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Exact rates of convergence in some martingale central limit theorems
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Center for Applied Mathematics, Tianjin University, 300072 Tianjin, China;
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Abstract

Renz [14], Ouchti [12], El Machkouri and Ouchti [4] and Mourrat [13] have established some tight
bounds on the rate of convergence in the central limit theorem for martingales. In the present paper
a modification of the methods, developed by Bolthausen [1] and Grama and Haeusler [7], is applied
for obtaining exact rates of convergence in the central limit theorem for martingales with differences
having conditional moments of order 2 + ρ, ρ > 0. Our results generalise and strengthen the bounds
mentioned above.
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1. Introduction

Assume that we are given a sequence of martingale differences (ξi,Fi)i=0,...,n, defined on some
probability space (Ω,F ,P), where ξ0 = 0 and {∅,Ω} = F0 ⊆ ... ⊆ Fn ⊆ F are increasing σ-fields. Set

X0 = 0, Xk =
k∑

i=1

ξi, k = 1, ..., n. (1)

Then X = (Xk,Fk)k=0,...,n is a martingale. Let 〈X〉 be its conditional variance:

〈X〉0 = 0, 〈X〉k =
k∑

i=1

E[ξ2i |Fi−1], k = 1, ..., n. (2)

Define
D(Xn) = sup

x∈R

∣∣∣P(Xn ≤ x)− Φ (x)
∣∣∣,

where Φ (x) is the distribution function of the standard normal random variable. Denote by
P−→

convergence in probability. According to the basic results of martingale central limit theory (see the
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monograph Hall and Heyde [10]), the “conditional Lindeberg condition”

n∑
i=1

E[ξ2i 1{|ξi|≥ε}|Fi−1]
P−→ 0, as n → ∞ for each ε > 0,

and the “conditional normalizing condition”

〈X〉n P−→ 1, as n → ∞,

together implies that
D(Xn) −→ 0, as n → ∞.

In this paper we are interested in bounds of the speed of convergence in central limit theorem, usually
termed “Berry-Esseen bounds”.

For general martingales, we first recall the following Berry-Esseen bound due to Heyde and Brown
[9]. For 1 < p ≤ 2, Heyde and Brown proved that

D(Xn) ≤ Cp

(
E[|〈X〉n − 1|p] +

n∑
i=1

E[|ξi|2p]
)1/(2p+1)

, (3)

where Cp depends only on p. The proof of Heyde and Brown is based on the martingale version of
the Skorokhod embedding scheme. This method seems to be unsuited to obtain (3) for p > 2. Using
a method developed by Bolthausen [1], Haeusler [8] gave an extension of (3) to all p > 1. See also
Joos [11]. Moreover, Haeusler also gave an example to show that the bound (3) is optimal under the
stated condition, that is there exists a sequence of martingale differences (ξk,Fk)k≥0, such that for all
n large enough,

D(Xn)
(
E[|〈X〉n − 1|p] +

n∑
i=1

E[|ξi|2p]
)−1/(2p+1) ≥ cp,

where cp is a positive constant and does not depend on n. For more interesting Berry-Esseen bounds
for martingales, we refer to Dedecker and Merlevède [2], where the authors consider the rates of
convergence for linear statistics Xn =

∑
i∈Z cn,iξi based on stationary martingale differences. Their

rates are (most of the time) optimal in term of Wasserstein distances. As an application, using the
comparison between the uniform distance and the Kantorovith distance, it leads to a Berry-Esseen
bound of order n−1/4

√
log n when the ξi’s have a moment of order 3 (see the rate (1.8) of [2]). This

Berry-Esseen bound provides the best rate of convergence (up to the
√
log n term) under the stated

condition. Indeed, Bolthausen [1] gave a counter-example showing that the rate n−1/4 in the Berry-
Esseen bound cannot be improved when ξi’s have finite moments of order 3.

However, for martingales having bounded differences, the bound (3) is not the best possible. In
fact, an earlier result of Bolthausen [1] sates that if |ξi| ≤ ε and 〈X〉n = 1 a.s., then

D(Xn) ≤ Cε3n log n, (4)

where C is a constant. Moreover, Bolthausen [1] also showed that there exists a sequence of martingale
differences satisfying |ξi| ≤ 2/

√
n and 〈X〉n = 1 a.s., such that for all n large enough,

D(Xn)
√
n/ log n ≥ c, (5)
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where c is a positive constant and does not depend on n. This means the bound (4) is optimal in the
case that ε is of order 1/

√
n. Relaxing the condition 〈X〉n = 1 a.s., Bolthausen [1] then proved that if

|ξi| ≤ ε a.s., then

D(Xn) ≤ C
(
ε3n log n+min{||〈X〉n − 1||1/31 , ||〈X〉n − 1||1/2∞ }

)
. (6)

It seems that the term ||〈X〉n − 1||1/31 in the last bound should be replaced by ||〈X〉n − 1||1/31 + ε2/3;
see Mourrat [13]. (Indeed, in the proof of Bolthausen’s corollary, we found a term γ2 is missing for
the estimation of E[(Ŝ − S)2]; see [1] for details.)

If E[ξ2i |Fi−1] = 1/n and E[|ξi|2+ρ|Fi−1] ≤ 1/n1+ρ/2 a.s. for some number ρ ∈ (0, 1] and all i =
1, ..., n, Renz [14] has obtained the following Berry-Esseen bound:

D(Xn) ≤ Cρ εn, (7)

where the constant Cρ depends only on ρ and

εn =

{
n−ρ/2, if ρ ∈ (0, 1),

n−1/2 log n, if ρ = 1.

