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In this study, we consider a special case of the family of birational maps f : C2 → C2, 
which were dynamically classified by [13]. We identify the zero entropy subfamilies 
of f and explicitly give the associated invariant fibrations. In particular, we highlight 
all of the integrable and periodic mappings.
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1. Introduction

In this study, we consider the family of linear fractional maps f : C2 → C
2 of the form:

f(x, y) =
(
α0 + α1x + α2y,

β0 + β1x + β2y

γ0 + γ1x + γ2y

)
, (γ1, γ2) �= (0, 0), (1)

where the parameters αi, βi, γi, i ∈ {0, 1, 2} are complex numbers.
We require that the family of mappings f(x, y) in (1) is birational. The values of the parameters 

αi, βi, γi, i ∈ {0, 1, 2} for which f(x, y) is a birational mapping are discussed in Lemma 1. The dynamics 
generated by birational mappings in the plane and their classification have been discussed widely in recent 
years (see [1–4,7,8,10,11,14–16,19–25,28]). The family of mappings (1) was classified in a previous study 
by [13,27]. In this study, we consider f when it exhibits some degenerate behavior for general values of 
parameters, specifically when α2γ1 − α1γ2 = 0 or when β2γ1 − β1γ2 = 0.

For a birational map f(x, y) the sequence of degrees dn for the iterates of f satisfies a homogeneous linear 
recurrence (see [17]), which is governed by the characteristic polynomial X (x) of a certain matrix associated 
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with F , where F : PC
2 → PC

2 is the extension of f : C2 → C
2 in the projective plane PC

2. The sequence 
of degrees allows the introduction of a quantity called the dynamical degree of F , which is defined as:

δ(F ) := lim
n→∞

(deg(Fn))
1
n , (2)

where Fn represents the iterates of F . The logarithm of δ(F ) is the algebraic entropy of F ([3–5,16,17,26]).
Considering the embedding (x1, x2) ∈ C

2 �→ [1 : x1 : x2] ∈ PC
2 into the projective space, the induced 

map F : PC
2 → PC

2 has three components Fi[x0 : x1 : x2] , i = 1, 2, 3 which are homogeneous polynomials 
comprising F [x0 : x1 : x2] = [F1[x0 : x1 : x2] : F2[x0 : x1 : x2] : F3[x0 : x1 : x2]], where:

F1[x0 : x1 : x2] = x0(γ0x0 + γ1x1 + γ2x2),

F2[x0 : x1 : x2] = (α0x0 + α1x1 + α2x2)(γ0x0 + γ1x1 + γ2x2),

F3[x0 : x1 : x2] = x0(β0x0 + β1x1 + β2x2).

(3)

The map F has degree two because the components of F do not have common factors for general values 
of the parameters. Similarly, the degree of each iterate of F can generally be found by iterating F and 
removing the common homogeneous components of Fn = F ◦ · · · ◦ F for each n ∈ N.

The birational mappings F : PC
2 → PC

2 have an indeterminacy set I(F ) of points where F is ill 
defined as a continuous map. Hence, they also have a set of curves that are sent to a single point called the 
exceptional locus of F denoted as E(F ). Generically, the mappings of the form (1) have three indeterminacy 
points. The exceptional locus is formed by three straight lines, where each two of them intersect on a single 
indeterminate point of F . However, in some cases, the exceptional locus is formed by only two straight lines. 
In this case, these mappings are identified as degenerate mappings. Lemma 1 in the following section states 
the conditions for the birationality and degeneracy of the family (1). We consider all the subfamilies of 
f(x, y) for which f exhibits degenerate behavior for general values of the parameters. The cases where the 
exceptional locus is formed by three straight lines were discussed previously by [12] and [13]. These cases 
are recognized as nondegenerate mappings.

The first aim of this study is to search for the sequence of degrees dn for iterates of f(x, y) in (1), which 
is achieved by performing a series of blow-ups in order to find the characteristic polynomial that determines 
the behavior of dn.

