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We complement the argument of M. Z. Garaev (2009) [9] with several other ideas 
to obtain a stronger version of the large sieve inequality with sparse exponential 
sequences of the form λsn . In particular, we obtain a result which is non-trivial for 
monotonically increasing sequences S = {sn}∞n=1 provided sn � n2+o(1), whereas 
the original argument of M. Z. Garaev requires sn � n15/14+o(1) in the same setting. 
We also give an application of our result to arithmetic properties of integers with 
almost all digits prescribed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The classical large sieve inequality, giving upper bounds on average values of various exponential and 
similar Dirichlet polynomials, such as

Q∑
q=1

q∑
a=1

gcd(a,q)=1

∣∣∣∣∣
S∑

s=1
αs exp (2πias/q)

∣∣∣∣∣
2

and
Q∑

q=1

∑
χ mod q
χ prim.

∣∣∣∣∣
S∑

s=1
αsχ(s)

∣∣∣∣∣
2

,

with primitive multiplicative characters χ modulo q and arbitrary complex weights {αs}Sn=1, has proved 
to be an extremely useful and versatile tool in analytic number theory and harmonic analysis, see, for 
example, [13,17,18].

Furthermore, if the weights αs are supported only on elements of some sequence S = {sn}Tn=1, which 
naturally occurs in many number theoretic applications, then the above sums can be written as
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Q∑
q=1

q∑
a=1

gcd(a,q)=1

∣∣∣∣∣∣
∑
n�T

γn eq (sn)

∣∣∣∣∣∣
2

and
Q∑

q=1

∑
χ mod q
χ prim.

∣∣∣∣∣∣
∑
n�T

γnχ(sn)

∣∣∣∣∣∣
2

, (1.1)

where γn = αsn and

eq(z) = exp(2πiz/q).

However, the power of general bounds rapidly diminishes when the sequence S becomes sparse.
Partially motivated by this phenomenon, and partially by applications to Mersenne numbers, Garaev 

and Shparlinski [10, Theorem 3.1] have introduced a modification of the large sieve, for both exponential 
and Dirichlet polynomials with arguments that contain exponentials from extremely sparse sequences.

In particular, in the setting of [10], the arguments of the exponentials and characters appearing in (1.1)
contain exponential functions λsn with elements of S rather than the elements of S themselves. In the case 
of exponential polynomials, Garaev [9] has introduced a new approach, which has led to a stronger version 
of the exponential large sieve inequality, improving some of the results of [10], see also [1, Lemma 2.11]
and [22, Theorem 1] for several other bounds of this type. Furthermore, stronger versions of the exponential 
large sieve inequality for special sequences S, such as T consecutive integers or the first T primes, can also 
be found in [1,10], with some applications given in [21].

Here we continue this direction and concentrate on the case of general sequences S without any arithmetic 
restriction. We introduce several new ideas which allow us to improve some results of Garaev [9]. For example, 
we make use of the bound of [15, Theorem 5.5] on exponential sums over small multiplicative subgroups 
modulo p, which hold for almost all primes p, see Lemma 3.2. We also make the method more flexible so it 
now applies to much sparser sequences S than in [9]. We believe these ideas may find more applications in 
similar problems.

More precisely, let us fix some integer λ � 2. For each prime number p, we let tp denote the order of 
λ mod p. For real X and Δ we define the set

EΔ(X) = {p � X : tp � Δ}.

Note that by a result of Erdős and Murty [8], see also (2.15), for Δ = X1/2, almost all primes p � X belong 
to EΔ(X).

For integer T and two sequences of complex weights Γ = {γn}Tn=1 and integers S = {sn}Tn=1 we define 
the sums

Vλ(Γ,S;T,X,Δ) =
∑

p∈EΔ(X)

max
gcd(a,p)=1

∣∣∣∣∣∣
∑
n�T

γn ep(aλsn)

∣∣∣∣∣∣
2

.

These sums majorize the ones considered by Garaev [9] where each term is divided by the divisor function 
τ(p − 1) of p − 1. Here we obtain a new bound of the sums Vλ(Γ, S; T, X, Δ) which in particular improves 
some bounds of Garaev [9].

The argument of Garaev [9] reduces the problem to bounding Gauss sums for which he uses the bound 
of Heath-Brown and Konyagin [12], that is, the admissible pair (2.1), which is defined below. In particular, 
for Vλ(Γ, S; T, X, X1/2) the result of Garaev [9] is nontrivial provided

S � X15/14+o(1). (1.2)

Our results by-pass significantly the threshold (2.9) and allow us to replace 15/14 with any fixed ϑ < 2.
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Our improvement is based on a modification of the argument of Garaev [9] which allows us to use the 
bounds of short sums with exponential functions, given in [15, Theorem 5.5], see also Lemma 3.2 below. This 
alone allows us to extend the result of [9] to sparse sequences S, roughly growing at most sn � n7/6−ε for 
any fixed ε > 0 in the same scenario where the result of [9] limits the growth to sn � n15/14−ε. Furthermore, 
using bounds of exponential sums over small subgroups of finite fields, in particular that of Bourgain, 
Glibichuk and Konyagin [5] we relax the condition on S to sn � n3/2−ε.

Using a different argument which combines a bound of Bourgain and Chang [4] for Gauss sums modulo 
a product of two primes with a duality principle for bilinear forms, we obtain another, although less explicit 
bound which allows the elements to grow as fast as sn � n2−ε. Furthermore, for this result we do not need 
to limit the summation to primes from EΔ(X) but can consider all primes from p � X, in which case we 
denote

Vλ(Γ,S;T,X) =
∑
p∈X

max
gcd(a,p)=1

∣∣∣∣∣∣
∑
n�T

γn ep(aλsn)

∣∣∣∣∣∣
2

.

We also give an application of our new estimate to investigating arithmetic properties of integers with 
almost all digits prescribed in some fixed base. To simplify the exposition, we only consider binary expansions 
(and hence we talk about bits rather than binary digits). Namely, for an integer S � 1, an S-bit integer 
a and a sequence of integers S = {sn}Tn=1 with 0 � s1 < . . . < sT � S, we denote by N (a; S) the set of 
S-bit integers z whose bits on all positions j = 1, . . . , S (counted from the right) must agree with those of 
a except maybe when j ∈ S.

We first recall that Bourgain [2,3] has recently obtained several very strong results about the distribution 
of prime numbers among the elements of N (a; S), see also [11]. However, in the setting of the strongest result 
in this direction from [3], the set S of “free” positions has to be very massive, namely its cardinality has to 
satisfy T � (1 − κ)S for some small (and unspecified) absolute constant κ > 0. In the case of square-free 
numbers instead of prime numbers, a similar result has been obtained in [6] with any fixed κ < 2/5 (one can 
also find in [6] some results on the distribution of the value of the Euler function and quadratic non-residues 
in N (a; S)). Here we address a problem at the other extreme, and relax the strength of arithmetic conditions 
on the elements from N (a; S) but instead consider much sparser sets S of available positions. In particular, 
we show that the product of the elements from N (a; S) contains significantly more prime divisors than a 
typical integer of comparable size.

