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In this paper our main results are the multipolar weighted Hardy inequality

c

n∑
i=1

∫
RN

ϕ2

|x− ai|2
dμ ≤

∫
RN

|∇ϕ|2dμ + K

∫
RN

ϕ2dμ, c ≤ co,

where the functions ϕ belong to a weighted Sobolev space H1
μ, and the proof of 

the optimality of the constant co = co(N) :=
(
N−2

2

)2. The Gaussian probability
measure dμ is the unique invariant measure for Ornstein–Uhlenbeck type operators. 
This estimate allows us to get necessary and sufficient conditions for the existence of 
positive solutions to a parabolic problem corresponding to the Kolmogorov operators 
defined on smooth functions and perturbed by a multipolar inverse square potential

Lu + V u =
(

Δu +
∇μ

μ
· ∇u

)
+

n∑
i=1

c

|x− ai|2
u, x ∈ R

N ,

c > 0, a1, . . . , an ∈ R
N .

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The paper deals with a class of Kolmogorov operators defined on smooth functions

Lu = Δu + ∇μ

μ
· ∇u, (1.1)
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where μ is a probability density on RN , perturbed by a multipolar inverse square potential

V (x) =
n∑

i=1

c

|x− ai|2
, x ∈ R

N , c > 0, a1, . . . , an ∈ R
N . (1.2)

From the mathematical point of view, the interest in inverse square potentials of type V ∼ c
|x|2 relies in 

the criticality: they have the same homogeneity as the Laplacian and do not belong to the Kato’s class, 
then they cannot be regarded as a lower order perturbation term. Furthermore the study of such singular 
potentials is motived by applications to many fields, for example in many physical contexts as molecular 
physics [13], quantum cosmology (see e.g. [3]), quantum mechanics [2] and combustion models [11].

Multipolar potentials are associated with the interaction of a finite number of electric dipoles as, for 
example, in molecular systems consisting of n nuclei of unit charge located in a finite number of points 
a1, . . . , an and of n electrons. The Hartree–Fock model describes these systems (see [7]).

It is well known that if L = Δ and V ≤ c
|x|2−ε , c > 0, ε > 0, then the corresponding initial value problem is 

well-posed. But for ε = 0 the problem may not have positive solution. In [2] Baras and Goldstein showed that 
the evolution problem associated to Δ + V admits a unique positive solution if c ≤ co = co(N) :=

(
N−2

2
)2

and no positive solutions exist if c > co (see also [5] for a different approach involving the Hardy inequality). 
When it exists, the solution is exponentially bounded, on the contrary, if c > co, there is the so called 
instantaneous blowup phenomena.

A similar behaviour was obtained in [12] with the potential V = c
|x|2 replacing the Laplacian by the 

Kolmogorov operator L. See also [6] where the hypotheses on μ allow the drift term to be of the type 
∇μ
μ = −|x|m−2 x, m > 0.

In this paper we consider the generalized Ornstein–Uhlenbeck operator

Lu = Δu−
n∑

i=1
A(x− ai) · ∇u, (1.3)

where A is a positive definite real Hermitian N ×N -matrix, and the associated evolution problem

(P )
{

∂tu(x, t) = Lu(x, t) + V (x)u(x, t), x ∈ R
N , t > 0,

u(·, 0) = u0 ≥ 0 ∈ L2
μ,

with the multipolar singular potential V defined in (1.2) and L2
μ a suitable weighted space.

We state existence and nonexistence results using the relationship between the weak solution of (P ) and 
the bottom of the spectrum of the operator −(L + V )

λ1(L + V ) := inf
ϕ∈H1

μ\{0}

(∫
RN |∇ϕ|2 dμ−

∫
RN V ϕ2 dμ∫

RN ϕ2 dμ

)
.

Here H1
μ denotes a suitable weighted Sobolev space defined in the next Section.

When μ = 1 Cabré and Martel in [5] showed that the boundedness of λ1(Δ +V ), 0 ≤ V ∈ L1
loc(RN ), is a 

necessary and sufficient condition for the existence of positive exponentially bounded in time solutions to the 
associated initial value problem. Later in [12] the authors extended such a result to the case of Kolmogorov 
operators.

