, λ)e
− Tr

(
Ax+Bx−1

)
1H+

N
(x),

where K(A, B, λ) is a normalization constant. We will denote this distribution by GIG(λ, A, B).

Definition 3.2. The Wishart distribution with parameters A ∈ H+
N , λ ∈ {0, 1, . . . , N − 1} ∪ (N − 1, +∞) is 

defined by the Laplace transform

L(σ) =
(

detA
det(A + σ)

)λ

,

for any σ such that A + σ is positive definite. We denote this distribution by W (λ, A).
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In the case λ > N − 1 Wishart distribution has a density given by

f(x) = det(x)λ−N

CN (A, λ)
e− Tr (Ax)1H+

N
(x).

The Matsumoto–Yor property for Hermitian matrices (see [13,11]) in the form that we need for the 
purpose of this paper says that for any N ≥ 1 if X and Y are two independent N × N random matrices 
distributed GIG(−λ, αIN , βIN ) and W (λ, αIN ) respectively with λ ∈ {0, 1, . . . , N − 1} ∪ (N − 1, +∞) and 
α, β > 0 then random matrices U = (X + Y )−1 and V = X−1 − (X + Y )−1 are independent and have 
distributions GIG(−λ, βIN , αIN ) and W (λ, βIN ) respectively.

It is well known that if we take a sequence of Wishart matrices (YN ) with parameters λN and AN such 
that XN ∈ H+

N , and λN/N → λ and AN = αNIN where αN/N → α then the free Poisson distribution 
ν(1/α, λ) is almost sure weak limit of empirical eigenvalue distributions.

A similar result holds for GIG matrices and was proved in [9]. Namely under the assumptions that 
λN/N → λ ∈ R, αN/N → α > 0, βN/N → β > 0, the almost sure weak limit of the sequence of empirical 
eigenvalue distributions of matrices GIG(λN , αN IN , βN I ) is the free GIG distribution μ(λ, α, β).

The above facts together with the Matsumoto–Yor property for random matrices and asymptotic freeness 
for unitarily invariant matrices suggest that a free analogue of the Matsumoto–Yor property should hold for 
free Poisson and free GIG distributions. Before we prove that this is indeed true, we will prove the following 
lemma which will be used in the proof of the free Matsumoto–Yor property.

Lemma 3.2. Let (A, ϕ) be a C∗-probability space, assume that there exist X, Y ∈ A such that X and Y are 
free, X has the free GIG distribution μ(−λ, α, β), Y has the free Poisson distribution ν(λ, 1/α) for λ > 1
and α, β > 0.

Let (XN )N≥1 be a sequence of complex matrices, where XN is an N × N random matrix distributed 
GIG(−λN , αNIN , βNIN ), where λN/N → λ > 1, αN/N → α > 0, βN/N → β > 0. Moreover let (YN )N≥1
be a sequence of Wishart matrices such that YN is an N ×N matrix distributed W (λN , αN IN ).

Then for any complex polynomial Q ∈ C 〈x1, x2, x3〉 in three non-commuting variables and any ε > 0 we 
have

P

(∣∣∣∣ 1
N

Tr
(
Q
(
XN ,YN ,Y−1

N

))
− ϕ

(
Q
(
X,Y,Y−1))∣∣∣∣ > ε

)
→ 0,

as N → ∞.

Proof. We know that the almost sure week limit of the sequence of empirical spectral distributions of YN

is the free Poisson measure ν(λ, 1/α). Moreover it is known (see [3] chapter 5) that the largest and the 
smallest eigenvalues converge almost surely to the boundaries of the support of ν(λ, 1/α), which is equal to 
the interval [1/α(1 −

√
λ)2, 1/α(1 +

√
λ)2]. Note that since λ > 1, then the support of ν(λ, 1/α) is separated 

from 0. Thus for given δ > 0 we can find 0 < a < b such that supp(ν) ⊂ [a, b] and there exists N0 for which 
we have P (∀N>N0 a < λ1(YN ) < λN (YN ) < b) > 1 − δ, where λ1(YN ) and λN (YN ) are the smallest and 
the largest eigenvalue of YN respectively.