2. Main results

Throughout the paper, the letter p always denotes a prime number.
As usual A = O(B), A � B, B � A are all equivalent to |A| � c|B| for some absolute constant c > 0

(unless indicated otherwise), whereas A = o(B) means that A/B → 0.
We say that a pair (α, β) is admissible if for any prime p and any integer λ with gcd(λ, p) = 1 we have

max
(a,p)=1

∣∣∣∣∣
t∑

z=1
ep(aλz)

∣∣∣∣∣ � tαpβ+o(1),

as p → ∞, where t is the multiplicative order of λ modulo p.
Concerning admissible pairs, Korobov [16] has shown that the pair

(α, β) = (0, 1/2),

is admissible. For shorter ranges of t, Korobov’s bound has been improved by Heath-Brown and Konyagin [12]
who show that the pairs
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(α, β) = (5/8, 1/8), (2.1)

and

(α, β) = (3/8, 1/4), (2.2)

are admissible.
More recently Shkredov [19,20] has shown that the pair

(α, β) = (1/2, 1/6), (2.3)

is admissible, which improves on the pairs (2.1) and (2.2) in the medium range of t.
Furthermore, the truly remarkable result of Bourgain, Glibichuk and Konyagin [5] implies that for any 

ζ > 0 there is some ϑ > 0 that depends only on ζ such that

(1 − ϑ, ζϑ), (2.4)

is admissible.
Our first result is as follows.

Theorem 2.1. Suppose that for an admissible pair (α, β) and some positive numbers η and δ, we have

β + η

1 − α
� 1

2 − δ. (2.5)

Suppose further that S, T and X are parameters satisfying

T 1+1/(3−2α) � SX2η. (2.6)

Let Δ > 1 and integer k � 1 satisfy

X �
((

T

SX2η

)1/(3−2α)

Δ
)k

. (2.7)

Then for any sequence of complex numbers Γ = {γn}Tn=1 with |γn| � 1 and integers S = {sn}Tn=1 with 
0 � s1 < . . . < sT � S we have

Vλ(Γ,S;T,X,Δ) �
(
X + TX−δ/(k2+2) +

(
S2−2αTX−2η)1/(3−2α)

)
TX1+o(1).

We note that under (2.6) the condition (2.7) also follows from a simpler inequality

X �
(
T−1/(3−2α)2Δ

)k

.

For comparison of Theorem 2.1 with the bound of Garaev [9], we take T = X1+ε for some small fixed 
ε > 0 and Δ = X1/2. Assuming the conditions of Theorem 2.1 are satisfied, we analyse each of the three 
terms

TX2, T 2X1−δ/(k2+2), S1−1/(3−2α)T 1+1/(3−2α)X1−2η/(3−2α),

of its bound independently and compare them with the trivial bound T 2X. Note that we have discarded 
Xo(1) as we aim to establish a power saving in our bound which does not affect this property.
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First we notice that for the first term we obviously have

TX2 = T 2X1−ε,

provided that X is large enough.
We next notice that the third term T 2X1−δ/(k2+2) is always nontrivial provided k is bounded.
For the second term, apart of Xo(1) we have

S1−1/(3−2α)T 1+1/(3−2α)X1−2η/(3−2α) = T 2XΩ,

where

Ω = S2(1−α)/(3−2α)T−2(1−α)/(3−2α)X−2η/(3−2α)

=
(
S1−αT−1−αX−η

)2/(3−2α)

=
(
S1−αX−1−α−η

)2/(3−2α)
X−2(1−α)ε/(3−2α) � X−2(1−α)ε/(3−2α),

provided

S � X1+η/(1−α). (2.8)

Garaev [9] uses the bound of Heath-Brown and Konyagin [12], that is, the admissible pair (2.1), to provide 
an estimate on Vλ(Γ, S; T, X, X1/2) which is nontrivial provided

S � X15/14+o(1). (2.9)

For comparison with our bound, using the same pair (2.1) and considering the condition (2.5), we see that 
we may take

η = 1
16 − 3

8δ, (2.10)

and the condition (2.8) becomes

S � X7/6−δ, (2.11)

under which we have

Vλ(Γ,S;T,X,X1/2) � T 2X1−κ,

for some κ > 0 depending on δ and ε. In particular, by taking δ > 0 sufficiently small we see that (2.11)
by-passes the threshold (2.9) due to Garaev [9].

It remains to verify the conditions (2.6) and (2.7) are satisfied.
For (2.6), since T � X, recalling that α = 5/8 it is enough to check that

S � X11/7−2η. (2.12)

Recalling (2.11) we see that it is enough to check that

11 − 2η � 7 − δ,
7 6
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or

η � 17
84 + 1

2δ,

which is satisfied for the choice (2.10).
Next consider the condition (2.7). Again, we see that it is enough to check that

X �
((

X1−2η

S

)1/(3−2α)

Δ
)k

.

We first note that (2.10) and (2.11) imply that

X1−2η

S
� X−7/24.

Recalling the choice of α = 5/8 and Δ = X1/2, we see that the above inequality follows from

X �
((

X−7/24
)4/7

Δ
)k

=
(
X−1/6+1/2

)k

=
(
X1/3

)k

,

and hence we may take k = 3 and produce a bound of the form

Vλ(Γ,S;T,X,X1/2) � X3−κ,

for some fixed κ > 0 provided (2.11) is satisfied (improving the trivial bound X3+o(1)).
We next consider using the admissible pair (2.3) given by Shkredov. As before we take T = X1+ε for 

some small fixed ε and Δ = X1/2. Considering the condition (2.5), we may take

η = 1
12 − δ

2 ,

so that (2.8) becomes

S � X7/6−δ, (2.13)

which is the same range produced by the admissible pair given by Heath-Brown and Konyagin. We next 
verify when the conditions (2.6) and (2.7). Considering (2.6), it is enough to check that

S � X8/6 = X8/6,

which is guaranteed by (2.13). Considering (2.7), we need

X �
((

X1−2η

S

)1/(3−2α)

Δ
)k

.

We first note that

X1−2η

S
� X−1/3,

hence recalling that Δ = X1/2, it is enough to check that
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X � Xk/6,

which is satisfied for k = 6.
Furthermore, let us fix some ζ > 0 and consider the admissible pair given by (2.4). With the above choice 

of parameters T = X1+ε and Δ = X1/2, we see that we can take

η = ϑ

2 − δϑ− ζϑ,

and the condition (2.8) becomes

S � X3/2−δ−ζ . (2.14)

This produces a bound of the form

Vλ(Γ,S;T,X,X1/2) � X3−κ,

provided the inequalities (2.6) and (2.7) are satisfied. Considering (2.6), we have

SX2η � X3/2+ϑ � X1+1/(1+2ϑ) � T 1+1/(3−2(1−ϑ)),

provided ϑ is sufficiently small, which we may assume.
Considering (2.7), we have

(
T

SX2η

)1/(3−2α)

Δ �
(

Xδ+ζ

X(1+2ϑ)/2

)1/(1+2ϑ)

X1/2 = X(δ+ζ)/(1+2ϑ),

and hence (2.7) is satisfied by taking

k =
⌊

1 + 2ϑ
δ + ζ

⌋
+ 1.