Moreover, Renz also showed that there exists a sequence of martingale differences satisfying his con-
ditions, such that for all n large enough,

D(Xn)ε
−1
n ≥ c, (8)

where c is a positive constant and does not depend on n. This means the bound (7) is exact.
With Bolthausen’s method, El Machkouri and Ouchti [4] improved the term ε3n log n in (6) to

ε log n, that is if E[|ξi|3|Fi−1] ≤ εE[ξ2i |Fi−1] a.s., then

D(Xn) ≤ C
(
ε log n+ ||〈X〉n − 1||1/2∞

)
. (9)

They also proved a result with term ||〈X〉n − 1||1/31 .
Following Bolthausen [1] again, Mourrat [13] has obtained that if |ξi| ≤ ε a.s., then for p ≥ 1,

D(Xn) ≤ Cp

(
ε3n log n+ ε2p/(2p+1) +E[| 〈X〉n − 1|p]1/(2p+1)

)
, (10)

where Cp is a constant depending only on p.Notice that Mourrat [13] has extended the term min{||〈X〉n−
1||1/31 , ||〈X〉n − 1||1/2∞ } of Bolthausen [1] to the more general term E[| 〈X〉n − 1|p]1/(2p+1) + ε2p/(2p+1).
Moreover, he also has justified the optimality of the term E[| 〈X〉n − 1|p]1/(2p+1).

In this paper we give an improvement on the inequality of El Machkouri and Ouchti (9) and
Mourrat’s inequality (10). Our result also generalises the inequality of Renz (7). With the method of
Grama and Haeusler [7], we prove that if there exist two positive numbers ρ and ε, such that

E[|ξi|2+ρ|Fi−1] ≤ ερE[ξ2i |Fi−1] a.s. for all i = 1, ..., n, (11)

then

D(Xn) ≤ Cρ

(
γ + ||〈X〉n − 1||1/2∞

)
, (12)
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where Cρ is a constant depending only on ρ and

γ =

{
ερ, if ρ ∈ (0, 1),
ε | log ε|, if ρ ≥ 1.

We also justify the optimality of the term γ. Then with the method of Bolthausen [1], we obtain a
significant improvement of Mourrat’s inequality (10) by dropping the term ε3n log n: If |ξi| ≤ ε a.s.,
then for any p ≥ 1,

D(Xn) ≤ Cp

(
ε2p/(2p+1) +E[| 〈X〉n − 1|p]1/(2p+1)

)
, (13)

where Cp is a constant depending only on p.
The paper is organized as follows. Our main results are stated and discussed in Section 2. Proofs

are deferred to Section 3.
Throughout the paper, c and cα probably supplied with some indices, denote respectively a generic

positive absolute constant and a generic positive constant depending only on α.

2. Main Results

In the sequel we shall use the following conditions:

(A1) There exist two positive numbers ρ and ε ∈ (0, 12 ], such that for all 1 ≤ i ≤ n,

E[|ξi|2+ρ|Fi−1] ≤ ερE[ξ2i |Fi−1] a.s.;

(A2) There exists a number δ ∈ [0, 12 ], such that |〈X〉n − 1| ≤ δ2 a.s.

Let us comment on conditions (A1) and (A2).

1. Note that in the case of normalized sums of i.i.d. random variables, conditions (A1) and (A2)
are satisfied with ε = 1

σ
√
n
and δ = 0.

2. In the case of martingales, ε and δ usually depend on n such that ε = εn → 0 and δ = δn → 0 as
n → ∞. It is also worth noting that the bounded differences, that is |ξi| ≤ ε a.s. for all i, satisfy
condition (A1).

3. Assume that (Yi,Fi)i≥1 is a sequence of martingale differences satisfying

E[|Yi|2+ρ|Fi−1] ≤ CρE[Y 2
i |Fi−1]

for a positive absolute constant C and all i ≥ 1. Let Sn =
∑n

i=1 Yi and sn =
√

E[S2
n]. Then it

is easy to verify that condition (A1) is satisfied with ξi = Yi/sn and ε = C/sn. In particular, if
(Yi,Fi)i≥1 is a stationary sequence, then ε = O(1/

√
n) as n → ∞.

4. Condition (A1) is satisfied for separately Lipschitz functions of independent random variables.
Let f : X n �→ R be separately Lipschitz, such that

|f(x1, x2, . . . , xn)− f(x′1, x
′
2, . . . , x

′
n)| ≤ d(x1, x

′
1) + d(x2, x

′
2) + · · ·+ d(xn, x

′
n) . (14)
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Let then
Xn := f(η1, . . . , ηn)−E[f(η1, . . . , ηn)] , (15)

where η1, . . . , ηn is a sequence of independent random variables. We also introduce the natural
filtration of the chain, that is F0 = {∅,Ω} and for k ∈ N, Fk = σ(η1, η2, . . . , ηk). Define then

gk(η1, . . . , ηk) = E[f(η1, . . . , ηn)|Fk] , (16)

and
ξk = gk(η1, . . . , ηk)− gk−1(η1, . . . , ηk−1) . (17)

For k ∈ [1, n− 1], let
Xk := ξ1 + ξ2 + · · ·+ ξk ,

and note that, by definition of the ξk’s, the functional Xn introduced in (15) satisfies

Xn = ξ1 + ξ2 + · · ·+ ξn .