We will prove that on the set A = {ω : ∀N>N0 a < λ1(YN (ω)) < λN (YN (ω)) < b} we have∣∣∣∣ 1
N

Tr
(
Q
(
XN ,YN ,Y−1

N

))
− ϕ

(
Q
(
X,Y,Y−1))∣∣∣∣ ≤ ε, (18)

for N large enough and the result will follow.
On the interval [a, b] the function f(y) = 1/y is continuous, then by Stone–Weierstrass theorem for any 

η > 0 there exists a polynomial R(y) such that ‖1/y −R(y)‖∞ < η.
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By the functional calculus in C∗-algebras we have that ‖Y−1−R(Y)‖ < η and on the set A for all N > N0
we have ‖Y−1

N −R(YN )‖∞ < η. For the details we refer to the chapter 5 in [1] or to the chapter 1 in [22].
Now we can rewrite (18) as∣∣∣∣ 1

N
Tr

(
Q
(
XN ,YN ,Y−1

N

))
− 1

N
Tr (Q (XN ,YN , R(YN )))

+ 1
N

Tr (Q (XN ,YN , R(YN ))) − ϕ (Q (X,Y, R(Y)))

+ ϕ (Q (X,Y, R(Y))) − ϕ
(
Q
(
X,Y,Y−1))∣∣

≤
∣∣∣∣ 1
N

Tr
(
Q
(
XN ,YN ,Y−1

N

))
− 1

N
Tr (Q (XN ,YN , R(YN )))

∣∣∣∣
+

∣∣∣∣ 1
N

Tr (Q (XN ,YN , R(YN ))) − ϕ (Q (X,Y, R(Y)))|

+ |ϕ (Q (X,Y, R(Y))) − ϕ
(
Q
(
X,Y,Y−1))∣∣ = I1 + I2 + I3.

Observe that by the almost sure asymptotic freeness of XN and YN the term I2 can be arbitrary small. 
Indeed, since Q (XN ,YN , R(YN )) is a polynomial in variables XN and YN and Q (X,Y, R(Y)) is the same 
polynomial in X and Y, thus for N large enough we have almost surely I2 < ε/3.

Consider now the term I1, assume first that in the polynomial Q 
(
XN ,YN ,Y−1

N

)
the variable Y−1

N

appears only once, then using traciality we can write Tr
(
Q
(
XN ,YN ,Y−1

N

))
= Tr

(
P (XN ,YN )Y−1

N

)
for 

some polynomial P in two non-commutative variables.
Then we have∣∣∣∣ 1
N

Tr
(
Q
(
XN ,YN ,Y−1

N

))
− 1

N
Tr (Q (XN ,YN , R(YN )))

∣∣∣∣ =
∣∣∣∣ 1
N

Tr
(
P (XN ,YN )

(
Y−1

N −R(YN )
))∣∣∣∣ .

Using inequalities from (4) and (5) we can write∣∣∣∣ 1
N

Tr
(
P (XN ,YN )

(
Y−1

N −R(YN )
))∣∣∣∣ ≤ ‖P (XN ,YN )

(
Y−1

N −R(YN )
)
‖1

≤ ‖
(
Y−1

N −R(YN )
)
‖∞‖P (XN ,YN )‖1,

for any ω ∈ A, hence choosing η ≤ ε/ (3‖P (XN ,YN )‖1) we have I2 ≤ ε/3 on the set A.
Consider now the general case and assume that in polynomial Q(XN , YN , Y−1

N ), variable Y−1
N appears 

n ≥ 1 times, by traciality we may assume that Q is of the form

Q(XN ,YN ,Y−1
N ) = P1(XN ,YN )Y−1

N P2(XN ,YN )Y−1
N . . . Pn(XN ,YN )Y−1

N .