Using a different method we can set Δ = 1 and also extend the range of S for which we may obtain a 
nontrivial bound for Vλ(Γ, S; T, X) at the cost of making the power saving explicit.

Theorem 2.2. There exists some absolute constant ρ > 0 such that

Vλ(Γ,S;T,X) �
(
X1−ρT 2 + X3/2T 3/2 + X3/4T 7/4S1/4

)
Xo(1).

Comparing the bound of Theorem 2.2 with the trivial bound XT 2, we see that it is nontrivial provided

T > X1+ε and S < X1+εT,

which on taking T = X1+ε, we obtain a power saving in Theorem 2.2 provided S � T 2−ε.
For a sequence of points A = {an}Tn=1 we define the discrepancy D of A by

D = sup
0�a�b�1

∣∣∣∣A(a, b)
T

− (b− a)
∣∣∣∣ ,

where A(a, b) denotes the number of points of A falling in the interval [a, b] ∈ [0, 1]. Garaev [9] combines 
his bound for Vλ(Γ, S, T, X, Δ) with a result of Erdős and Murty [8], which in particular implies that
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EX1/2,X = (1 + o(1)) X

logX
, X → ∞, (2.15)

and the Erdős–Turán inequality (see for example [7]). This allows Garaev [9, Section 3] to show that for 
any ε > 0 there is some δ > 0 such that for almost all primes p � X, the sequence

A(λ, p) =
{
λsn

p
mod 1

}
1�n�T

, (2.16)

with T =
⌈
X(logX)2+ε

⌉
, has discrepancy

D � (log T )−δ,

provided S � X15/14+o(1) as X → ∞.
For comparison with our bound, Theorem 2.2 produces the following result. For any ε > 0 and almost 

all primes p � X, the sequence (2.16) with T =
⌈
X1+ε

⌉
has discrepancy

D � T−δ,

provided that S � X2−ε as X → ∞.
We now give an application of Theorem 2.2 to the numbers with prescribed digits, namely to the integers 

from the set N (a; S), defined in Section 1. We denote by ω(k) the number of distinct prime divisors of an 
integer k � 1.

Theorem 2.3. Let us fix some ε > 0. For any sequence of integers S = {sn}Tn=1 with 0 � s1 < . . . < sT � S

with

S � T 2−ε,

and any S-bit integer a, letting

P (a;S) =
∏

z∈N (a;S)

z,

we have

ω (P (a;S)) � T 1+δ,

for some δ > 0 which depends only on ε.

Considering Theorem 2.3, we first recall a classic result of Hardy and Ramanujan, which states that for 
any function ψ(x) → ∞, the number of positive integers n � x such that

|ω(n) − log logn| > ψ(n)(log logn)1/2,

is o(x), see, for example [13, Corollary 1.4]. Since we have

22TS � P (a;S) � 22TS ,

an application of Theorem 2.3 gives
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ω(P (a;S)) � (log logP (a;S))1+δ,

for some δ > 0. In particular, the above inequality implies that the product P (a; S) has a much larger 
number of prime factors than one usually expects from an integer of similar size.

3. Preliminary results

We use Σ∗ to indicate that the summation is taken over a reduced residue system. That is, for any 
function ψ and integer k, we have

∑∗

c mod k

ψ(c) =
k∑

c=1
gcd(c,k)=1

ψ(c).

We need the following simplified form of the large sieve inequality, see [13, Theorem 7.11].

Lemma 3.1. For any K � 1 and increasing sequence of integers S = {sn}Tn=1 with maxs∈S s = S and any 
sequence of complex numbers Γ = {γn}Tn=1 with |γn| � 1 we have

∑
k�K

∑∗

c mod k

∣∣∣∣∣∣
∑
n�T

γn ek(csn)

∣∣∣∣∣∣
2

� (K2 + S)T.

The following is [15, Theorem 5.5].

Lemma 3.2. For each integer t and prime � ≡ 1 mod t we fix some element gt,
 of multiplicative order t
modulo �. Then, for any fixed integer k � 2 and an arbitrary U > 1, the bound

max
(a,
)=1

∣∣∣∣∣
t−1∑
x=0

e
(agxt,
)

∣∣∣∣∣ � t�1/2k
2
(t−1/k + U−1/k2

),

holds for all primes � ≡ 1 mod t except at most U/ logU of them.

Lemma 3.3. Let λ be a fixed integer. For any Z > 0 we have

#{p prime : ordp λ � Z } � Z2

where the implied constant may depend on λ.

Proof. If ordp λ = y then λy − 1 ≡ 0 mod p. This implies that

#{p prime : ordp λ < Z} � ω

⎛
⎝ ∏

1�z�Z

(λz − 1)

⎞
⎠ ,

where as before, ω(k) denotes the number of distinct prime divisors of an integer k � 1. Hence,

#{p prime : ordp λ < Z } � log
∏

1�z�Z

(λz − 1) � log
(
λZ2/2

)
� Z2,

which gives the desired result. �
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The following is a special case of [4, Corollary 4.2].

Lemma 3.4. Let p1 and p2 be primes and let H be a subgroup of Z∗
q, where q = p1p2 such that

#{H mod pν} � qδ, ν = 1, 2

for some fixed δ > 0. Then

max
gcd(a,q)=1

∣∣∣∣∣
∑
h∈H

eq(ah)

∣∣∣∣∣ � (#H)1−�,

for some � > 0 which depends only on δ > 0.

4. Proof of Theorem 2.1

4.1. Initial transformations

Let

σp(a) =
∑
n�T

γn ep(aλsn).

It is also convenient to define ap as any integer a ∈ {1, . . . , p − 1} with

|σp(ap)| = max
gcd(a,p)=1

|σp(a)| , (4.1)

so that

Vλ(Γ,S;T,X,Δ) =
∑

p∈EΔ(X)

|σp(ap)|2 .

However, it is more convenient to work with the sums where each term is divided by the divisor function 
τ(p − 1). We define

Wλ(Γ,S;T,X,Δ) =
∑

p∈EΔ(X)

1
τ(p− 1) |σp(a)|2 ,

and note the inequality τ(n) = no(1) implies that

Vλ(Γ,S;T,X,Δ) � Wλ(Γ,S;T,X,Δ)Xo(1).