Hence Xk is a martingale adapted to the filtration Fk. It is easy to verify that ξ1, ..., ξn satisfy
condition (A1). Indeed, for all 1 ≤ i ≤ n,

E[|ξi|2+ρ|Fi−1] = E[|E[f(η1, . . . , ηn)|Fi]−E[f(η1, . . . , ηn)|Fi−1]|ρξ2i |Fi−1]

= E[|E[f(η1, . . . , ηn)|Fi]−E[f(η1, . . . , η
′
i, . . . , ηn)|Fi]|ρξ2i |Fi−1]

≤ E[(E[d(ηi, η
′
i)|Fi])

ρξ2i |Fi−1]

= E[(E[d(ηi, η
′
i)|ηi])ρ] E[ξ2i |Fi−1], (18)

where (η′1, . . . , η′n) is an independent copy of (η1, . . . , ηn). Hence, condition (A1) is satisfied
with ε = max1≤i≤nE[(E[d(ηi, η

′
i)|ηi])ρ]1/ρ. In particular, by Jensen’s inequality, it holds ε ≤

max1≤i≤nE[d(ηi, η
′
i)] for ρ ∈ (0, 1].

Our first result is the following Berry-Esseen bounds for martingales.

Theorem 2.1. Assume conditions (A1) and (A2).

• If ρ ∈ (0, 1), then

D(Xn) ≤ cρ

(
ερ + δ

)
. (19)

• If ρ ∈ [1,∞), then

D(Xn) ≤ c
(
ε| log ε|+ δ

)
. (20)

We justify the optimality of the term ερ of (19). Let n = 
ε−2� be the integer part of ε−2 and
ρ ∈ (0, 1). Renz’s inequality (5) shows that there exists a sequence of martingale differences satisfying
condition (A1) and 〈X〉n = 1 a.s., such that for all ε small enough,

ε−ρD(Xn) ≥ nρ/2D(Xn) ≥ c, (21)

where the constant c > 0 does not depend on ε.
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Notice that, for bounded martingale differences, condition (A1) holds with ρ = 1. By Bolthausen’s
inequality (5) with n = [ε−2], there exists a sequence of martingale differences satisfying |ξi| ≤ 3ε and
〈X〉n = 1 a.s., such that for all ε small enough,

(3ε | log 3ε|)−1D(Xn) ≥ 1

4
D(Xn)

√
n/ log n ≥ c, (22)

where the constant c > 0 does not depend on ε. Thus the term ε | log ε| of (20) is exact even for
bounded martingale differences.

Under the conditions (A1) and (A2), the order of the term ε |log ε| in (20) is less than the order of
the term ε3n log n in Bolthausen’s inequality (6). Indeed, by condition (A2), we have 3/4 ≤ 〈X〉n ≤ nε2

a.s. (see Lemma 3.2) and then ε ≥ √
3/(4n). For ε ≤ 1/2, it is easy to see that ε3n log n ≥ 3 ε| log ε|/4.

Moreover, ε3n log n may converge to infinity while ε |log ε| converges to 0 as ε → 0 and n → ∞. For
instance, if ε is of the order n−1/3 as n → ∞, then it is obvious that ε |log ε| = O(n−1/3 log n) while
ε3n log n ≥ log n. Thus the term ε |log ε| is much smaller than ε3n log n. Similarly, the order of ε | log ε|
is also better than the order of ε log n in (9) of El Machkouri and Ouchti [4].

For martingales with bounded differences, inequality (20) has been established earlier in Grama
[5, 6]. Under the conditional Bernstein condition, that is

|E[ξki |Fi−1]| ≤ 1

2
k!εk−2E[ξ2i |Fi−1] a.s. for k ≥ 3 and 1 ≤ i ≤ n,

instead of condition (A1), Fan, Grama and Liu [3] have obtained the Berry-Esseen bound (20). Note
that the conditional Bernstein condition implies that ξi has conditional exponential moment. Now we
only assume that ξi has conditional moment of order 3.

Using Theorem 2.2, we have the following Berry-Esseen bounds similar to the results of Ouchti
[12]. Following the notations of Ouchti [12], let v(n) denote either

sup{k : 〈X〉k ≤ 1} or inf{k : 〈X〉k ≥ 1}.

Corollary 2.1. Assume conditions (A1) and 〈X〉n ≥ 1 a.s.

• If ρ ∈ (0, 1), then
D(Xv(n)) ≤ cρ ε

ρ. (23)

• If ρ ∈ [1,∞), then
D(Xv(n)) ≤ c ε| log ε|. (24)

Inequality (24) significantly improves an earlier result of Ouchti [12] under the following condition

E[|ξi|3|Fi−1] ≤ n−1/2E[ξ2i |Fi−1] a.s. for all i ≥ 1.

Ouchti has obtained a convergence rate in central limit theorem of order n−1/4, while (24) gives a
convergence rate of order n−1/2 log n.

Relaxing condition (A2), we have the following estimation.