Note that it is possible that Pi = I for some i = 1, . . . , n.
Of course Q(XN , YN , R(YN )) can be written as above with Y−1

N replaced by R(YN ). To make the 
calculations below more legible we will denote Pk = Pk(XN , YN ) for k = 1, . . . , n.∣∣∣∣ 1

N
Tr

(
Q(XN ,YN ,Y−1

N ) −Q(XN ,YN , R(YN ))
)∣∣∣∣

=

∣∣∣∣∣ 1
N

Tr

(
n∑

l=1

P1Y−1
N P2Y−1

N . . . PlY−1
N Pl+1R(YN ) . . . PnR(YN )

−
n∑

P1Y−1
N P2Y−1

N . . .Y−1
N Pl−1Y−1

N PlR(YN ) . . . PnR(YN )
)∣∣∣∣∣
l=1
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≤
n∑

l=1

∣∣∣∣ 1
N

Tr
(
P1Y−1

N P2Y−1
N . . .Y−1

N Pl(Y−1
N −R(YN ))Pl+1R(YN ) . . . PnR(YN )

)∣∣∣∣
≤ ‖(Y−1

N −R(YN ))‖∞
n∑

l=1

‖P1Y−1
N P2Y−1

N . . . PlPl+1R(YN ) . . . PnR(YN )‖1.

Note that the first equality holds since all terms of the two sums under the trace cancel, except from the 
last term in the first sum and the first term in the second sum.

Again we can make the above arbitrary small by appropriate choice of η, we can have in particular 
I2 < ε/3.

We prove similarly that I3 < ε/3, however we note that I3 is non-random, and we do not have to restrict 
the calculation to the set A. We use basic inequalities in C∗ algebras |ϕ(Z)| ≤ ‖Z‖ for any Z ∈ A and 
‖Z1Z2‖ ≤ ‖Z1‖‖Z2‖ for any Z1, Z2 ∈ A. �

The next theorem can be considered as a free probability analogue of the Matsumoto–Yor property.

Theorem 3.3. Let (A, ϕ) be a C∗-probability space. Let X have free GIG distribution and μ(−λ, α, β) and Y
have free Poisson distribution ν(1/α, λ), with α, β > 0 and λ > 1. If X and Y are free then

U = (X + Y)−1 and V = X
−1 − (X + Y)−1

are free.

Proof. First let us note so called Hua’s identity(
X + XY

−1
X
) (

X
−1 − (X + Y)−1) =

(
XY

−1) (X + Y)
(
X

−1 − (X + Y)−1) = I. (19)

This means that V−1 = X + XY
−1

X. Since we assume that A is a C∗-algebra, the subalgebras generated 
by invertible random variables and its inverses coincide. It is enough to prove that U−1 = X + Y and 
V

−1 = X + XY
−1

X are free.
Let us take a sequence (YN )N≥1 of N×N Wishart matrices with parameters AN = αN IN and λN where 

αN/N → α > 0 and λN/N → λ > 1. Moreover let (XN≥1) be a sequence of complex GIG matrices with 
parameters AN and λN as above and BN = βN IN where βN/N → β > 0. Assume additionally that the 
sequences (XN )N≥1 and (YN)N≥1 are independent. Then since GIG and Wishart matrices are unitarily 
invariant and both posses almost sure limiting eigenvalue distributions they are almost surely asymptotically 
free. More precisely if we define AN to be the algebra of random matrices of the size N × N with entries 
having moments of all orders, and consider the state ϕN(A) = (1/N) Tr (A), then for any polynomial in 
two non-commuting variables P ∈ C 〈x1, x2〉 we have almost surely

lim
N→∞

ϕN (P (XN ,YN )) = ϕ(P (X,Y)),

where X and Y are as in the statement of the theorem.
By the Matsumoto–Yor property for complex matrices we have

UN = (XN + YN )−1 and VN = X−1
N − (XN + YN )−1

are for any N > 0 independent and distributed GIG(−λN , βN IN , αN IN ) and Wishart W (λN , βN IN ). Thus 
they are almost surely asymptotically free, of course the pair (U−1

N , V−1
N ) is also asymptotically free, let us 

denote the limiting pair of non-commutative free random variables by (Ũ−1, Ṽ−1).
So we have for any polynomial P ∈ C 〈x1, x2〉 almost surely
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lim
N→∞

ϕN

(
P (U−1

N ,V−1
N )

)
= ϕ

(
P
(
Ũ

−1, Ṽ−1
))

. (20)

On the other hand for some Q ∈ C 〈x1, x2, x3〉 we can write the left hand side of the above equation as

lim
N→∞

ϕN

(
P
(
XN + YN ,XN + XNY−1

N XN

))
= lim

N→∞
ϕN

(
Q
(
XN ,Y−1

N ,YN

))
. (21)

Note that Lemma 3.2 says that ϕN

(
Q
(
XN ,Y−1

N ,YN

))
converges in probability to ϕ 

(
Q
(
X,X−1,Y

))
. 