Hence it is enough to prove

Wλ(Γ,S;T,X,Δ) �
(
X + S1−1/(3−2α)T 1/(3−2α)

X2η/(3−2α) + T

Xδ/(k2+2)

)
TX1+o(1), (4.2)

where α, β, δ, η satisfy (2.5) and (α, β) is an admissible pair.
Fix some p � X and consider σp(ap). Recalling that tp denotes the order of λ mod p, we split sn into 

arithmetic progressions mod tp. Using the orthogonality of exponential functions, we obtain
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σp(ap) =
tp∑

x=1

∑
n�T

sn≡x mod tp

γn ep(apλsn)

= 1
tp

tp∑
x=1

tp∑
b=1

∑
n�T

γn etp(b(sn − x)) ep(apλx),

and hence

σp(ap) = 1
tp

∑
d|tp

tp∑
x=1

tp∑
b=1

gcd(b,tp)=d

∑
n�T

γn etp(b(sn − x)) ep(apλx)

= 1
tp

∑
d|tp

tp∑
x=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x)) ep(apλx).

Let ξ > 0 be a real parameter to be chosen later. We set

Dp = ξtp,

and partition summation over d according to Dp. This gives

|σp(ap)| � |σp,1(ap)| + |σp,2(ap)|, (4.3)

where

σp,1(ap) = 1
tp

∑
d|tp

d�Dp

tp∑
x=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x)) ep(apλx), (4.4)

and

σp,2(ap) = 1
tp

∑
d|tp

d>Dp

tp∑
x=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x)) ep(apλx).

The equation (4.3) implies that

|σp(ap)|2 � |σp,1(ap)|2 + |σp,2(ap)|2,

which on averaging over p � X gives

Wλ(Γ,S;T,X,Δ) � Σ1 + Σ2, (4.5)

where

Σ1 =
∑

p∈EΔ(X)

1
τ(p− 1) |σp,1(ap)|2,

Σ2 =
∑

p∈EΔ(X)

1
τ(p− 1) |σp,2(ap)|2.

(4.6)
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4.2. The sum Σ1

To bound Σ1 we use the argument of Garaev [9, Theorem 3.1]. Fix some p � X and consider σp,1(ap). 
From (4.4) and the Cauchy–Schwarz inequality

|σp,1(ap)|2 =

∣∣∣∣∣∣∣∣
1
tp

∑
d|tp

d�Dp

tp∑
x=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x)) ep(apλx)

∣∣∣∣∣∣∣∣

2

� τ(tp)
tp

∑
d|tp

d�Dp

tp∑
x=1

∣∣∣∣∣∣
∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x))

∣∣∣∣∣∣
2

.

Expanding the square and interchanging summation gives

|σp,1(ap)|2 � τ(tp)
tp

∑
d|tp

d�Dp

∑∗

b1,b2 mod (tp/d)

∑
n1,n2�T

γn1γn2
etp/d(b1sn1 − b2sn2)

tp∑
x=1

etp/d(x(b2 − b1)).

By the orthogonality of exponential functions, the inner sum vanishes unless b1 = b2. Hence

|σp,1(ap)|2 � τ(tp)
∑
d|tp

d�Dp

∑∗

b mod (tp/d)

∑
n1,n2�T

γn1γn2
etp/d(b(sn1 − sn2))

� τ(p− 1)
∑
d|tp

d�Dp

∑∗

b mod (tp/d)

∣∣∣∣∣∣
∑
n�T

γn etp/d(bsn)

∣∣∣∣∣∣
2

,

where we have used the inequality

τ(tp) � τ(p− 1),

since tp | (p − 1). Summing over p � X we see that

Σ1 �
∑
p�X

∑
d|tp

d�Dp

∑∗

b mod (tp/d)

∣∣∣∣∣∣
∑
n�T

γn etp/d(bsn)

∣∣∣∣∣∣
2

.

We define the sequence of numbers Xj for 1 � j � J , where

J =
⌈

log(X/Δ)
log 2

⌉
, (4.7)

by

X1 = Δ, Xj = min{2Xj−1, X}, 2 � j � J, (4.8)
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and partition the set of primes p � X into the sets

Rj = {p � X : Xj � tp < Xj+1}. (4.9)

Writing

Σ1,j =
∑
p∈Rj

∑
d|tp

d�Dp

∑∗

b mod (tp/d)

∣∣∣∣∣∣
∑
n�T

γn etp/d(bsn)

∣∣∣∣∣∣
2

,

we have

Σ1 �
J∑

j=1
Σ1,j . (4.10)

For each integer r, we define the set Q(r) by

Q(r) = {p � X : tp = r}, (4.11)

so that, replacing tp with r for p ∈ Q(r), we obtain

Σ1,j �
∑

Xj�r<2Xj

∑
p∈Q(r)

∑
d|r

d�Dp

∑∗

b mod (r/d)

∣∣∣∣∣∣
∑
n�T

γn er/d(bsn)

∣∣∣∣∣∣
2

=
∑

Xj�r<2Xj

#Q(r)
∑
d|r

d�Dp

∑∗

b mod (r/d)

∣∣∣∣∣∣
∑
n�T

γn er/d(bsn)

∣∣∣∣∣∣
2

.

For each prime p ∈ Q(r) we have r | (p − 1) and hence for Xj � r < 2Xj we also have

#Q(r) � X

r
� X

Xj
and Dp < 2ξXj .

This implies that

Σ1,j � X

Xj

∑
Xj�r<2Xj

∑
d|r

d�2ξXj

∑∗

b mod (r/d)

∣∣∣∣∣∣
∑
n�T

γn er/d(bsn)

∣∣∣∣∣∣
2

= X

Xj

∑
d�2ξXj

∑
Xj�r<2Xj

d|r

∑∗

b mod (r/d)

∣∣∣∣∣∣
∑
n�T

γn er/d(bsn)

∣∣∣∣∣∣
2

,

and hence

Σ1,j � X

Xj

∑
d�2ξXj

Fj(d), (4.12)

where Fj(d) is given by
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Fj(d) =
∑

Xj/d�m<2Xj/d

∑∗

b mod m

∣∣∣∣∣∣
∑
n�T

γn em(bsn)

∣∣∣∣∣∣
2

.

An application of Lemma 3.1 gives

Fj(d) �
(
X2

j

d2 + S

)
T,

which combined with (4.12) implies that

Σ1,j � X

Xj

∑
d�2ξXj

(
X2

j

d2 + S

)
T � X

Xj

(
X2

j + 2ξXjS
)
T,

and hence by (4.10)

Σ1 �
J∑

j=1

X

Xj

(
X2

j + ξXjS
)
T � X(X + ξS logX)T. (4.13)

4.3. The sum Σ2

Fix some p � X and consider σp,2(ap). For each value of d in the outermost summation we split summation 
over x into arithmetic progressions mod tp/d. Recalling that σp,2(ap) is given by

σp,2(ap) = 1
tp

∑
d|tp

d>Dp

tp∑
x=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − x)) ep (apλx) ,

we see that

σp,2(ap) = 1
tp

∑
d|tp

d>Dp

tp/d∑
y=1

∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − y))
d∑

z=1
ep

(
apλ

yλztp/d
)
,

and hence

|σp,2(ap)| � 1
tp

∑
d|tp

d>Dp

tp/d∑
y=1

∣∣∣∣∣∣
∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − y))