The estimate of the bottom of the spectrum λ1(L + V ) is equivalent to the weighted Hardy inequality 
with V (x) =

∑n c
2 , c ≤ co,
i=1 |x−ai|
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∫
RN

V ϕ2 dμ ≤
∫
RN

|∇ϕ|2dμ + K

∫
RN

ϕ2dμ, ϕ ∈ H1
μ, K > 0, (1.4)

and to the sharpness of the best possible constant.
Then the existence of positive solutions to (P ) is related to the Hardy inequality (1.4) and the nonexistence 

is due to the optimality of the constant co.
Our results about Hardy-type inequalities (1.4) (see Theorem 3.1 and Theorem 3.2 in Section 3) fit into 

the context of the so-called multipolar Hardy inequalities.
When μ = 1 the behaviour of the operator with a multipolar inverse square potential has been investigated 

in literature. In particular if L is the Schrödinger operator

L = −Δ −
n∑

i=1

c+i
|x− ai|2

,

n ≥ 2, ci ∈ R, c+i = max{ci, 0}, for any i ∈ {1, . . . , n}, Felli, Marchini and Terracini in [10] proved that the 
associated quadratic form

Q(ϕ) :=
∫
RN

|∇ϕ|2 dx−
n∑

i=1
ci

∫
RN

ϕ2

|x− ai|2
dx

is positive if 
∑n

i=1 c
+
i < (N−2)2

4 , conversely if 
∑n

i=1 c
+
i > (N−2)2

4 there exists a configuration of poles such 

that Q is not positive. Later Bosi, Dolbeaut and Esteban in [4] proved that for any c ∈
(
0, (N−2)2

4

]
there 

exists a positive constant K such that (1.4) holds. Recently Cazacu and Zuazua in [9], improving a result 
stated in [4], obtained the inequality (1.4) with K = 0 and V = c 

∑
1≤i<j≤n

|ai−aj |2
|x−ai|2|x−aj |2 (see also Cazacu 

[8] for estimates for the Hardy constants in bounded domains).
As far as we know there are no results in the literature about the weighted multipolar Hardy inequalities.
In this paper we are motivated to consider the Gaussian measure dμ(x) = μ(x)dx =

Ce−
1
2
∑n

i=1〈A(x−ai),(x−ai)〉dx, with C normalization constant, which is the unique invariant measure for 
the Ornstein–Uhlenbeck type operator (1.3) whose drift term is unbounded at infinity.

In Section 3 we will prove the inequality (1.4) which is the main result. Our technique to get the inequality, 
unlike the vector field method used in literature in the case n = 1 (see, e.g., [12] for the weighted case), allow 
us to overcome the difficulties due to the mutual interaction among the poles and to achieve the constant 
co in the left-hand side in (1.4).

We obtain the estimate in a direct way starting from the result obtained in [4] with the Lebesgue measure 
and exploiting a suitable bound which the function μ we consider satisfies.

The optimality of the constant co is less immediate to obtain. The crucial points to estimate the bottom 
of the spectrum are the choice of a suitable function ϕ which involves only one pole and the connection we 
state between the weight functions in the case of one pole and in the case of multiple poles.

Afterwards, in Section 4, we will get in another way the proof of the weighted inequality through the 
so called IMS (Ismaligov, Morgan, Morgan-Simon, Sigal) method and reasoning as in [4]. To this aim we 
need to use a Hardy inequality in the case n = 1 which we need to prove. Indeed in the IMS method a 
fundamental tool is an estimate with a single pole which allows us to achieve the optimal constant co in the 
inequality.

In Section 5 we will state an existence and nonexistence result, Theorem 5.1, putting together weighted 
Hardy inequality and Theorem 2.2 in Section 2. Furthermore, using the bilinear form associated to the 
operator −(L + V ), we will state the generation of an analytic C0-semigroup and the positivity of the 
solution arguing as in [1].
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2. Notation and preliminary results

Let us consider Kolmogorov operators L defined in (1.1) and the functions μ ∈ C1,α
loc

(
R

N
)

for some 
α ∈ (0, 1), μ(x) > 0 for all x ∈ R

N .
It is known that the operator L with domain

Dmax(L) = {u ∈ Cb(RN ) ∩W 2,p
loc (RN ) for all 1 < p < ∞, Lu ∈ Cb(RN )}

is the weak generator of a not necessarily C0-semigroup {T (t)}t≥0 in Cb(RN ). Since 
∫
RN Lu dμ = 0 for any 

u ∈ C∞
c (RN ), where dμ = μ(x)dx, then dμ is the invariant measure for {T (t)}t≥0 in Cb(RN ). So we can 

extend it to a positive preserving and analytic C0-semigroup on L2
μ := L2(RN , dμ), whose generator is still 

denoted by L.
Furthermore we denote by H1

μ be the set of all the functions f ∈ L2
μ having distributional derivative ∇f

in (L2
μ)N .

We recall the following proposition (see [14, Chapter 8] for more details).

Proposition 2.1. The following assertions hold:

i) C∞
c (RN ) is a core for L in L2

μ;
ii) D(L) is continuously and densely embedded in H1

μ;
iii)

∫
RN ∇u · ∇v dμ = − 

∫
RN (Lu)v dμ, u ∈ D(L), v ∈ H1

μ;
iv) for any t > 0, T (t)L2

μ ⊂ H1
μ.