The second aim is to identify the values of the parameters for which f(x, y) has zero algebraic entropy 
and extract dynamical consequences. In particular, we employ the results reported by Diller and Favre 
([17]), which characterize the growth rate of dn when invariant fibrations exist. We find all of the prescribed 
invariant fibrations for each of these cases. We focus on the elements of the family f(x, y), which are 
integrable mappings. We also distinguish all of the periodic mappings f(x, y) and give a pair of first integrals 
for them that are generically transverse.

The remainder of this article is organized as follows. In Section 2, we give some preliminary results for 
the family (1) and the birational maps (with descriptions of the blow-up process and the Picard group). 
In Section 3, we consider the subfamily α1γ2 − α2γ1 = 0. In Section 4, we investigate the subfamily 
α1β2 − α2β1 = 0.

The results are given in the following. The theorems provide the results for the dynamical degree and 
the growth of dn, and the propositions give the results for the zero entropy and the existence of invariant 
fibrations. Thus, in Section 3, we present Theorem 4 and Proposition 5 concerning the subfamily α1γ2 −
α2γ1 = 0. In Section 4, we deal with the mappings that satisfy α1β2 −α2β1 = 0 in three subsections. In the 
first subsection, we present Theorem 6 and Proposition 7, which correspond to the case where γ1γ2 �= 0. 
In the next subsection, we analyze the case where γ1 = 0, and we prove Theorem 8 and Proposition 9
(resp. Proposition 11) when α2 �= 0 (resp. α2 = 0). In the last subsection, we present Theorem 12 and 
Proposition 13, which correspond to the case where γ2 = 0.
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2. Preliminary results

Consider the mapping F [x0 : x1 : x2] : PC
2 → PC

2 defined in (3). The exceptional locus of F [x0 : x1 : x2]
is E(F ) = {S0, S1, S2}, where:

S0 = {x0 = 0}, S1 = {γ0x0 + γ1x1 + γ2x2 = 0},

S2 = {(α1(βγ)02 − α2(βγ)01) x0 + α1(βγ)12x1 + α2(βγ)12x2 = 0}.

We employ the following notation: (δε)ij = δiεj − δjεi. The exceptional locus of F−1[x0 : x1 : x2] is 
E(F−1) = {T0, T1, T2}, where:

T0 = {(γ0(αβ)12 − γ1(αβ)02 + γ2(αβ)01)x0 − (βγ)12x1 = 0} ,
T1 = {(αβ)12x0 − (αγ)12x2 = 0}, T2 = {x0 = 0}.

The birational map F [x0 : x1 : x2] has an indeterminacy set I(F ) of points where F is ill defined as a 
continuous map. This set is given by:

{[x0 : x1 : x2] ∈ PC
2 : F1[x0 : x1 : x2] = 0, F2[x0 : x1 : x2] = 0, F3[x0 : x1 : x2] = 0]},

which gives:

I(F ) = {O0, O1, O2},

where

O0 = [(βγ)12 : (βγ)20 : (βγ)01],

O1 = [0 : α2 : −α1],

O2 = [0 : γ2 : −γ1],

and (βγ)ij := βiγj − γjβi for i, j = 0, 1, 2.
By referring to g(x, y) as the inverse of f(x, y) given in (1) and considering G[x0 : x1 : x2] as its extension 

on PC
2, then an indeterminacy set I(G) also exists, i.e., I(G) = {A1, A2, A3}, where:

A0 = [0 : 1 : 0],

A1 = [0 : 0 : 1],

A2 = [(βγ)12 (αγ)12, (α0 (βγ)12 − α1 (βγ)02 + α2 (βγ)01) (αγ)12 : (αβ)12 (βγ)12].

We are interested in the birational mappings (1) when the corresponding F only has two distinct excep-
tional curves. The next lemma describes the set of parameters considered in this study.

We recall that a birational map is a map f : C2 → C
2 with rational components such that an algebraic 

curve V exists and another rational map g exists such that f ◦ g = g ◦ f = Id in C2 \ V .

Lemma 1. Consider the mappings

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0).