∣∣∣∣∣∣
∣∣∣∣∣

d∑
z=1

ep
(
apλ

yλztp/d
)∣∣∣∣∣

�
∑
d|tp

d>Dp

1
tp

tp/d∑
y=1

∣∣∣∣∣∣
∑∗

b mod (tp/d)

∑
n�T

γn etp/d(b(sn − y))

∣∣∣∣∣∣
∣∣∣∣∣

d∑
z=1

ep
(
fd,pλ

ztp/d
)∣∣∣∣∣ ,

where fd,p is chosen to satisfy

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

ztp/d
)∣∣∣∣∣ = max

gcd(a,p)=1

∣∣∣∣∣
d∑

z=1
ep

(
aλztp/d

)∣∣∣∣∣ .
Let
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U(p, d) = 1
tp

tp/d∑
y=1

∣∣∣∣∣∣∣∣
tp/d∑
b=1

gcd(b,tp/d)=1

∑
n�T

γn etp/d(b(sn − y))

∣∣∣∣∣∣∣∣
,

so that

|σp,2(ap)| �
∑
d|tp

d>Dp

U(p, d)

∣∣∣∣∣
d∑

z=1
ep(fd,pλztp/d)

∣∣∣∣∣ . (4.14)

We consider bounding the terms U(p, d). By the Cauchy–Schwarz inequality

U(p, d)2 � 1
dtp

tp/d∑
y=1

∣∣∣∣∣∣∣∣
tp/d∑
b=1

gcd(b,tp/d)=1

∑
n�T

γn etp/d(b(sn − y))

∣∣∣∣∣∣∣∣

2

= 1
dtp

∑
1�n1,n2�T

tp/d∑
b1,b2=1

gcd(b1b2,tp/d)=1

γn1γn2
etp/d(b1sn1 − b2sn2)

tp/d∑
y=1

etp/d(y(b1 − b2)).

Using the orthogonality of exponential functions again, we see that the last sums vanishes unless b1 = b2. 
This gives

U(p, d)2 � 1
d2

∑
1�n1,n2�T

tp/d∑
b=1

gcd(b,tp/d)=1

γn1γn2
etp/d(b(sn1 − sn2)).

After rearranging and extending the summation over b to the complete residue system modulo tp/d, we 
derive

U(p, d)2 � 1
d2

tp/d∑
b=1

gcd(b,tp/d)=1

∑
1�n1,n2�T

γn1γn2
etp/d(b(sn1 − sn2))

= 1
d2

tp/d∑
b=1

gcd(b,tp/d)=1

∣∣∣∣∣∣
∑

1�n�T

γn etp/d(bsn)

∣∣∣∣∣∣
2

� 1
d2

tp/d∑
b=1

∣∣∣∣∣∣
∑

1�n�T

γn etp/d(bsn)

∣∣∣∣∣∣
2

= tp
d3V (tp/d) ,

where for an integer r � 1 we define

V (r) = #{(n1, n2) ∈ [1, T ]2 : sn1 ≡ sn2 mod r}. (4.15)

Substituting this in (4.14) gives

|σp,2(ap)| � t1/2p

∑
d|tp

1
d3/2V (tp/d)1/2

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

ztp/d
)∣∣∣∣∣ .
d>Dp
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Summing over p � X gives

Σ2 �
∑

p∈EΔ(X)

tp
τ(p− 1)

⎛
⎜⎜⎝ ∑

d|tp
d>Dp

1
d3/2V (tp/d)1/2

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

ztp/d
)∣∣∣∣∣
⎞
⎟⎟⎠

2

,

which by the Cauchy–Schwarz inequality implies that

Σ2 �
∑

p∈EΔ(X)

tpτ(tp)
τ(p− 1)

∑
d|tp

d>Dp

1
d3V (tp/d)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

ztp/d
)∣∣∣∣∣

2

�
∑

p∈EΔ(X)

tp
∑
d|tp

d>Dp

1
d3V (tp/d)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

ztp/d
)∣∣∣∣∣

2

.

At this point our strategy is to rearrange summation so we may apply Lemma 3.2. We define the sequence 
Xj as in (4.8), we let Q(r) be given by (4.11) and for each integer r we define the following subsets Si(r)
of Q(r)

Si(r) = {p : 2i � p � 2i+1 and tp = r}.

Writing

Σ2,i,j =
∑

Xj�r�Xj+1

r
∑

p∈Si(r)

∑
d|r

d>Dp

1
d3V (r/d)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

,

the above implies that

Σ2 �
J∑

i=1

∑
j:Xj�2i

Σ2,i,j .

To further transform the sums Σ2,i,j , define the numbers Zj by

Zj = ξXj , j = 1, . . . , J, (4.16)

so that

Σ2,i,j � Xj

∑
Xj�r�Xj+1

∑
p∈Si(r)

∑
d|r

d>Zj

1
d3V (r/d)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

.

After interchanging summation, we arrive at

Σ2,i,j � Xj

∑
Zj<d�Xj+1

1
d3

∑
Xj�r�Xj+1

V (r/d)
∑

p∈Si(r)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

. (4.17)

d|r
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Let ρ be a parameter to be chosen later. We now partition summation over i and j in Σ2 as follows

Σ2 � Σ�
2 + Σ�

2 , (4.18)

where

Σ�
2 =

J∑
i=1

∑
j:Xj�2iρ

Σ2,i,j and Σ�
2 =

J∑
i=1

∑
j:2iρ�Xj�2i

Σ2,i,j .

To estimate Σ�
2 , we first fix some j with Xj � 2iρ. Considering the inner summation over p, we partition 

Si(r) according to Lemma 3.2. Let

Ui(r) = 2i(1−1/(k2+2))

r1−2/(k2+2) ,

and for integer k we define the sets S(1)
i (r) and S(2)

i (r) by

S(1)
i (r) =

{
p ∈ Si(r) :

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣ � d2i/2k

2
(
d−1/k + Ui(r)−1/k2

)}
,

S(2)
i (r) = Si(r) \ S(1)

i (r).

Lemma 3.2 implies that

#S(2)
i (r) � Ui(r)

logUi(r)
.

Considering S(1)
i (r) and using the fact that r | p − 1 for p ∈ Si(r) gives

#S(1)
i (r) � #Si(r) �

2i

r
, (4.19)

which implies that

∑
p∈Si(r)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

� d2

(
2i(1+1/k2)

r
(d−2/k + Ui(r)−2/k2

) + Ui(r)
logUi(r)

)
.