From i) and ii) it follows that C∞
c (RN ) is densely embedded in H1

μ. Then we can regard H1
μ also as the 

completion of C∞
c (RN ) in the norm

‖u‖2
H1

μ
:= ‖u‖2

L2
μ

+ ‖∇u‖2
L2

μ
.

The operator L can also be defined via the bilinear form

aμ(u, v) =
∫
RN

∇u · ∇v dμ (2.1)

on H1
μ. This is immediately clear by integrating by parts in (2.1). Indeed

aμ(u, v) = −
∫
RN

Luv dμ, u, v ∈ C∞
c (RN ).

Let us recall the problem

(P )
{

∂tu(x, t) = Lu(x, t) + V (x)u(x, t), t > 0, x ∈ R
N , N ≥ 3,

u(·, t) = u0 ∈ L2
μ,

where L is as in (1.1). We say that u is a weak solution to (P ) if, for each T, R > 0, we have

u ∈ C([0, T ] , L2
μ), V u ∈ L1(BR × (0, T ) , dμdt)

and
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T∫
0

∫
RN

u(−∂tφ− Lφ) dμdt−
∫
RN

u0φ(·, 0) dμ =
T∫

0

∫
RN

V uφ dμdt

for all φ ∈ W 2,1
2 (RN × [0, T ]) having compact support with φ(·, T ) = 0, where BR denotes the open ball of 

R
N of radius R centered at 0.
For any Ω ⊂ R

N , W 2,1
2 (Ω × (0, T )) is the parabolic Sobolev space of the functions u ∈ L2(Ω × (0, T ))

having weak space derivatives Dα
xu ∈ L2(Ω ×(0, T )) for |α| ≤ 2 and weak time derivative ∂tu ∈ L2(Ω ×(0, T ))

equipped with the norm

‖u‖W 2,1
2 (Ω×(0,T )) :=

(
‖u‖2

L2(Ω×(0,T ))+‖∂tu‖2
L2(Ω×(0,T ))

+
∑

1≤|α|≤2

‖Dαu‖2
L2(Ω×(0,T ))

) 1
2

.

We will use the following result in Section 5.

Theorem 2.2. Assume 0 < μ ∈ C1,α
loc (RN ) is a probability density on RN and 0 ≤ V ∈ L1

loc(RN ). Then the 
following assertions hold:

(i) If λ1(L + V ) > −∞, then there exists a positive weak solution u ∈ C([0, ∞), L2
μ) of (P ) satisfying

‖u(t)‖L2
μ
≤ Meωt‖u0‖L2

μ
, t ≥ 0 (2.2)

for some constants M ≥ 1 and ω ∈ R.
(ii) If λ1(L +V ) = −∞, then for any 0 ≤ u0 ∈ L2

μ \ {0}, there is no positive weak solution of (P ) satisfying 
(2.2).

The proof of the Theorem is based on Cabré-Martel’s idea in [5] and it was proved in [12] for functions 
μ belonging to C1,α

loc (RN ). The proof relies on certain properties of the operator L and its corresponding 
semigroup {T (t)}t≥0 in L2

μ. Furthermore the strict positivity on compact sets of T (t)u0, t > 0, if 0 ≤ u0 ∈
L2
μ \ {0} is required.

3. Weighted Hardy inequality and optimality of the constant

Let us consider the following Gaussian measure

dμ = μ(x)dx = C e−
1
2
∑n

i=1〈A(x−ai),x−ai〉 dx (3.1)

with

C =

⎛
⎝ ∫

RN

e−
1
2
∑n

i=1〈A(x−ai),x−ai〉 dx

⎞
⎠

−1

(3.2)

and A positive definite real Hermitian N ×N -matrix, which is the unique invariant probability measure for 
Ornstein–Uhlenbeck type operators
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Lu = Δu−
n∑

i=1
A(x− ai) · ∇u.

So the operator L, with domain H2
μ := {u ∈ H1

μ : Dku ∈ H1
μ}, generates an analytic semigroup {T (t)}t≥0

on L2
μ (cf. [15]).

The operators we consider are perturbed by the multipolar inverse square potential

V (x) =
n∑

i=1

c

|x− ai|2
= c Vn, (3.3)

where x ∈ R
N , c > 0, ai ∈ R

N , i = 1, . . . , n.
We state the following weighted Hardy inequality.