Then:
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(a) The mapping f is birational if and only if the vectors (β0, β1, β2), (γ0, γ1, γ2) are linearly indepen-
dent and ((αβ)12, (αγ)12) �= (0, 0), ((αγ)12, (βγ)12) �= (0, 0), and either ((αβ)12, (βγ)12) �= (0, 0) or 
(β1, β2) = (0, 0).

(b) The mapping f is degenerate if and only if (βγ)12 = 0 or (αγ)12 = 0.

Proof. The conditions in (a) are necessary for f to be invertible because if the vectors (β0, β1, β2), (γ0, γ1, γ2)
are linearly dependent, then the second component of f is a constant. In addition, if ((αβ)12, (αγ)12) = (0, 0)
or ((αγ)12, (βγ)12) = (0, 0), then f only depends on α1 x1 + α2 x2 or on γ1x1 + γ2x2. If ((αβ)12, (βγ)12) =
(0, 0) and (β1, β2) �= (0, 0), then f only depends on β1x1 + β2x2.

Now, we assume that the conditions in (a) are satisfied. Then, the inverse of f is formally defined as:

f−1(x, y) =
(
−(αβ)02 + β2x + (αγ)02y − γ2xy

(αβ)12 − (αγ)12y
,
(αβ)01 − β1x + (αγ)10y + γ1xy

(αβ)12 − (αγ)12y

)
,

and it is well defined. Furthermore, the numerators of the determinants of the Jacobian of f and f−1 are:

α1(βγ)02 − α2(βγ)01 + α1(βγ)12x + α2(βγ)12y (4)

and

α0(βγ)12 − α1(βγ)02 + α2(βγ)01 − (βγ)12y, (5)

respectively. Clearly, the conditions in (a) imply that both (4) and (5) are not identically zero. Hence, 
f ◦ f−1 = f−1 ◦ f = id in C2 \ V , where V is the algebraic curve determined by the common zeros of (4)
and (5).

For (b), we know that Si is mapped to Ai, which implies that the points A0, A1, A2 are not all distinct. 
A0 �= A1 so we have two possibilities: A0 = A2 or A1 = A2. The condition that A0 = A2 is written as 
(βγ)12 (αγ)12 = 0 and (αβ)12(βγ)12 = 0. From (a), the vector ((αβ)12, (αγ)12) �= (0, 0). Hence, (βγ)12 must 
be zero. In a similar manner, we can see that A1 = A2 if and only if (αγ)12 = 0. �

We observe that F maps each Si to Ai and that the inverse of F maps Ti to Oi for i ∈ {0, 1, 2}. To 
specify this behavior, we write F : Si � Ai (also F−1 : Ti � Oi). It is known that the dynamical degree 
depends on the orbits of A0, A1, A2 under the action of F (see the proposition in Section 2). Indeed, the 
key point is whether the iterates of A0, A1, A2 coincide with any of the indeterminacy points of F . After 
finding one orbit of F that ends at some indeterminacy point of F , we perform a series of blow-ups in order 
to remove the indeterminacy of F in a new extended space.

For X = {((x, y), [u : v]) ∈ C
2 × PC

1 : xv = yu} and p ∈ C
2, let (X, π) be the blowing up of C2

at the point p. By translating p at the origin, π−1p = π−1(0, 0) = {((0, 0), [u : v])} := Ep � PC
1 and 

π−1q = π−1(x, y) = ((x, y), [x : y]) ∈ X for q = (x, y) �= (0, 0). Every blow-up gives a new expanded space 
X and a new induced map F̃ : X → X is defined based on it. The indeterminacy sets and exceptional 
locus can also be defined by considering the meromorphic functions on the complex manifolds X that we 
obtain after a series of blow-ups. Consider the Picard group of X denoted by Pic(X), where X is the 
complex manifold. For a generic line L ∈ PC