Recalling the choice of Ui(r) we see that

∑
p∈Si(r)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

� d22i(1−1/(k2+2))

r1−2/(k2+2) + d2−2/k2i(1+1/k2)

r
,

which on assuming that

X � (ξΔ)k , (4.20)

simplifies to
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∑
p∈Si(r)

∣∣∣∣∣
d∑

z=1
ep

(
fd,pλ

zr/d
)∣∣∣∣∣

2

� d22i(1−1/(k2+2))

r1−2/(k2+2) . (4.21)

Hence considering Σ2,i,j , we have

Σ2,i,j � Xj2i(1−1/(k2+2))
∑

Zj<d�Xj+1

1
d

∑
Xj�r�Xj+1

d|r

V (r/d)
r1−2/(k2+2)

� Xj2i(1−1/(k2+2))
∑

Zj<d�Xj+1

1
d2−2/(k2+2)

∑
Xj/d�r�Xj+1/d

V (r)
r1−2/(k2+2) ,

after the change of variable r → dr. Writing

Wj(d) =
∑

Xj/d�r�Xj+1/d

V (r)
r1−2/(k2+2) ,

the above implies

Σ2,i,j � Xj2i(1−1/(k2+2))
∑

Zj<d�Xj+1

Wj(d)
d2−2/(k2+2) . (4.22)

Considering the sum Wj(d) and recalling the definition of V (r) given by (4.15), we have

Wj(d) =
∑

Xj/d�r�Xj+1/d

∑
1�n1,n2�T

sn1≡sn2 mod r

1
r1−2/(k2+2)

�
(

d

Xj

)1−2/(k2+2) ∑
1�n1,n2�T

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1.

Considering the last sum on the right, we have

∑
1�n1,n2�T

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1 � TXj

d
+

∑
1�n1<n2�T

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1.

Since the term
∑

Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1,

is bounded by the number of divisors of sn2 − sn1 , we see that

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1 = So(1),

and hence
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∑
1�n1,n2�T

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1 �
(
Xj

d
+ TSo(1)

)
T, (4.23)

which gives

Wj(d) �
(

d

Xj

)1−2/(k2+2) (
Xj

d
+ TSo(1)

)
T.

Substituting the above into (4.22) we get

Σ2,i,j � X
1+2/(k2+2)
j 2i(1−1/(k2+2))T

∑
Zj<d�Xj+1

1
d2

+ X
2/(k2+2)
j 2i(1−1/(k2+2))T 2So(1)

∑
Zj<d�Xj+1

1
d
,

which simplifies to

Σ2,i,j �
X

1+2/(k2+2)
j 2i(1−1/(k2+2))T

Zj
+ X

2/(k2+2)
j 2i(1−1/(k2+2))T 2(SX)o(1)

� X
2/(k2+2)
j 2i(1−1/(k2+2))

(
1
ξ

+ T

)
T (SX)o(1),

on recalling the choice of Zj given by (4.16).
We now assume that

ξ � 1
T
. (4.24)

Without loss of generality, we can also assume that S = XO(1) and thus (SX)o(1) = Xo(1). Hence, the above 
bounds further simplify to

Σ2,i,j � T 2X
2/(k2+2)
j 2i(1−1/(k2+2))Xo(1).

Summing over i and j with Xj � 2iρ we arrive at

Σ�
2 � T 2Xo(1)

J∑
i=1

∑
j:Xj�2iρ

X
2/(k2+2)
j 2i(1−1/(k2+2)),

and hence

Σ�
2 � T 2X1−(1−2ρ)/(k2+2)Xo(1). (4.25)

We next consider Σ�
2 . We begin our treatment of Σ�

2 in a similar fashion to Σ�
2 . In particular, we 

use (4.17) and the assumption that (α, β) is admissible to obtain

Σ2,i,j � 2i(2β+o(1))Xj

∑
Xj�r�Xj+1

#Si,j(r)
∑
d|r

d>Zj

1
d3−2αV (r/d) , (4.26)

as i → ∞.
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Using (4.19) and then rearranging the order of summation, the above reduces to

Σ2,i,j � 2i(1+2β+o(1))
∑

Xj�r�Xj+1

∑
d|r

d>Zj

1
d3−2αV (r/d)

� 2i(1+2β+o(1))
∑

Zj<d�Xj+1

1
d3−2αWj(d),

where

Wj(d) =
∑

Xj/d�r�Xj+1/d

V (r).

We see from the definition (4.15) that

Wj(d) =
∑

1�n1,n2�T

∑
Xj/d�r�Xj+1/d
sn1≡sn2 mod r

1 �
(
Xj

d
+ TSo(1)

)
T,

and hence

Σ2,i,j � 2i(1+2β+o(1))T

⎛
⎝Xj

∑
Zj<d�Xj+1

1
d4−2a + TSo(1)

∑
Zj�d�Xj+1

1
d3−2α

⎞
⎠

� 2i(1+2β+o(1))T

(
Xj

Z3−2α
j

+ TSo(1)

Z2−2a
j

)
.

Since obviously S � XO(1), we can replace both 2o(i) and So(1) with Xo(1). Recalling the choice of Zj and 
the assumption (4.24), we get

Σ2,i,j �
2i(1+2β)T

ξ2(1−α)X
2(1−α)
j

(
ξ−1 + T

)
Xo(1) � 2i(1+2β)T 2

ξ2(1−α)X
2(1−α)
j

Xo(1).

This implies that

Σ�
2 � 1

ξ2(1−α)T
2Xo(1)

J∑
i=1

∑
j:2iρ�Xj�2i

2i(1+2β)

X
2(1−α)
j

� T 2X
1+2(β+η−ρ(1−α))

ξ2(1−α) Xo(1).

(4.27)

Substituting the bounds (4.25) and (4.27) in (4.18), we see that

Σ2 �
(

1
X(1−2ρ)/(k2+2) + X2(β−ρ(1−α))

ξ2(1−α)

)
T 2X1+o(1). (4.28)

4.4. Concluding the proof

Substituting (4.13) and (4.28) in (4.5), gives
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Wλ(Γ,S;T,X,Δ)
(
X + ξS + T

X(1−2ρ)/(k2+2) + TX2(β−ρ(1−α))

ξ2(1−α)

)
TX1+o(1).

Let η > 0 be a parameter and make the substitution

ρ = β + η

1 − α
.

The above transforms into

Wλ(Γ,S;T,X,Δ)
(
X + ξS + T

X(1−2(β+η)/(1−α))/(k2+2) + T

ξ2(1−α)X2η

)
TX1+o(1).

Next we choose

ξ =
(

T

SX2η

)1/(3−2α)

,

to balance the second and fourth terms. This gives

Wλ(Γ,S;T,X,Δ) �
(
X + S1−1/(3−2α)T 1/(3−2α)

X2η/(3−2α) + T

X(1−2(β+η)/(1−α))/(k2+2)

)
TX1+o(1).

We now note that the assumption (2.5) implies that

Wλ(Γ,S;T,X,Δ)
(
X +

(
S2−2αTX−2η)1/(3−2α) + T

Xδ/(k2+2)

)
TX1+o(1),

which is the desired bound.
Finally, to complete the proof, it remains to note that (4.20) is satisfied by the assumption (2.7) and (4.24)

is satisfied by (2.6).