However by (20) and (21) sequence 
(
ϕN

(
Q
(
XN ,Y−1

N ,YN

)))
N≥1 converges almost surely so we have

lim
N→∞

ϕN

(
Q
(
XN ,X−1

N ,YN

))
= ϕ

(
Q
(
X,X−1,Y

))
= ϕ

(
P
(
X + Y,X + XY

−1
XY

))
= ϕ

(
P
(
U

−1,V−1)) .
This means that U−1 and V−1 have all joint moments equal to joint moments of Ũ−1, Ṽ−1, which are free. 
This essentially means that U−1 and V−1 are free and the theorem follows. �
4. A characterization by the free Matsumoto–Yor property

In this section we prove the main result of this paper which is a regression characterization of free GIG 
and Marchenko–Pastur distributions. It is a free probability analogue of the result from [25] where it was 
proved that assumption of independence of U and V in Theorem 3.1 can be replaced by constancy of 
regressions: E (V |U), E 

(
V −1|U

)
.

Our main result is a free analogue of the above result. Note that thank to Theorem 3.3 and properties 
of conditional expectation, we know that X free GIG distributed and Y free Poisson distributed with 
appropriate choice of parameters satisfy assumptions of the following theorem.

Theorem 4.1. Let (A, ϕ) be a non-commutative probability space. Let X and Y be self-adjoint, positive, 
free, compactly supported and non-degenerated random variables. Define U = (X + Y)−1 and V = X

−1 −
(X + Y)−1. Assume that

ϕ (V|U) = cI, (22)

ϕ
(
V

−1|U
)

= dI,

for some real constants c, d.
Then Y has the free Poisson distribution ν(1/α, λ) with parameters λ = cd

cd−1 and α = δ0
cd−1 , for some 

δ0 > 0, X has free GIG distribution μ(−λ, α, β), where β = d
cd−1 .

Proof. We stated the theorem using random variables U and V, note that since we consider projections 
onto von Neumann algebra generated by U and I, we can write conditional expectations using U−1 = X +Y

instead of U.
Observe that by Hua’s identity (19) we have V−1 = X + XY

−1
X. By this we can rewrite the second 

equation from (22) as

ϕ
(
X + XY

−1
X|X + Y

)
= dI.

Now we multiply the above equation by (X + Y)n and apply the state ϕ, to both sides of the equation, 
which gives

ϕ (X(X + Y)n) + ϕ
(
XY

−1
X(X + Y)n

)
= dϕ ((X + Y)n) .
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Note that

ϕ
(
XY

−1
X(X + Y)n

)
= ϕ

(
XY

−1(X + Y)n+1)− ϕ (X (X + Y)n)

= ϕ
(
Y

−1 (X + Y)n+2
)
− ϕ

(
(X + Y)n+1)− ϕ (X (X + Y)n) .

This gives us

ϕ
(
Y

−1 (X + Y)n+2
)
− ϕ

(
(X + Y)n+1) = dϕ ((X + Y)n) . (23)

Multiplying the first equation from (22) by (X + Y)n we obtain

ϕ
(
X

−1(X + Y)n
)
− ϕ

(
(X + Y)n−1) = cϕ ((X + Y)n) . (24)

Let us denote for n ≥ −1,

αn = ϕ ((X + Y)n) ,

and for n ≥ 0

βn = ϕ
(
X

−1(X + Y)n
)
,

δn = ϕ
(
Y

−1(X + Y)n
)
.

Then equations (23) and (24) for n ≥ 0 can be rewritten as

βn − αn−1 = cαn, (25)

δn+2 − αn+1 = dαn.