Theorem 2.2. Assume condition (A1). Let p ≥ 1.
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• If ρ ∈ (0, 1), then

D(Xn) ≤ cp,ρ

(
ερ +

(
E[|〈X〉n − 1|p] +E[ max

1≤i≤n
|ξi|2p]

)1/(2p+1)
)
. (25)

• If ρ ∈ [1,∞), then

D(Xn) ≤ cp

(
ε| log ε|+

(
E[|〈X〉n − 1|p] +E[ max

1≤i≤n
|ξi|2p]

)1/(2p+1)
)
. (26)

Notice that E[max1≤i≤n |ξi|2p] ≤
∑n

i=1E[|ξi|2p]. Therefore, our bounds are usually smaller than
the bound of Haeusler (3). For instance, if |ξi| ≤ ε a.s. for all i = 1, ..., n, then E[max1≤i≤n |ξi|2p] ≤ ε2p,
while

∑n
i=1E[|ξi|2p] ≤ nε2p.

For martingales having bounded differences, Theorem 2.2 implies the following corollary.

Corollary 2.2. Assume |ξi| ≤ ε a.s. for all i ∈ [0, n]. Then for any p ≥ 1,

D(Xn) ≤ cp

(
ε2p +E[|〈X〉n − 1|p]

)1/(2p+1)
. (27)

Clearly, the term ε3n log n appearing in Mourrat’s inequality (10) does not appear any more in
(27). When ε → 0 and ε ≥ 3/7

√
1/(n log n), it holds ε2p/(2p+1) ≤ ε3n log n for any p ≥ 1. Moreover,

when ε → 0 and ε ≥ 1/ 3
√
n, we have ε3n log n → ∞ and ε2p/(2p+1) → 0. Thus our bound (27) is

significantly smaller than the bound of Mourrat (10).

3. Proofs of Theorems

In the sequel, for simplicity, the equalities and inequalities involving random variables will be
understood in the a.s. sense without mentioning this.

In the proofs of theorems, we will make use of the following two lemmas. The first lemma shows
that we may assume ρ ∈ (0, 1] in condition (A1).

Lemma 3.1. If there exists an s > 2, such that

E[|ξi|s|Fi−1] ≤ εs−2E[ξ2i |Fi−1], (28)

then, for any t ∈ [2, s),
E[|ξi|t|Fi−1] ≤ εt−2E[ξ2i |Fi−1]. (29)

Proof. Let l, p, q be defined by the following equations

lp = 2, (t− l)q = s, p−1 + q−1 = 1, l > 0 and p, q ≥ 1.

Solving the last equations, we get

l =
2(s− t)

s− 2
, p =

s− 2

s− t
, q =

s− 2

t− 2
.
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By Hölder’s inequality and (28), it is easy to see that

E[|ξi|t|Fi−1] = E[|ξi|l|ξi|t−l|Fi−1]

≤ (E[|ξi|lp|Fi−1])
1/p(E[|ξi|(t−l)q|Fi−1])

1/q

≤ (E[ξ2i |Fi−1])
1/p(E[|ξi|s|Fi−1])

1/q

≤ (E[ξ2i |Fi−1])
1/p(εs−2E[ξ2i |Fi−1])

1/q

≤ ε(s−2)/qE[ξ2i |Fi−1]

= εt−2 E[ξ2i |Fi−1].

This completes the proof of lemma. �
The following lemma shows that under condition (A1), ξi has a bounded conditional variance.

Lemma 3.2. If there exists an s > 2, such that

E[|ξi|s|Fi−1] ≤ εs−2E[ξ2i |Fi−1], (30)

then
E[ξ2i |Fi−1] ≤ ε2. (31)

In particular, condition (A1) implies (31).

Proof. By Jensen’s inequality, it is easy to see that

(E[ξ2i |Fi−1])
s/2 ≤ E[|ξi|s|Fi−1]

≤ εs−2 E[ξ2i |Fi−1].

Thus
(E[ξ2i |Fi−1])

s/2−1 ≤ εs−2,

which implies (31). �

3.1. Proof of Theorem 2.1

Theorem 2.1 is a refinement of Lemma 3.3 of Grama and Haeusler [7] where it is assumed that ξi’s
are bounded, which is a particular case of condition (A1). See also Lemma 3.1 of Fan, Grama and
Liu [3]. Compared to the proofs of Grama and Haeusler [7] and Fan, Grama and Liu [3], the main
challenge of our proof comes from the control of I1 defined in (38).

By Lemma 3.1, we only need to consider the case of ρ ∈ (0, 1]. Set T = 1 + δ2, and introduce a
modification of the conditional variance 〈X〉 as follows:

Vk = 〈X〉k 1{k<n} + T1{k=n}. (32)

It is obvious that V0 = 0, Vn = T , and that (Vk,Fk)k=0,...,n is a predictable process. For simplicity of
notations, denote

γ =

{
ε+ δ, if ρ ∈ (0, 1),
ε |log ε|+ δ, if ρ = 1.

8



Let c∗ be a constant depending on ρ, whose value will be chosen later. Define the following non-
increasing discrete time predictable process

Ak = c2∗γ
2 + T − Vk, k = 1, ..., n.