5. Proof of Theorem 2.2

5.1. Initial transformations

As before, for each prime p we define the number ap by (4.1). Taking Z = X1/4 in Lemma 3.3 and 
recalling that tp denotes the order of λ mod p, we have

Vλ (Γ,S;T,X) � X1/2T 2 + Vλ(Γ,S;T,X,X1/4) = X1/2T 2 +
∑

p∈E
X1/4 (X)

|σp(ap)|2 . (5.1)

We define the sequence of numbers Xj, as in (4.8) with Δ = X1/4. We also define the sets Rj as in (4.9)
for j = 1, . . . , J with J given by (4.7).

Hence, partitioning summation over p in (5.1) according to Rj gives,

Vλ (Γ,S;T,X) � X1/2T 2 +
J∑

j=1
Wj ,

where

Wj =
∑

|σp(ap)|2 .

p∈Rj
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We define the number Y by

Y = X3/4S1/4

T 1/4 , (5.2)

and let I be the largest integer j with Xj � Y (since S � T we obviously have Y � X3/4 > X1/4 so I is 
correctly defined).

We now further partition the summation over j and re-write (5.1) as

Vλ (Γ,S;T,X) � X1/2T 2 + W� + W�, (5.3)

where

W� =
I∑

j=1
Wj and W� =

J∑
j=I+1

Wj . (5.4)

5.2. The sum W�

We fix some j with X1/4 � Xj < Y . Considering Wj , we define the sets

Vj(r) = {p ∈ Rj : tp = r}, (5.5)

so that

Wj =
∑

Xj<r�2Xj

Uj,r, (5.6)

where Uj,r is given by

Uj,r =
∑

p∈Vj(r)

|σp(ap)|2 .

For each p ∈ Vj(r) we define the complex number cj,r,p by

cj,r,p = σp(ap)(∑
p∈Vj(r) |σp(ap)|2

)1/2 ,

so that
∑

p∈Vj(r)

|cj,r,p|2 = 1, (5.7)

and writing

U∗
j,r =

∑
p∈Vj(r)

∑
1�n�T

cj,r,pγn ep(apλsn),

we see that

|U∗
j,r| = U

1/2
j,r . (5.8)
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We have

U∗
j,r =

∑
0�x<r

∑
p∈Vj(r)

br(x)cj,r,p ep(apλx),

where

br(x) =
∑

1�n�T
sn≡x mod r

γn, (5.9)

and hence by the Cauchy–Schwarz inequality

|U∗
j,r|2 �

∑
0�x<r

|br(x)|2
∑

0�x<r

∣∣∣∣∣∣
∑

p∈Vj(r)

cj,r,p ep(apλx)

∣∣∣∣∣∣
2

.

Expanding the square and interchanging summation gives

|U∗
j,r|2 �

∑
0�x<r

|br(x)|2
∑

p1,p2∈Vj(r)

|cj,r,p1 ||cj,r,p2 |

∣∣∣∣∣∣
∑

0�x<r

ep1p2((ap1p2 − ap2p1)λx)

∣∣∣∣∣∣ ,
which implies that

|U∗
j,r|2 � r

∑
0�x<r

|br(x)|2
∑

p∈Vj(r)

|cj,r,p|2

+
∑

0�x<r

|br(x)|2
∑

p1,p2∈Vj(r)
p1 �=p2

|cj,r,p1 ||cj,r,p2 | max
(a,p1p2)=1

∣∣∣∣∣∣
∑

0�x<r

ep1p2(aλx)

∣∣∣∣∣∣ .

Since

tp1 = tp2 = r,

the set

H = { λx mod p1p2 : 0 � x < r },

is a subgroup of Z∗
p1p2

and from the inequalities

r � X1/4 > (p1p2)1/8,

we see that the conditions of Lemma 3.4 are satisfied. An application of Lemma 3.4 gives

|U∗
j,r|2 � r

∑
0�x<r

|br(x)|2
∑

p∈Vj(r)

|cj,r,p|2 +
∑

0�x<r

|br(x)|2
⎛
⎝ ∑

p∈Vj(r)

|cj,r,p|

⎞
⎠

2

r1−�,

which by the Cauchy–Schwarz inequality implies that

|U∗
j,r|2 �

∑
|br(x)|2

∑
|cj,r,p|2

(
r + |Vj(r)|r1−�

)
,

0�x<r p∈Vj(r)
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and hence by (5.7)

|U∗
j,r|2 �

∑
0�x<r

|br(x)|2
(
r + |Vj(r)|r1−�

)
.

Since

|Vj(r)| � X

r
, (5.10)

we get

|U∗
j,r|2 �

(
r + X

r�

) ∑
0�x<r

|br(x)|2. (5.11)

Recalling (5.9) and the assumption each |γn| � 1, we see that

∑
0�x<r

|br(x)|2 =
∑

1�n1,n2�T

γn1γn2

∑
0�x<r

sn1≡x mod r
sn2≡x mod r

1 = V (r),

where V (r) is defined by (4.15). By (5.11) we have

|U∗
j,r|2 � V (r)

(
r + X

r�

)
,

and hence by (5.8)

|Uj,r| � V (r)
(
r + X

r�

)
.

Combining the above with (5.6) gives

Wj �
∑

Xj<r�2Xj

V (r)
(
Xj + X

X�
j

)
. (5.12)

As in the proof of Theorem 2.1, see (4.23), we have
∑

Xj<r�2Xj

V (r) � XjT +
∑

1�n1,n2�T
n1 �=n2

∑
Xj<r�2Xj

sn1≡sn2 mod r

1 � (Xj + TSo(1))T � T 2+o(1),

where we have used the assumption S � T 2 and T > X as otherwise Theorem 2.2 is trivial. Substituting 
the above into (5.12) gives

Wj �
(
Xj + X

X�
j

)
T 2+o(1),

and hence by (5.4)

W� �
(
Y + XX−�

1
)
T 2+o(1) �

(
Y + X1−�/4

)
T 2+o(1). (5.13)
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5.3. The sum W�

We fix some j with Y � Xj � X and arrange Wj as follows

Wj =
∑
p∈Rj

|σp(ap)|2 � T
∑
p∈Rj

|σp(ap)| ,

and hence there exists some sequence of complex numbers cj,p with |cj,p| = 1 such that

Wj � T
∑
p∈Rj

∑
1�n�T

cj,pγn ep(apλsn).

An application of the Cauchy–Schwarz inequality gives

W 2
j � T 3

∑
1�n�T

∣∣∣∣∣∣
∑
p∈Rj

cj,p ep(apλsn)

∣∣∣∣∣∣
2

.