Now we define generating functions of sequences (αn)n≥0, (βn)n≥0, (δn)n≥0

A(z) =
∞∑

n=0
αnz

n, B(z) =
∞∑

n=0
βnz

n, D(z) =
∞∑

n=0
δnz

n.

First we will determine the distribution of Y in a similar way as it was done in [21].
System of equations (25) is equivalent to

B(z) − z
(
A(z) + α−1

z

)
= cA(z), (26)

1
z2 (D(z) − δ1z − δ0) −

1
z

(A(z) − 1) = dA(z).

Next we use formula (1) to express function B in terms of function A and the R-transform of X.

βn =ϕ
(
X

−1(X + Y)n
)

= R1
(
X

−1)ϕ ((X + Y)n)

+R2
(
X

−1,X
) (

ϕ
(
(X + Y)n−1) + ϕ(X + Y)ϕ

(
(X + Y)n−2) + . . . + ϕ

(
(X + Y)n−1))

+ . . .+

+Rn+1
(
X

−1,X, . . . ,X
)
.

Which means that for n ≥ 0
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βn =
n+1∑
i=1

Ri

⎛⎝X
−1,X, . . . ,X︸ ︷︷ ︸

i−1

⎞⎠ ∑
k1+...+ki=n+1−i

αk1 · . . . · αki
.

The above formula for sequence βn allows us to write

B(z) =
∞∑

n=0
βnz

n =
∞∑

n=0

n+1∑
i=1

Ri

(
X

−1,X, . . . ,X
)
zi−1

∑
k1+...+ki=n+1−i

αk1z
k1 · . . . · αki

zki

=
∞∑
i=1

Ri

(
X

−1,X, . . . ,X
)
zi−1

∞∑
n=i−1

∑
k1+...+ki=n+1−i

αk1z
k1 · . . . · αki

zki

=
∞∑
i=1

Ri

(
X

−1,X, . . . ,X
)
zi−1Ai(z).

Which implies

B(z) = A(z)CX(zA(z)), (27)

where we denote CX =
∑∞

n=1 Rn

⎛⎝X
−1,X, . . . ,X︸ ︷︷ ︸

n−1

⎞⎠ zn−1.

A similar argument gives us

D(z) = A(z)CY(zA(z)). (28)

Lemma 2.2 implies

CX(zA(z)) = zA(z) + β0

1 + zA(z)rX(zA(z)) , (29)

CY(zA(z)) = zA(z) + δ0
1 + zA(z)rY(zA(z)) .

Putting equations (27), (28), (29) into (26) we get

A(z) zA(z) + β0

1 + zA(z)rX(zA(z)) − z
(
A(z) + α−1

z

)
= cA(z), (30)

1
z2

(
A(z) zA(z) + δ0

1 + zA(z)rY(zA(z)) − δ1z − δ0

)
− 1

z
(A(z) − 1) = dA(z).

Note that δ1 = ϕ 
(
Y

−1(X + Y)
)

= ϕ 
(
Y

−1
X
)

+ 1. Moreover from the second equation in (22) we have 
ϕ(Y−1

X) = ϕ(XY−1) = dϕ 
(
(X + Y)−1), this gives us δ1 = dα−1 + 1.

From the first equation in (22) we get β0 = c + α−1.
Let us note that A(z) = MX+Y(z) = 1

zGX+Y

( 1
z

)
. Equation (9) implies that

rX+Y(zA(z)) = rX+Y

(
GX+Y

(
1
z

))
= 1

z
− 1

GX+Y

( 1
z

) = 1
z
− 1

zA(z) .

This allows us to write zA(z)rX(zA(z)) = zA(z)rX+Y(zA(z)) −zA(z)rY(zA(z)) = A(z) −1 −zA(z)rY(zA(z)).



K. Szpojankowski / J. Math. Anal. Appl. 445 (2017) 374–393 389
Finally we can put this into (30) and we obtain

A(z) zA(z) + c + α−1

A(z) − zA(z)rY(zA(z)) − z
(
A(z) + α−1

z

)
= cA(z), (31)

1
z2

(
A(z) zA(z) + δ0

1 + zA(z)rY(zA(z)) − (dα−1 + 1)z − δ0

)
− 1

z
(A(z) − 1) = dA(z).