2, Pic(PC
2) is generated based on the class of L. If the 

base points of the blow-ups are {p1, p2, . . . , pk} ⊂ PC
2 and Ei := π−1{pi}, then it is known that Pic(X)

is generated by {L̂, E1, E2, . . . , Ek}, ([3,4]). The curve L̂ is the strict transform of L ⊂ C
2, which is the 

adherence of π−1(C \ {p}), in the Zariski topology. Furthermore, π : X −→ PC
2 induces a morphism of 

groups π∗ : Pic(PC
2) −→ Pic(X), which have the property that for any complex curve C ⊂ PC

2:

π∗(C) = Ĉ +
∑

mi Ei, (6)
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where mi is the algebraic multiplicity of C at pi. For F ∈ PC
2, we denote F̃ as the natural extension of F

on X and it induces a morphism of groups, F̃ ∗ : Pic(X) → Pic(X), by considering the classes of preimages 
such that F̃ ∗(L̂) = d L̂ +

∑k
i=1 ci Ei, ci ∈ Z, where d is the degree of F . By iterating F , we obtain the 

corresponding formula by changing F by Fn and d by dn. To determine the behavior of the sequence of 
degrees dn, we consider the maps F̃ such that:

(F̃n)∗ = (F̃ ∗)n. (7)

The maps F̃ that satisfy condition (7) are called algebraically stable maps (AS maps) ([17]). In order to 
obtain the AS maps, we use the following useful result presented by Fornaess and Sibony ([18]) (also see 
Theorem 1.14) and by [17]:

The map F̃ is AS if and only if for every exceptional curve C and all n ≥ 0 , F̃n(C) /∈ I(F̃ ). (8)

It is known (see Theorem 0.1 given by [17]) that we can always make a birational map AS by performing 
a finite number of blow-ups. If this is the case, we refer to X (x) = xk +

∑k−1
i=0 ci x

i as the characteristic 
polynomial of A := (F̃ ∗). Then, X (A) = 0 and di is the (1, 1) term of Ai, so we find that dk = −(c0 +
c1d1 + c2d2 + · · ·+ ck−1dk−1), i.e., the sequence dn satisfies a homogeneous linear recurrence with constant 
coefficients. Thus, the dynamical degree is the largest real root of X (x). In the following, we state Theorem 2, 
which is useful for our analysis and it is a direct consequence of Theorem 0.2 given by [17] and Theorem A 
given by [6].

Given a birational map F of PC
2, let F̃ be its regularized map such that the induced map F̃ ∗ : Pic(X) →

Pic(X) satisfies (F̃n)∗ = (F̃ ∗)n. Then:

Theorem 2. (See [6,17]) Let F : PC
2 → PC

2 be a birational map and let dn = deg(Fn). Then, up to 
bimeromorphic conjugacy, exactly one of the following holds.

• The sequence dn grows quadratically and F̃ is an automorphism that preserves an elliptic fibration.
• The sequence dn grows linearly and F̃ preserves a rational fibration. In this case, F̃ cannot be conjugated 

to an automorphism.
• The sequence dn is bounded and F̃ is an automorphism that preserves two generically transverse rational 

fibrations.
• The sequence dn grows exponentially.

In the first three cases, δ(F ) = 1, whereas δ(F ) > 1 in the last case. Furthermore, in the first and second 
cases, the invariant fibrations are unique.

We are only interested in degenerate maps f(x, y) of type (1), so we have to consider two subfamilies: 
(βγ)12 = 0 and (αγ)12 = 0. First, we consider the simpler case where (αγ)12 = 0.

3. Subfamily (αγ)12 = 0

Lemma 3. Consider the birational mappings

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

with the condition that (αγ)12 = α1γ2 − α2γ1 = 0. Then, either:
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(i) The four numbers α1, α2, γ1, γ2 are different from zero.
(ii) α1 = 0, γ1 = 0 and α2 �= 0 �= γ2.
(iii) α2 = 0, γ2 = 0 and α1 �= 0 �= γ1.