Theorem 3.1. Assume N ≥ 3, n ≥ 2, A a positive definite real Hermitian N × N -matrix and let r0 =
mini	=j |ai − aj |/2, i, j = 1, . . . , n. Then there exists a constant k ∈ [0, π2) such that

c

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dμ ≤

∫
RN

|∇ϕ|2 dμ

+
[
k + (n + 1)c

r2
0

+ n

2 TrA
] ∫
RN

ϕ2 dμ

(3.4)

for all ϕ ∈ H1
μ, where c ∈ (0, co] with co = co(N) :=

(
N−2

2
)2 optimal constant.

Proof.
Step 1 (Inequality)

By density we can consider functions ϕ ∈ C∞
c (RN ).

The starting point is the following inequality, stated by Bosi, Dolbeault and Esteban in [4, Theorem 1]:

c

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dx ≤

∫
RN

|∇ϕ|2 dx +
[
k + (n + 1)c

r2
0

] ∫
RN

ϕ2 dx (3.5)

for all ϕ ∈ H1(RN ), with n ≥ 2, k ∈
[
0, π2) and c ∈ (0, co]. The proof of (3.5) is based on IMS truncation 

method. In the Section 4 we will prove the weighted version of the inequality (3.5) reasoning as in [4, 
Theorem 1].

Now we state the weighted version of this result in a direct way.
Indeed, applying (3.5) to the function ϕ

√
μ, we have

c

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dμ ≤

∫
RN

|∇ (ϕ√μ) |2 dx +
[
k + (n + 1)c

r2
0

] ∫
RN

ϕ2 dμ.

By means the easy calculation

∫
RN

|∇ (ϕ√μ) |2 dx =
∫
RN

∣∣∣∣(∇ϕ)√μ + ϕ
∇μ

2√μ

∣∣∣∣
2

dx

=
∫

|∇ϕ|2 dμ +
∫ (

1
4

∣∣∣∣∇μ

μ

∣∣∣∣
2

− 1
2

Δμ

μ

)
ϕ2 dμ,
RN RN
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and observing that we can estimate the last integral above taking into account that

1
4

∣∣∣∣∇μ

μ

∣∣∣∣
2

− 1
2

Δμ

μ
= 1

4

∣∣∣∣∣∣
n∑

j=1
A(x− aj)

∣∣∣∣∣∣
2

− 1
2

⎡
⎢⎣−nTrA +

∣∣∣∣∣∣
n∑

j=1
A(x− aj)

∣∣∣∣∣∣
2
⎤
⎥⎦ ≤ n

2 TrA

(3.6)

we get the result.

Step 2 (Optimality)

To state the optimality of the constant co we suppose that c > co.
Let us fix i and consider the function ϕ = |x − ai|γ , γ ∈ (1 − N

2 , 0). The function ϕ belongs to H1
μ and

∫
RN

(
|∇ϕ|2 − c

ϕ2

|x− ai|2
)

dμ = (γ2 − c)
∫
RN

|x− ai|2(γ−1) dμ.

Hence the bottom of the spectrum λ1 of the operator −(L + V ) satisfies

λ1 ≤ (γ2 − c)
∫
RN |x− ai|2(γ−1) dμ∫

RN |x− ai|2γ dμ
(3.7)

since
∫
RN

(
|∇ϕ|2 − V ϕ2) dμ ≤

∫
RN

(
|∇ϕ|2 − c

ϕ2

|x− ai|2
)

dμ.

We are able to state that for any i ∈ {1, . . . , n} it holds

C1 e
−α2(2n−1) |x−ai|2

2 ≤ e−
∑n

i=1
|A

1
2 (x−ai)|2

2 ≤ C2 e
−α1

n+1
2

|x−ai|2
2 (3.8)

with C1 = e−α2
∑

i�=j |ai−aj |2 and C2 = e
α1
2

∑
i�=j |ai−aj |2 which is a consequence of the inequalities

α1

n∑
i=1

|x− ai|2 ≤
n∑

i=1
|A 1

2 (x− ai)|2 ≤ α2

n∑
i=1

|x− ai|2, α1 , α2 > 0,

and

−
∑
j 	=i

|ai − aj |2 + n + 1
2 |x− ai|2 ≤

n∑
i=1

|x− ai|2

≤ (2n− 1)|x− ai|2 + 2
∑
j 	=i

|ai − aj |2.
(3.9)

The inequality (3.9) is proved in Appendix.
For simplicity in the following we place α̃1 = α1

n+1
2 and α̃2 = α2(2n − 1).

The equivalence between the weight functions in the case of one pole and in the case of multiple poles 
allows us to calculate integrals in (3.7). Indeed, by a change of variables and by (3.8)
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∫
RN

|x− ai|2βe−
∑n

i=1
|A

1
2 (x−ai)|2

2 dx ≤ C2

∫
RN

|x− ai|2βe−α̃1
|x−ai|2

2 dx

= C2 2β+N
2 α̃

−β−N
2

1

∫
RN

|x− ai|2βe−
|x−ai|2

2 dx.