Defining h(z) = zA(z)rY(zA(z)) we have

A(z)zA(z) + c + α−1

A(z) − h(z) − z
(
A(z) + α−1

z

)
= cA(z),

1
z2

(
A(z)zA(z) + δ0

1 + h(z) − (dα−1 + 1)z − δ0

)
− 1

z
(A(z) − 1) = dA(z).

After simple transformation of the above equations we arrive at

h(z) = A(z)c(A(z) − 1)
A(z)(c + z) + α−1

,

h(z) = A(z)(zA(z) + δ0)
dz2A(z) + z(A(z) + dα−1) + δ0

− 1.

Comparing the right hand sides of the above equations we obtain

cA2(z) + zA(z) + α−1

cA(z) + zA(z) + α−1
= A(z)(zA(z) + δ0)

dz2A(z) + z(A(z) + dα−1) + δ0
.

After multiplying the above equation by the denominators, which is allowed in a neighbourhood of zero, we 
get

(zA(z) + α−1)
(
(cd− 1)zA2(z) + (dz2 + z − δ0)A(z) + zdα−1 + δ0

)
= 0.

Since A(0) = 1 and α−1 > 0, in some neighbourhood of zero we can divide the above equation by zA(z) +α−1, 
and we obtain

(cd− 1)zA2(z) + (dz2 + z − δ0)A(z) + zdα−1 + δ0 = 0. (32)

Recall that

zA(z)rY(zA(z)) = h(z) = A(z)(zA(z) + δ0)
dz2A(z) + z(A(z) + dα−1) + δ0

− 1

= zA2(z) + δ0A(z) − dz2A(z) − z(A(z) + dα−1) − δ0
dz2A(z) + z(A(z) + dα−1) + δ0

,

where δ0 > 0. Using (32) we obtain

zA(z)rY(zA(z)) = cdzA2(z)
zA2(z)(1 − cd) + A(z)δ0

= cdzA(z)
δ0 − zA(z)(cd− 1) .

By the fact that rY is analytic in a neighbourhood of zero we obtain that

rY(z) = cd

δ0 − z(cd− 1) .

Hence Y has the free Poisson distribution ν
(

cd−1 , cd
)
.
δ0 cd−1
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Fig. 1. The plot of the polynomials p1 and p2 in the case 1.

Now we will recover the distribution of X, by computing the R-transform of X + Y. Note that the 
function A determined by the equation (32) is supposed to be the moment transform of X +Y. The Cauchy 
transform of X + Y is equal to GX+Y(z) = 1

zA 
( 1
z

)
, this gives us

GX+Y(z) =
−d + z(zδ0 − 1) +

√
(δ0z2 − z − d)2 − 4(cd− 1)z2(dα−1 + zδ0)

2(cd− 1)z2 . (33)

We have to determine for which values of parameters c, d, δ0, α−1 the above function is the Cauchy transform 
of a probabilistic measure. We assume that X is positive, so the support of the distribution of X must be 
contained in the positive half-line.

Let us focus on the expression under the square root

p(z) = (δ0z2 − z − d)2 − 4(cd− 1)z2(dα−1 + zδ0). (34)

Observe that the polynomial p1(z) = (δ0z2 − z − d)2 has two double roots which have different signs. It 
follows from positivity of d and δ0. The polynomial p2(z) = 4(cd −1)z2(dα−1 +zδ0) has a double root at the 
origin and a single root at z = −dα−1

δ0
< 0. There are three possible cases depending on the value of α−1.

Case 1. For α−1 large enough p = p1 − p2 has four real roots. An example of the graph of p1 and p2 in 
this case is presented in Fig. 1.