In particular, we have A0 = c2∗γ2 + T and An = c2∗γ2. Moreover, for u, x ∈ R, and y > 0, set, for
brevity,

Φu(x, y) = Φ
(u− x√

y

)
. (33)

Let N = N (0, 1) be a standard normal random variable, which is independent of Xn. Using a
smoothing procedure, by Lemma 3.4, we get

sup
u

∣∣∣P(Xn ≤ u)− Φ(u)
∣∣∣ ≤ c1 sup

u

∣∣∣P(Xn + c∗γN ≤ u)− Φ(u)
∣∣∣+ c2γ

= c1 sup
u

∣∣∣E[Φu(Xn, An)]− Φ(u)
∣∣∣+ c2γ

≤ c1 sup
u

∣∣∣E[Φu(Xn, An)]−E[Φu(X0, A0)]
∣∣∣

+ c1 sup
u

∣∣∣E[Φu(X0, A0)]− Φ(u)
∣∣∣+ c2γ

= c1 sup
u

∣∣∣E[Φu(Xn, An)]−E[Φu(X0, A0)]
∣∣∣

+ c1 sup
u

∣∣∣Φ( u√
c2∗γ2 + T

)
− Φ(u)

∣∣∣+ c2γ. (34)

Since T = 1 + δ2, it is easy to see that∣∣∣Φ( u√
c2∗γ2 + T

)
− Φ(u)

∣∣∣ ≤ c3

∣∣∣ 1√
c2∗γ2 + T

− 1
∣∣∣ ≤ c4γ. (35)

Returning to (34), we obtain

sup
u

∣∣∣P(Xn ≤ u)− Φ(u)
∣∣∣ ≤ c1 sup

u

∣∣∣E[Φu(Xn, An)]−E[Φu(X0, A0)]
∣∣∣+ c5γ. (36)

By a simple telescoping, we deduce that

E[Φu(Xn, An)]−E[Φu(X0, A0)] = E
[ n∑
k=1

(
Φu(Xk, Ak)− Φu(Xk−1, Ak−1)

)]
.

Using the fact
∂2

∂x2
Φu(x, y) = 2

∂

∂y
Φu(x, y),

we obtain
E[Φu(Xn, An)]−E[Φu(X0, A0)] = I1 + I2 − I3, (37)
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where

I1 = E

[ n∑
k=1

(
Φu(Xk, Ak)− Φu(Xk−1, Ak)

− ∂

∂x
Φu(Xk−1, Ak)ξk − 1

2

∂2

∂x2
Φu(Xk−1, Ak)ξ

2
k

)]
, (38)

I2 =
1

2
E

[ n∑
k=1

∂2

∂x2
Φu(Xk−1, Ak)

(
Δ 〈X〉k −ΔVk

)]
, (39)

I3 = E

[ n∑
k=1

(
Φu(Xk−1, Ak−1)− Φu(Xk−1, Ak)− ∂

∂y
Φu(Xk−1, Ak)ΔVk

)]
, (40)

where Δ 〈X〉k = 〈X〉k − 〈X〉k−1.
Next, we give the estimates of I1, I2 and I3. To this end, we introduce the following notations.

Denote by ϕ the density function of the standard normal random variable. Moreover, ϑi’s stand for
some values or random variables satisfying 0 ≤ ϑi ≤ 1, which may represent different values at different
places.

a) Control of I1. To shorten notations, set Tk−1 = (u−Xk−1)/
√
Ak. It is obvious that

Rk =: Φu(Xk, Ak)− Φu(Xk−1, Ak)− ∂

∂x
Φu(Xk−1, Ak)ξk − 1

2

∂2

∂x2
Φu(Xk−1, Ak)ξ

2
k

= Φ
(
Tk−1 +

ξk√
Ak

)
− Φ(Tk−1)− Φ′(Tk−1)

ξk√
Ak

− 1

2
Φ′′(Tk−1)

( ξk√
Ak

)2
.

We distinguish two cases as follows.
Case 1 : |ξk/

√
Ak| ≤ 1 + |Tk−1|/2. By a three-term Taylor expansion, it is easy to see that if

|ξk/
√
Ak| ≤ 1, then ∣∣∣Rk

∣∣∣ =
∣∣∣ 1
6
Φ′′′

(
Tk−1 + ϑ

ξk√
Ak

)∣∣∣ ξk√
Ak

∣∣∣3 ∣∣∣
≤

∣∣∣Φ′′′
(
Tk−1 + ϑ

ξk√
Ak

)∣∣∣∣∣∣ ξk√
Ak

∣∣∣2+ρ
.

It is also easy to see that if |ξk/
√
Ak| > 1, then∣∣∣Rk

∣∣∣ ≤ 1

2

(∣∣∣Φ′′
(
Tk−1 + ϑ

ξk√
Ak

)∣∣∣+ ∣∣∣Φ′′(Tk−1)
∣∣∣) ( ξk√

Ak

)2

≤
∣∣∣Φ′′

(
Tk−1 + ϑ′ ξk√

Ak

)∣∣∣ ( ξk√
Ak

)2

≤
∣∣∣Φ′′

(
Tk−1 + ϑ′ ξk√

Ak

)∣∣∣∣∣∣ ξk√
Ak

∣∣∣2+ρ
,

where

ϑ′ =

⎧⎪⎪⎨
⎪⎪⎩

ϑ, if
∣∣∣Φ′′

(
Tk−1 + ϑ ξk√

Ak

)∣∣∣ ≥ ∣∣∣Φ′′(Tk−1)
∣∣∣,

0, if
∣∣∣Φ′′

(
Tk−1 + ϑ ξk√

Ak

)∣∣∣ < ∣∣∣Φ′′(Tk−1)
∣∣∣.
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By the inequality max{|Φ′′(t)|, |Φ′′′(t)|} ≤ ϕ(t)(1 + t2), it follows that

∣∣∣Rk1{|ξk/√Ak|≤1+|Tk−1|/2}
∣∣∣ ≤ ϕ

(
Tk−1 + ϑ1

ξk√
Ak

)(
1 +

(
Tk−1 + ϑ1

ξk√
Ak

)2
)

≤ g1(Tk−1),

where
g1(z) = sup

|t−z|≤1+|z|/2
ϕ(t)(1 + t2).