(3.10)

Taking in mind the definition of Gamma integral function

∫
RN

|x|2βe−
|x|2
2 dx = σN 2β+N

2 −1Γ
(
β + N

2

)
, β + N

2 > 0,

we get from (3.10)

∫
RN

|x− ai|2βe−
∑n

i=1
|A

1
2 (x−ai)|2

2 dx ≤

≤ C2 22β+N−1α̃
−β−N

2
1 σNΓ

(
β + N

2

)
.

(3.11)

Reasoning as above we obtain an estimate from below

∫
RN

|x− ai|2βe−
∑n

i=1
|A

1
2 (x−ai)|2

2 dx ≥ C1

∫
RN

|x− ai|2βe−α̃2
|x−ai|2

2 dx

= C1α̃
−β−N

2
2

∫
RN

|x− ai|2βe−
|x−ai|2

2 dx

= C1 2β+N
2 −1α̃

−β−N
2

2 σNΓ
(
β + N

2

)
.

(3.12)

Therefore, using (3.11) and (3.12), we get

∫
RN |x− ai|2(γ−1) dμ∫

RN |x− ai|2γ dμ
≥

C1 2γ+N
2 −2α̃

−γ−N
2 +1

2 σNΓ(γ + N
2 − 1)

C2 22γ+N−1α̃
−γ−N

2
1 σNΓ(γ + N

2 )

= C1 2γ+N
2 −2α̃

−γ−N
2 +1

2

C2 22γ+N−1α̃
−γ−N

2
1 (γ + N

2 − 1)
.

Then

λ1 ≤ lim
γ→

(
1−N

2
)+(γ2 − c) C1 2γ+N

2 −2α̃
−γ−N

2 +1
2

C2 22γ+N−1α̃
−γ−N

2
1 (γ + N

2 − 1)
= −∞.

Thus, for any M > 0, there is ϕ ∈ H1
μ such that

∫
RN

|∇ϕ|2 dμ− c

∫
RN

ϕ2

|x− ai|2
dμ < −M

∫
RN

ϕ2 dμ.

By taking M := k+(n+1)c
2 + n TrA we find ϕ ∈ H1

μ such that

r0 2
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c

∫
RN

ϕ2

|x− ai|2
dμ >

∫
RN

|∇ϕ|2 dμ +
[
k + (n + 1)c

r2
0

+ n

2 TrA
] ∫
RN

ϕ2 dμ

which leads to a contradiction with respect the weighted Hardy inequality (3.4) because, of course,

c

∫
RN

ϕ2

|x− ai|2
dμ ≤ c

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dμ.

This proves the optimality of co.

We remark that when c ∈ (0, con ] the constant on the right-hand side of (3.4) can be improved using a 
different proof based on the multipolar Hardy inequality in the case of Lebesgue measure.

Moreover the inequality (3.13) below holds also in the case n = 1.

Theorem 3.2. Assume N ≥ 3 and n ≥ 1. Then we get

co
n

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dμ ≤

∫
RN

|∇ϕ|2 dμ + n

2 TrA
∫
RN

ϕ2 dμ (3.13)

for any ϕ ∈ H1
μ, where co = co(N) :=

(
N−2

2
)2.

Proof. We start from the known inequality

co
n

∫
RN

n∑
i=1

ϕ2

|x− ai|2
dx ≤

∫
RN

|∇ϕ|2 dx (3.14)

for all ϕ ∈ H1(RN ), where co = co(N) :=
(
N−2

2
)2, which we can get immediately by using the Hardy 

inequality with one pole.
Then we apply the inequality (3.14) to the function ϕ

√
μ and reason as in the proof of Theorem 3.1.

4. Proof of the weighted Hardy inequality via the IMS method

We can prove the inequality in Theorem 3.1 using the so-called IMS method, which consists in localizing 
the wave functions around the singularities by using a partition of unity.

We say that a finite family {Ji}n+1
i=1 of real valued functions Ji ∈ W 1,∞(RN ) is a partition of unity in RN

if 
∑n+1

i=1 J2
i = 1.

Any family of this type has the following properties:

(a)
∑n+1

i=1 Ji∂αJi = 0 for any α = 1, . . . , N ;
(b) Jn+1 =

√
1 −

∑n
i=1 J

2
i ;

(c)
∑n+1

i=1 |∇Ji|2 ∈ L∞(RN ).