One can see that the function p takes negative values for x ∈ (x0, x1) where x0 and x1 are negative roots 
of p. From the Stielties inversion formula and the form of the Cauchy transform of X +Y (33), we see that the 
support of the distribution of X +Y contains the set N = {x ∈ R, p(x) < 0}, since for x ∈ N , 
GX+Y(x) �= 0. 
Hence in the case 2 the interval (x0, x1) would be contained in the support of the distribution of X + Y

which contradicts the positivity of X and Y.
Case 2. For α−1 small enough p defined by (34) has two real roots and two complex roots which are 

conjugate, an example of the graph of the polynomials p1 and p2 in the case 2 is presented in Fig. 2.
Recall that Cauchy transform is an analytic function from C+ to C−. In the analyzed case the polynomial 

under the square root has a zero in C+, so the function (33) is not analytic on C+ and can not be the Cauchy 
transform of a probabilistic measure.

Case 3. The remaining possibility is that α−1 is such that polynomials p1 and p2 are tangent for some 
x0 < 0. Fig. 3 gives an example of such situation. In this case the polynomial p has two positive real roots 
(0 < a < b) and one double, real, negative root x0. We will prove that in this case the function (33) is the 
Cauchy transform of free GIG distribution μ(cd/(cd − 1), δ0/(cd − 1), d/(cd − 1)).

Let us substitute into (33) c = λ/β, d = β/(λ −1), δ = α/(λ −1), for α, β > 0 and λ > 1, this substitution 
is correct since cd > 1. The Cauchy transform (33) has the form
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Fig. 2. The plot of the polynomials p1 and p2 in the case 2.

Fig. 3. The plot of the polynomials p1 and p2 in the case 3.

GX+Y(z) =
αz2 − β − (λ− 1)z +

√
α2z4 − 2α(λ + 1)z3 + ((λ− 1)2 − 2β(α + 2α1)) z2 + 2β(λ− 1)z + β2

2z2 ,

we choose the branch of the square root, such that the above function is analytic from C+ to C−.
Since polynomial under the square root has single roots 0 < a < b and one double root x0 < 0, Vieta’s 

formulas for this polynomial give us⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a + b + 2x0 = 2(λ+1)

α ,

ab + 2x0(a + b) + x2
0 = (λ−1)2−2(α+2α−1)β

α2 ,

2abx0 + (a + b)x2
0 = −2β(λ−1)

α2 ,

abx2
0 = β2

α2 .

(35)

We calculate x0 from the last equation, since x0 < 0 and α, a, b > 0 we get x0 = − β

α
√
ab

. From the first 
equation we obtain x0 = λ+1

α − a+b
2 . Comparing the formulas for x0 we get

1 + λ + β√
ab

− α
a + b

2 = 0. (36)

Substituting x0 = − β

α
√
ab

into the third equation from (35) we obtain

1 − λ + α
√
ab− β

a + b

2ab = 0. (37)

We can now write the function GX+Y transform as

GX+Y(z) =
αz2 − β − (λ− 1)z +

(
αz + β√

ab

)√
(z − a)(z − b)

2z2 (38)
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with parameters satisfying (36) and (37) we recognize that this is the Cauchy transfrom of the free GIG 
distribution μ(λ, α, β), where λ = cd/(cd − 1), α = δ0/(cd − 1), β = d/(cd − 1)). The second equation 
from (35) gives the value of α−1 for which the Cauchy transform (38) satisfies the assumptions of the case 3, 
one can check that α−1 = −γ, where γ is the constant defined in equation (16).

Since the distribution of X +Y is free GIG μ(λ, α, β) and the distribution of Y is free Poisson ν(1/α, λ) then 
by Remark 2.1 and freeness of X and Y it is immediate that X has the free GIG distribution μ(−λ, α, β). �

We can conclude this paper by the following characterization of the free GIG and the free Poisson 
distributions.

Corollary 4.2. Let X and Y be positive compactly supported random variables. Random variables U = (X +
Y)−1 and V = X

−1 − (X +Y)−1 are free if and only if there exist constants α, β > 0 and λ > 1 such that X
has free GIG distribution μ(−λ, α, β) and Y has free Poisson distribution ν(1/α, λ).

Proof. The “if” part is exactly the statement of Theorem 3.3. The “only if” part follows from Theorem 4.1
since for free random variables conditional expectations are constant. �
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