Since the sequence sn is increasing and bounded by S, we see that

W 2
j � T 3

∑
1�s�S

∣∣∣∣∣∣
∑
p∈Rj

cj,p ep(apλs)

∣∣∣∣∣∣
2

� T 3

S

∑
−S�r,s�S

∣∣∣∣∣∣
∑
p∈Rj

cj,p ep(apλr+s)

∣∣∣∣∣∣
2

,

so that writing

Wj =
∑

−S�r,s�S

∣∣∣∣∣∣
∑
p∈Rj

cj,p ep(apλr+s)

∣∣∣∣∣∣
2

,

the above implies

W 2
j � T 3

S
Wj . (5.14)

Considering Wj , expanding the square and interchanging summation gives

Wj �
∑

p1,p2∈Rj

∣∣∣∣∣∣
∑

−S�r,s�S

ep1p2((ap1p2 − ap2p1)λr+s)

∣∣∣∣∣∣
� S2|Rj | +

∑
p1,p2∈Rj

p1 �=p2

∑
−S�r�S

∣∣∣∣∣∣
∑

−S�s�S

ep1p2(ap1p2λ
r+s)

∣∣∣∣∣∣ ,

for some integers ap1p2 with gcd(ap1p2 , p1p2) = 1. By (5.5) and (5.10)

|Rj | =
∑

Xj<r�2Xj

|Vj(r)| � X,

and hence
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Wj � S2X +
∑

p1,p2∈Rj

p1 �=p2

Z(p1, p2), (5.15)

where

Z(p1, p2) =
∑

−S�r�S

∣∣∣∣∣∣
∑

−S�s�S

ep1p2(ap1p2λ
r+s)

∣∣∣∣∣∣ .
Considering Z(p1, p2), by the Cauchy–Schwarz inequality, we have

Z(p1, p2)2 � S
∑

−S�r�S

∣∣∣∣∣∣
∑

−S�s�S

ep1p2(ap1p2λ
rλs)

∣∣∣∣∣∣
2

� S

(
1 + S

ordp1p2(λ)

) ∑
u mod p1p2

∣∣∣∣∣∣
∑

−S�s�S

ep1p2(ap1p2uλ
s)

∣∣∣∣∣∣
2

.

Now, since

∑
u mod p1p2

∣∣∣∣∣∣
∑

−S�s�S

ep1p2(ap1p2uλ
s)

∣∣∣∣∣∣
2

=
∑

−S�s1,s2�S

∑
u mod p1p2

ep1p2(ap1p2u(λs1 − λs2))

� p1p2S

(
1 + S

ordp1p1(λ)

)
,

we see that

Z(p1, p2)2 � p1p2S
2
(

1 + S

ordp1p1(λ)

)2

� X2S2
(

1 + S

ordp1p2(λ)

)2

.

Since tp1 , tp2 � Xj , we have

ordp1p2(λ) = lcm(tp1 , tp2) = tp1tp2

gcd(tp1 , tp2)
�

X2
j

gcd(p1 − 1, p2 − 1) ,

which implies

Z(p1, p2)2 � X2S2

(
1 + gcd(p1 − 1, p2 − 1)S

X2
j

)2

,

which after substituting the above in (5.15) gives

Wj � S2X + XS
∑

p1,p2∈Rj

p1 �=p2

1 + XS2

X2
j

∑
p1,p2∈Rj

p1 �=p2

gcd(p1 − 1, p2 − 1).

We have
∑

p1,p2∈Rj

1 � |Rj |2 � X2,
p1 �=p2
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and ∑
p1,p2∈Rj

p1 �=p2

gcd(p1 − 1, p2 − 1) �
∑

1�x1<x2�X

gcd(x1, x2) =
∑

1�d�X

d
∑

1�x1<x2�X/d
(x1,x2)=1

1 � X2+o(1),

so that

Wj � S2X + SX3 + S2X3+o(1)

X2
j

.

Combining the above with (5.14) gives

W 2
j � SXT 3 + X3T 3 + SX3+o(1)T 3

X2
j

,

which simplifies to

Wj � X3/2T 3/2
(

1 + S1/2

Xj

)
Xo(1),

since we may assume S � X2+o(1). By (5.4) we have

W� � X3/2T 3/2
(

1 + S1/2

Y

)
Xo(1). (5.16)

5.4. Concluding the proof

Substituting (5.13) and (5.16) in (5.3) we derive

Vλ (Γ,S;T,X) � X1/2T 2 +
(
Y + X1−�

)
T 2+o(1) + X3/2T 3/2

(
1 + S1/2

Y

)
Xo(1).

Recalling the choice of Y in (5.2) the above simplifies to

Vλ (Γ,S;T,X) �
(
X1/2T 2 + X1−�/4T 2 + X3/2T 3/2 + X3/4T 7/4S1/4

)
Xo(1),

and the result follows with ρ = �/4 (as clearly � � 1 and thus ρ < 1/2).

6. Proof of Theorem 2.3

First we note that without loss of generality we may assume the binary digits of a are zeros on all 
positions j ∈ S.

For a prime p, let Np(a; S) be the number of z ∈ N (a; S) with p | z. One can easily see that Np(a; S) is 
the number of solutions to the congruence

a +
T∑

n=1
dn2sn ≡ 0 mod p, dn ∈ {0, 1}, n = 1, . . . , T.

We now proceed similarly to the proof of [15, Theorem 18.1]. Using the orthogonality of exponential func-
tions, we write
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Np(a;S) = 1
p

p−1∑
b=0

∑
(d1,...,dT )∈{0,1}T

ep

(
b

(
T∑

n=1
dn2sn + a

))

= 2T p−1 + 1
p

p−1∑
b=1

∑
(d1,...,dT )∈{0,1}T

ep

(
b

(
T∑

n=1
dj2sn + a

))

= 2T p−1 + 1
p

p−1∑
b=1

ep(ab)
T∏

n=1
(1 + ep (b2sn)) .

Therefore,

∣∣Nn,p(a) − 2T p−1∣∣ � Qp, (6.1)

where

Qp = max
b=1,...,p−1

∣∣∣∣∣
T∏

n=1
(1 + ep (b2sn))

∣∣∣∣∣ .
Using [15, Equation (18.2)] we write

Qp � exp (O(Mp log(T/Mp + 1))) , (6.2)

where

Mp = max
gcd(b,p)=1

∣∣∣∣∣∣
∑
n�T

ep(aλsn)

∣∣∣∣∣∣ .
Now, by Theorem 2.2 if we fix some ε0 > 0, then there is some κ > 0 such that if

X = T 1/(1+ε0), Δ = X1/2 and S � X2−ε0 ,

then we have
∑

p∈EΔ(X)

M2
p � T 2X1−κ.

Since S � T 2−ε, to satisfy the above conditions, it is enough to define ε0 by the equation

2 − ε0

1 + ε0
= 2 − ε

or, more explicitly,

ε0 = ε

3 − ε
.

Combining this with (2.15), we see that for all but o(X/ logX) primes p � X we have Mp � TX−κ/3. For 
each of these primes p, a combination of (6.1) and (6.2) implies that Np(a; S) > 0 (provided that p is large 
enough), which concludes the proof.
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7. Possible improvements

We note that one can get an improvement of Theorem 2.1 by using a combination of different admissible 
pairs depending on the range of d in our treatment of the sum (4.17) in and thus making the choice of α
and β in (4.26) dependent on i and j.

In particular, one can use the admissible pairs (2.1), (2.2), (2.3) and (2.4) as well the admissible pairs 
given by Konyagin [14] and Shteinikov [23] for small values of d in (4.17).
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