Furthermore we require that

Ωi ∩ Ωj = ∅ for any i, j = 1, . . . , n, i 
= j, (4.1)

where Ωi = supp(Ji), i = 1, . . . , n. By the property (a) we get



904 A. Canale, F. Pappalardo / J. Math. Anal. Appl. 463 (2018) 895–909
N∑
α=1

|Jn+1∂αJn+1|2 =
N∑

α=1

∣∣∣∣∣∣
n∑

j=1
Jj∂αJj

∣∣∣∣∣∣
2

=
N∑

α=1

n∑
j=1

|Jj∂αJj |2,

from which

|∇Jn+1|2 =
n∑

i=1

J2
i

1 − J2
i

|∇Ji|2.

As a consequence we obtain an explicit formula for the sum of the gradients:

(d)
∑n+1

i=1 |∇Ji|2 =
∑n

i=1 |∇Ji|2 +
∑n

i=1
J2
i

1−J2
i
|∇Ji|2 =

∑n
i=1

|∇Ji|2
1−J2

i
,

Note that to avoid a singularity for the gradient of Jn+1 at the points where 1 − J2
i = 0, from (d) we shall 

assume the additional constraint |∇Ji|2 = F (x)(1 − J2
i ), for i = 1, . . . , n and for some F ∈ L∞(RN ).

By proceeding as in [4, Lemma 2], we are able to state the following result.

Lemma 4.1. Let {Ji}n+1
i=1 be a partition of unity satisfying (4.1), and dμ the Gaussian measure defined in 

(3.1). For any u ∈ H1
μ and any V ∈ L1

loc(RN ) we get

∫
RN

(
|∇ϕ|2 − V ϕ2) dμ =

n+1∑
i=1

∫
RN

(|∇(Jiϕ)|2 − V (Jiϕ)2)dμ

−
∫
RN

n+1∑
i=1

|∇Ji|2ϕ2 dμ.

Proof. We can immediately observe that

∫
RN

V

(
n+1∑
i=1

(Jiϕ)2
)

dμ =
∫
RN

V

(
n+1∑
i=1

J2
i

)
ϕ2 dμ =

∫
RN

V ϕ2 dμ. (4.2)

On the other hand,

n+1∑
i=1

|∇ (Jiϕ) |2 =
n+1∑
i=1

|(∇Ji)ϕ + (∇ϕ)Ji|2

=
n+1∑
i=1

|∇Ji|2ϕ2 +
n+1∑
i=1

|∇ϕ|2J2
i + 2

n+1∑
i=1

(Ji∇Ji)(ϕ∇ϕ)

=
n+1∑
i=1

|∇Ji|2ϕ2 + |∇ϕ|2 +
(

n+1∑
i=1

Ji∇Ji

)
∇ϕ2.

(4.3)

By property (a) it follows that 
(∑n+1

i=1 Ji∇Ji

)
∇ϕ2 = 0, then by integrating (4.3) on RN we obtain

∫
RN

|∇ϕ|2 dμ =
∫
RN

n+1∑
i=1

|∇ (Jiϕ) |2 dμ−
∫
RN

n+1∑
i=1

|∇Ji|2ϕ2 dμ. (4.4)

From (4.2) and (4.4) we get the result.
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Taking in mind that

Vn(x) =
n∑

i=1

1
|x− ai|2

,

as defined in (3.3), we recall a preliminary lemma, stated by Bosi, Dolbeault and Esteban in [4], about the 
case n = 2, with a1 = a, a2 = −a and 0 < r0 ≤ |a|.

Lemma 4.2. There is a partition of the unity {Ji}3
i=1 satisfying (4.1) with J1 ≡ 1 on B(a, r02 ), J1 ≡ 0 on 

B(a, r0)c, J2(x) = J1(−x) for any x ∈ R
N , 0 < r0 ≤ |a|, such that, for any c > 0, there exists a constant 

k ∈
[
0, π2) for which, almost everywhere for all x ∈ Ω := supp(J1) ∪ supp(J2), we have

3∑
i=1

|∇Ji|2 + c J2
3 V2(x) =

∑
i=1,2

|∇Ji|2
1 − J2

i

+ c J2
3 V2(x) ≤ k + 2c

r2
0

. (4.5)

Now we are able to proceed with the proof.

Proof of Theorem 3.1. Let us define the following quadratic form

Q[ϕ] :=
∫
RN

(
|∇ϕ|2 − cVn(x)ϕ2) dμ, ϕ ∈ H1

μ. (4.6)

By virtue of Lemma 4.1 we are able to write (4.6) as follows

Q[ϕ] =
n∑

i=1
Q[Jiϕ] + Rn, ϕ ∈ H1

μ (4.7)

where

Rn =
∫
RN

|∇(Jn+1ϕ)|2 dμ− c

∫
RN

Vn|Jn+1ϕ|2 dμ−
n+1∑
i=1

∫
RN

|∇Ji|2ϕ2 dμ.