It is easy to see that g1(z) is a non-increasing in z ≥ 0, and that g1(z) satisfies∣∣∣Rk1{|ξk/√Ak|≤1+|Tk−1|/2}
∣∣∣ ≤ g1(Tk−1)

∣∣∣ ξk√
Ak

∣∣∣2+ρ
1{|ξk/√Ak|≤1+|Tk−1|/2}. (41)

Case 2 : |ξk/
√
Ak| > 1 + |Tk−1|/2. It is easy to see that for |Δx| > 1 + |x|/2,∣∣∣Φ(x+Δx)− Φ(x)− Φ′(x)Δx− 1

2
Φ′′(x)(Δx)2

∣∣∣
=

(∣∣∣Φ(x+Δx)− Φ(x)

|Δx|2+ρ

∣∣∣+ |Φ′(x)|+ |Φ′′(x)|
)
|Δx|2+ρ

≤
(
4
∣∣∣Φ(x+Δx)− Φ(x)

(2 + |x|)2
∣∣∣+ |Φ′(x)|+ |Φ′′(x)|

)
|Δx|2+ρ

≤
( c1
(2 + |x|)2 + |Φ′(x)|+ |Φ′′(x)|

)
|Δx|2+ρ

≤ c2
(2 + |x|)2 |Δx|2+ρ.

Therefore, ∣∣∣Rk1{|ξk/√Ak|>1+|Tk−1|/2}
∣∣∣ ≤ g2(Tk−1)

∣∣∣ ξk√
Ak

∣∣∣2+ρ
1{|ξk/√Ak|>1+|Tk−1|/2}, (42)

where
g2(z) =

c2
(2 + |z|)2 .

Set
G(z) = g1(z) + g2(z).

Combining (41) and (42) together, we obtain

∣∣∣Rk

∣∣∣ ≤ G(Tk−1)
∣∣∣ ξk√

Ak

∣∣∣2+ρ
, (43)

and thus

∣∣∣I1∣∣∣ = ∣∣∣E[ n∑
k=1

Rk

]∣∣∣ ≤ E
[ n∑
k=1

G(Tk−1)
∣∣∣ ξk√

Ak

∣∣∣2+ρ]
. (44)
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Now we consider the conditional expectation of |ξk|2+ρ. Using condition (A1), we have

E[|ξk|2+ρ|Fk−1] ≤ ερΔ〈X〉k,
where Δ〈X〉k = 〈X〉k − 〈X〉k−1. It is obvious that

Δ 〈X〉k = ΔVk = Vk − Vk−1, 1 ≤ k < n, Δ 〈X〉n ≤ ΔVn,

and that
E[|ξk|2+ρ|Fk−1] ≤ ερΔVk. (45)

Combining (44) and (45) together, we obtain

∣∣∣I1∣∣∣ ≤ J1 := ερ
[ n∑
k=1

1

A
1+ρ/2
k

G(Tk−1)ΔVk

]
. (46)

To estimate J1, we introduce the time change τt as follows: for any real t ∈ [0, T ],

τt = min{k ≤ n : Vk > t}, where min ∅ = n. (47)

Clearly, for any t ∈ [0, T ], the stopping time τt is predictable. Denote by (σk)k=1,...,n+1 the increasing
sequence of moments when the increasing and stepwise function τt, t ∈ [0, T ], has jumps. It is obvious
that ΔVk =

∫
[σk,σk+1)

dt, and that k = τt for t ∈ [σk, σk+1). Since τT = n, we have

n∑
k=1

1

A
1+ρ/2
k

G (Tk−1)ΔVk =
n∑

k=1

∫
[σk,σk+1)

1

A
1+ρ/2
τt

G (Tτt−1) dt

=

∫ T

0

1

A
1+ρ/2
τt

G (Tτt−1) dt.

Set at = c2∗γ2 + T − t. Since ΔVτt ≤ ε2 + 2δ2 (cf. Lemma 3.2), we see that

t ≤ Vτt ≤ Vτt−1 +ΔVτt ≤ t+ ε2 + 2δ2, t ∈ [0, T ]. (48)

Assume that c∗ ≥ 4. Then we have

1

2
at ≤ Aτt = c2∗γ

2 + T − Vτt ≤ at, t ∈ [0, T ]. (49)

Notice that G(z) is symmetric and is non-increasing in z ≥ 0. The last bound implies that

J1 ≤ 21+ρ/2 ερ
∫ T

0

1

a
1+ρ/2
t

E

[
G

(
u−Xτt−1

a
1/2
t

)]
dt. (50)

Notice also that G(z) is a symmetric integrable function of bounded variation. By Lemma 3.5, it is
easy to see that

E

[
G

(
u−Xτt−1

at1/2

)]
≤ c6 sup

z

∣∣∣P(Xτt−1 ≤ z)− Φ(z)
∣∣∣+ c7

√
at. (51)

12



Since Vτt−1 = Vτt −ΔVτt , Vτt ≥ t (cf. (48)) and ΔVτt ≤ ε2 + 2 δ2, we get

Vn − Vτt−1 ≤ Vn − Vτt +ΔVτt ≤ 2(ε2 + δ2) + T − t ≤ at. (52)

Thus

E
[
(Xn −Xτt−1)

2|Fτt−1

]
= E

[ n∑
k=τt

E[ξ2k|Fk−1]

∣∣∣∣Fτt−1

]

= E[ 〈X〉n − 〈X〉τt−1 |Fτt−1]

≤ E[Vn − Vτt−1|Fτt−1]

≤ at.