Thanks to the property (d) we have

Rn =
∫
RN

|∇(Jn+1ϕ)|2 dμ− c

∫
RN

Vn

(
1 −

n∑
i=1

J2
i

)
ϕ2 dμ

−
n∑

i=1

∫
RN

|∇Ji|2
1 − J2

i

ϕ2 dμ

≥ −c

∫
RN

Vn(x)
(

1 −
n∑

i=1
J2
i

)
ϕ2 dμ−

n∑
i=1

∫
RN

|∇Ji|2
1 − J2

i

ϕ2 dμ.

Let us consider a partition of unity {Ji}n+1
i=1 satisfying (4.1), and the sets Ωi = B(ai, r0) such that Ωi =

supp(Ji), i = 1, . . . , n. If we set Ω = ∪n
i=1Ωi and Γ = R

N \ Ω, then |x − ai| ≥ r0 in Ωj for i 
= j, and 
Vn(x) ≤ n

2 on Γ. Moreover, using the condition (4.1) we get

r0
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Rn ≥ −
n∑

i=1

∫
Ωi

[
|∇Ji|2
1 − J2

i

+ c
(
1 − J2

i

)
Vn(x)

]
ϕ2 dμ− c n

r2
0

∫
Γ

ϕ2 dμ.

Taking into account that Jj = 0 on Ωi for any j 
= i, we have for j 
= i

Rn ≥−
n∑

i=1

∫
Ωi

[
|∇Ji|2
1 − J2

i

+ |∇Jj |2
1 − J2

j

+ c
(
1 − J2

i − J2
j

)( 1
|x− ai|2

+ 1
|x− aj |2

)

+ c
(
1 − J2

i

)⎛⎝∑
k 	=i,j

1
|x− ak|2

⎞
⎠]

ϕ2 dμ− c n

r2
0

∫
Γ

ϕ2 dμ.

Now, taking 
{
Ji, Jj ,

√
1 − J2

i − J2
j

}
as the partition of unity, we can apply Lemma 4.2 on Ωi with (ai, aj) =

(−a, a) up to a change of coordinates. In this way we get

Rn ≥−
n∑

i=1

∫
Ωi

⎡
⎣k + 2c

r2
0

+ c(1 − J2
i )

⎛
⎝∑

k 	=i,j

1
|x− ak|2

⎞
⎠
⎤
⎦ϕ2 dμ

− c n

r2
0

∫
Γ

ϕ2 dμ

≥−
n∑

i=1

∫
Ωi

[
k + 2c
r2
0

+ (n− 2)c
r2
0

(1 − J2
i )
]
ϕ2 dμ− c n

r2
0

∫
Γ

ϕ2 dμ,

(4.8)

since we can estimate 1
|x−ak|2 by 1

r2
0

for all k 
= i, j. Taking into account (4.6) and using the weighted Hardy 
inequality (3.13) with n = 1 we get

Q[Jiϕ] =
∫
RN

|∇Jiϕ|2 dμ− c

∫
RN

(
1

|x− ai|2
+

n∑
j=1
j 	=i

1
|x− aj |2

)
|Jiϕ|2 dμ

≥−
[
1
2TrA + (n− 1)c

r2
0

] ∫
Ωi

|Jiϕ|2 dμ,

from which

n∑
i=1

Q[Jiϕ] ≥ −1
2TrA

n∑
i=1

∫
Ωi

ϕ2 dμ− (n− 1)c
r2
0

n∑
i=1

∫
Ωi

J2
i ϕ

2 dμ (4.9)

From (4.7), (4.8) and (4.9) we deduce

Q[ϕ] ≥−
n∑

i=1

∫
Ωi

[
k + 2c
r2
0

+ (n− 2)c
r2
0

(1 − J2
i ) + 1

2TrA + (n− 1)c
r2
0

J2
i

]
ϕ2 dμ

− c n

r2
0

∫
Γ

ϕ2 dμ.

Since
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k + 2c + c(n− 2)(1 − J2
i ) + c(n− 1)J2

i = k + cn + cJ2
i ≤ k + c(n + 1),

we finally obtain

Q[ϕ] ≥−
[
k + (n + 1)c

r2
0

+ 1
2TrA

] ∫
Ω

ϕ2 dμ− c n

r2
0

∫
Γ

ϕ2 dμ

≥−
[
k + (n + 1)c

r2
0

+ 1
2TrA

] ∫
RN

ϕ2 dμ,

from which we get inequality (3.4).