Then, by Lemma 3.4, we deduce that for any t ∈ [0, T ],

sup
z

∣∣∣P(Xτt−1 ≤ z)− Φ(z)
∣∣∣ ≤ c8 sup

z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ c9

√
at. (53)

Combining (46), (50), (51) and (53) together, we obtain

∣∣∣I1∣∣∣ ≤ c10 ε
ρ

∫ T

0

dt

a
1+ρ/2
t

sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ c11 ε

ρ

∫ T

0

dt

a
(1+ρ)/2
t

. (54)

By some elementary computations, it follows that∫ T

0

dt

a
1+ρ/2
t

≤
∫ T

0

dt

(c2∗γ2 + T − t)1+ρ/2
≤ 1

cρ∗γρ
(55)

and ∫ T

0

dt

a
(1+ρ)/2
t

≤
{

cρ, if ρ ∈ (0, 1),
c |log ε| , if ρ = 1.

Thus
|I1| ≤ c12

cρ∗
sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,1 ε̂, (56)

where

ε̂ =

{
ερ + δ, if ρ ∈ (0, 1),
ε |log ε|+ δ, if ρ = 1.

b) Control of I2. Note that 0 ≤ ΔVk −Δ 〈X〉k ≤ 2δ21{k=n}. We have

|I2| ≤ E
[ 1

2An

∣∣ϕ′ (Tn−1) (ΔVn −Δ 〈X〉n)
∣∣ ].

Set G̃(z) = sup|z−t|≤1 |ϕ′(t)|. Then |ϕ′(z)| ≤ G̃(z) for any real z. Note that An = c2∗γ2. Then we get
the following estimation:

|I2| ≤ 1

c2∗
E[G̃ (Tn−1)].

13



Notice that G̃(z) is non-increasing in z ≥ 0, and thus it has bounded variation on R. By Lemmas 3.2
and 3.5, we obtain

|I2| ≤ c13
c2∗

sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,2 ε̂. (57)

c) Control of I3. By a two-term Taylor expansion, it follows that

I3 =
1

8
E

[ n∑
k=1

1

(Ak − ϑkΔAk)2
ϕ′′′

(
u−Xk−1√
Ak − ϑkΔAk

)
ΔA2

k

]
.

Since c∗ ≥ 4, ΔAk ≤ 0 and |ΔAk| = ΔVk ≤ ε2 + 2 δ2, we have

Ak ≤ Ak − ϑkΔAk ≤ c2∗γ
2 + T − Vk + ε2 + 2 δ2 ≤ 2Ak. (58)

Set Ĝ(z) = sup|t−z|≤2 |ϕ′′′(t)| . Then Ĝ(z) is symmetric, and is non-increasing in z ≥ 0. By (58), we
obtain

|I3| ≤ (ε2 + 2 δ2)E

[ n∑
k=1

1

A2
k

Ĝ

(
Tk−1√

2

)
ΔVk

]
.

By an argument similar to the proof of (56), we get

|I3| ≤ ε2 + 2 δ2

c∗γ
sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,3 ε̂

≤ 2

c∗
sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,3 ε̂. (59)

From (37), using (56), (57) and (59), we have∣∣∣E[Φu(Xn, An)]−E[Φu(X0, A0)]
∣∣∣ ≤ c14

cρ∗
sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,4 ε̂.

Implementing the last bound in (36), we deduce that

sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣ ≤ c15

cρ∗
sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣+ cρ,5 ε̂,

from which, choosing cρ∗ = max{2c15, 4ρ}, we get

sup
z

∣∣∣P(Xn ≤ z)− Φ(z)
∣∣∣ ≤ 2cρ,5 ε̂, (60)

which completes the proof of theorem. �

3.2. Proof of Corollary 2.1

Define ηi = ξi if i ≤ v(n), ηi = 0 if i > v(n). Then (ηi,Fi)i=0,...,n is also a sequence of martingale
differences. It is easy to see that

E[|ηi|2+ρ|Fi−1] ≤ ερE[η2i |Fi−1].
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If v(n) = sup{k : 〈X〉k ≤ 1}, then

1−E[ξ2v(n)+1|Fv(n)] ≤
n∑

i=1

E[η2i |Fi−1] =

v(n)∑
i=1

E[ξ2i |Fi−1] ≤ 1.

If v(n) = inf{k : 〈X〉k ≥ 1}, then

1 ≤
n∑

i=1

E[η2i |Fi−1] =

v(n)∑
i=1

E[ξ2i |Fi−1] ≤ 1 +E[ξ2v(n)|Fv(n)−1].

Since E[ξ2i |Fi−1] ≤ ε2 for all i (cf. Lemma 3.2), we always have

∣∣∣ n∑
i=1

E[η2i |Fi−1]− 1
∣∣∣ ≤ ε2.

Notice that
∑n

i=1 ηi = Xv(n). Applying Theorem 2.1 to (ηi,Fi)i=0,...,n, we obtain the desired inequali-
ties. This completes the proof of Corollary 2.1. �

3.3. Proof of Theorem 2.2.

To prove Theorem 2.2, we use the following technical lemma of El Machkouri and Ouchti [4]; see
Lemma 1 therein.

Lemma 3.3. Let X and Y be random variables. Then for any p ≥ 1,

D(X + Y ) ≤ 2D(X) + 3
∣∣∣∣∣∣E[|Y |2p|X]

∣∣∣∣∣∣1/(2p+1)

1
. (61)

Following Bolthausen [1], consider the stopping time

τ = sup{0 ≤ k ≤ n : 〈X〉k ≤ 1}.

Assume that 0 < ε ≤ ε. Let r = 
(1 − 〈X〉τ )/ε2�, where 
x� stands for the largest integer less
than x. Then r ≤ 
1/ε2�. Let N = n + 
1/ε2� + 1. Let (ηi)i≥1 be a sequence of independent
Rademacher random variables, which is also independent of the martingale differences (ξi)1≤i≤n. For
any i = 1, . . . , N, define ξ′i = ξi if i ≤ τ , ξ′i = εηi if τ < i ≤ τ + r, ξ′i = (1 − 〈X〉τ − rε2)1/2ηi if

i = τ + r + 1, and ξ′i = 0 if τ + r + 1 < i ≤ N. Clearly, X ′
k =

∑k
i=1 ξ

′
i, k = 0, . . . , N (with X ′

0 = 0) is
also a martingale sequence with respect to the enlarged probability space and the enlarged filtration.
Moreover, it holds 〈X ′〉N = 1 a.s. and condition (A1) is satisfied for (ξ′k)k=1,...,N . Denote by

γ =

{
ερ, if ρ ∈ (0, 1),
ε |log ε| , if ρ ≥ 1.

By Theorem 2.2, it holds, for all x ∈ R,∣∣∣P(X ′
N ≤ x)− Φ (x)

∣∣∣ ≤ cρ γ. (62)
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Using Lemma 3.3, we get

D(Xn) ≤ 2D(X ′
N ) + 3

∣∣∣∣∣∣E[|Xn −X ′
N |2p|X ′

N ]
∣∣∣∣∣∣1/(2p+1)

1

≤ 2 cρ γ + 3
(
E[|Xn −X ′

N |2p]
)1/(2p+1)

. (63)

As τ is a stoping time, conditionally on τ , the (ξi−ξ′i)i≥τ+1 still forms a martingale difference sequence.
Using Burkholder’s inequality (cf. Theorem 2.11 of Hall and Heyde [10]), we have

E[|X ′
N −Xn|2p] ≤ cp

(
E
[∣∣∣ N∑

i=τ+1

E[(ξi − ξ′i)
2|Fi−1]

∣∣∣p]+E[ max
τ+1≤i≤N

|ξi − ξ′i|2p]
)
. (64)

It is easy to see that

N∑
i=τ+1

E[(ξi − ξ′i)
2|Fi−1] =

n∑
i=τ+1

E[ξ2i |Fi−1] +

N∑
i=τ+1

E[ξ′i
2|Fi−1]

= 〈X〉n + 1− 2〈X〉τ .

Notice that
1−E[ξ2τ+1|Fτ ] ≤ 〈X〉τ ≤ 1.

Hence

N∑
i=τ+1

E[(ξi − ξ′i)
2|Fi−1] ≤ 〈X〉n − 1 + 2E[ξ2τ+1|Fτ ]. (65)

Using the inequality |a+ b|k ≤ 2k−1(|a|k + |b|k), k ≥ 1, we get

E[ max
τ+1≤i≤N

|ξi − ξ′i|2p] ≤ 22p−1
(
E[ max

τ+1≤i≤n
|ξi|2p] + ε2p

)
≤ 22p−1

(
E[ max

1≤i≤n
|ξi|2p] + ε2p

)
. (66)

Combining (64), (65) and (66) together, we deduce that

E[|X ′
N −Xn|2p] ≤ cp

(
E[|〈X〉n − 1|p] +E[ max

1≤i≤n
|ξi|2p] + ε2p

)
.

Returning to (63) and letting ε → 0, we obtain

D(Xn) ≤ cp,ρ

(
γ +

(
E[|〈X〉n − 1|p] +E[ max

1≤i≤n
|ξi|2p]

)1/(2p+1)
)
.

This completes the proof of Theorem 2.2. �
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Appendix

In the proof of Theorem 2.1, we make use of the following two technical lemmas due to Bolthausen
(cf. Lemmas 1 and 2 of [1]).

Lemma 3.4. Let X and Y be random variables. Then

sup
u

∣∣∣P (X ≤ u)− Φ (u)
∣∣∣ ≤ c1 sup

u

∣∣∣P (X + Y ≤ u)− Φ (u)
∣∣∣+ c2

∥∥∥E [
Y 2|X] ∥∥∥1/2

∞
.

Lemma 3.5. Let G(x) be an integrable function on R of bounded variation ||G||V , X be a random
variable and a, b �= 0 are real numbers. Then

E

[
G

(
X + a

b

)]
≤ ||G||V sup

u

∣∣∣P (X ≤ u)− Φ (u)
∣∣∣+ ||G||1 |b|,

where ||G||1 is the L1(R) norm of G(x).

Acknowledgements

The author would like to thank editor and reviewers for their comments. This work has been
partially supported by the National Natural Science Foundation of China (Grant nos. 11601375 and
11626250).

References

[1] E. Bolthausen, Exact convergence rates in some martingale central limit theorems, Ann. Probab. 10 (1982) 672–688.
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