5. Existence of solutions via weighted Hardy inequality

The potential V (x) =
∑n

i=1
c

|x−ai|2 and the Gaussian density μ(x) satisfy the hypotheses of the The-
orem 2.2. We can therefore state the following existence and nonexistence result as a consequence of the 
weighted Hardy inequality (3.4) and of the Theorem 2.2.

Theorem 5.1. Assume that N ≥ 3, A a positive definite real Hermitian N × N -matrix and 0 ≤ V (x) ≤∑n
i=1

c
|x−ai|2 , with c > 0, x, ai ∈ R

N , i ∈ {1, . . . , n}. Let L the Ornstein–Uhlenbeck type operator (1.3). 
Then the following assertions hold:

i) If c ≤ co there exists a positive weak solution u ∈ C
(
[0,∞) , L2

μ

)
of

{
∂tu(x, t) = L + V (x)u(x, t), x ∈ R

N , t > 0,
u(·, t) = u0 ∈ L2

μ,
(5.1)

satisfying

‖u(t)‖L2
μ
≤ Meωt‖u0‖L2

μ
, t ≥ 0 (5.2)

for some constants M ≥ 1, ω ∈ R, and any u0 ∈ L2
μ.

ii) If c > co there exists no positive weak solution of (5.1) with V (x) =
∑n

i=1
c

|x−ai|2 satisfying (5.2) for 
any 0 ≤ u0 ∈ L2

μ, u0 
= 0.

Following a different approach based on bilinear forms associated to the operator −(L + V ), we obtain 
an existence result. We state the generation of an analytic C0-semigroup.

Let us define the bilinear form

ac(u, v) :=
∫
RN

∇u · ∇v dμ− c

n∑
i=1

∫
RN

uv

|x− ai|2
dμ (5.3)

for u, v ∈ D(ac) = H1
μ, N ≥ 3 and c > 0.

Arguing as in [1, Propositions 2.2 and 2.3], we can get the next result.

Proposition 5.2. The following statements hold:

i) ac is closed if c < co;
ii) aco is closable.
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Furthermore ac is quasi-accretive for all c ∈ (0, co]. In fact by the weighted Hardy inequality (3.4) we 
immediately get

ac(u, u) ≥ −K (u, u)H1
μ

for all u ∈ H1
μ, with K the constant on the right-hand side in the inequality.

For c < co, if A is the associated operator defined by

D(A) =

⎧⎨
⎩u ∈ D(ac) : ∃ v ∈ L2

μ s. t. ac(u, φ) =
∫
RN

vφ dμ ∀φ ∈ D(ac)

⎫⎬
⎭ ,

Au = v,

then −A = L + V generates an analytic C0-semigroup {S(t)}t≥0 on L2
μ satisfying

‖S(t)‖ ≤ eKt, t ≥ 0.

For the case c = co the same conclusion holds taking the closure aco instead of aco in the definition of A.
The positivity of the solution u can be obtained as in [1, Section 2]. Indeed, we can regard S(t) as the 

limit of positive preserving semigroups described by cut-off potentials.
Let Ak = L + min (V, ck), k ∈ N. Since L is the generator of a positive preserving semigroup on L2

μ and 
min (V, ck) is bounded and non-negative, Ak generates a positive preserving semigroup, denoted by Sk(t). 
Moreover

0 ≤ Sk(t) ≤ Sk+1(t).

If c ≤ co it follows from the monotone convergence theorem for forms (cf. [16, Theorem S.14]) that

lim
k→∞

Sk(t) = S(t)

strongly in L2
μ. Then u(t) = S(t)u0 is positive.

Finally, as in [1, Proposition 2.5], we can observe that if c > co then

lim
k→∞

‖Sk(t)‖ = ∞, t > 0.

Appendix A

Let us state the following estimates

−
∑
j 	=i

|ai − aj |2 + n + 1
2 |x− ai|2 ≤

n∑
i=1

|x− ai|2

≤ (2n− 1)|x− ai|2 + 2
∑
j 	=i

|ai − aj |2
(A.1)

for any i, j ∈ {1, . . . , n}.
In fact, starting from the inequalities

|x− aj |2 = |x− ai + ai − aj |2 ≤ 2|x− ai|2 + 2|ai − aj |2
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|x− aj |2 ≥ |x− ai|2
2 − |ai − aj |2,

as a consequence we obtain

n∑
i=1

|x− ai|2 = |x− ai|2 +
∑
j 	=i

|x− aj |2 ≤ |x− ai|2 + 2(n− 1)|x− ai|2 + 2
n∑

i	=j

|ai − aj |2

and

n∑
i=1

|x− ai|2 ≥ |x− ai|2 + n− 1
2 |x− ai|2 −

n∑
i	=j

|ai − aj |2.
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