Proof. From Lemma 1, we know that (α1, α2) �= (0, 0). Therefore, if α1 (resp. γ1) is zero, then α2 (resp. γ2) 
is not, and from α1γ2 − α2γ1 = 0, we find that γ1 (resp. α1) must be zero. �
Theorem 4. Consider the birational mappings

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

with the condition that (αγ)12 = α1γ2 − α2γ1 = 0. The following hold:

(i) If α1 �= 0, α2 �= 0, γ1 �= 0 and γ2 �= 0, then δ(F ) = 2.
(ii) If α1 = γ1 = 0, then δ(F ) = 1+

√
5

2 and dn+2 = dn+1 + dn.
(iii) If α2 = γ2 = 0, then δ(F ) = 1 and dn = 1 + n.

Proof. From the hypothesis, we have: E(F ) = {S0, S1} , I(F ) = {O0, O1}, E(F−1) = {T0, T1} and 
I(F−1) = {A0, A1} with

S0 = {x0 = 0} , S1 = {γ0x0 + γ1x1 + γ2x2 = 0},
O0 = [(βγ)12 : (βγ)20 : (βγ)01)] , O1 = [0 : α2 : −α1],

T0 = {(β2(αγ)01 − β1(αγ)12)x0 − (βγ)12x1 = 0} , T1 = {x0 = 0},
A0 = [0 : 1 : 0] , A1 = [0 : 0 : 1].

When α1, α2, γ1 and γ2 are non-zero, and we observe that A0 �= O0 and A0 �= O1. Hence, F (A0) = [0 :
α1 γ1 : 0] = A0 and F (A1) = [0 : α2 γ2 : 0] = A0, so we find that F is AS, which implies that dn = 2n and 
thus δ(F ) = 2.

To prove (ii), we observe that α1 = γ1 = 0 implies that (α2, γ2) �= (0, 0) but also that β1 �= 0 (if this is 
not the case, then f would only depend on y and it would not be birational). Now, A0 = O1 ∈ I(F ) and we 
have to blow-up this point. Let E0 be the principal divisor at this point and consider a point [u : v]E0 ∈ E0. 
In order to extend F on E0, we consider [u : v]E0 as limt→0[tu : 1 : tv] and we evaluate F [tu : 1 : tv]:

F [tu : 1 : tv] = [u(γ0u + γ2v)t : (α0u + α2v)(γ0u + γ2v)t : β1u + (β0u + β2v)ut].

By taking the limit when t tends to zero, we find that when u �= 0 , F̃ [u : v]E0 = [0 : 0 : 1], while [0 : 1]E0

becomes an indeterminacy point for F̃ .
To understand the action of F̃ on S0, we consider the point [0 : x1 : x2] as limt→0[t : x1 : x2]. Then, for 

t → 0 (and x2 �= 0):

lim
t→0

F [t : x1 : x2] = lim
t→0

[γ2x2t : α2γ2x
2
2 : (β1x1 + β2x2)t] = [γ2x2 : β1x1 + β2x2]E0 .

The above considerations imply that I(F̃ ) = {O0, [0 : 1]E0} , E(F̃ ) = {Ŝ1, E0} with Ŝ1 � A1 and E0 � A1. 
To follow the orbit of A1 under F̃ , we observe that A1 = [0 : 0 : 1] ∈ S0 and thus F̃ [0 : 0 : 1] = [γ2 :
β2]E0 �= [0 : 1]E0 , which is sent to A1 again to give a two-periodic orbit. This implies that F̃ : X −→ X is 
AS. The Picard group of X is Pic(X) =< L̂, E0 >, where L is a generic line of PC

2. Let F̃ ∗ denote the 
corresponding map on Pic(X), which acts simply by taking preimages. Hence, F̃ ∗(E0) = Ŝ0. In order to 
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write Ŝ0 as a linear combination of L̂, E0, we use (6). We have π∗(S0) = Ŝ0 + E0 = L̂, which implies that 
F̃ ∗(E0) = L̂ − E0. In addition, π∗(F−1(L)) = ˆF−1(L) + E0 = 2L̂, which implies that F̃ ∗(L̂) = 2L̂ − E0. 
Hence, the matrix of F̃ ∗ on Pic(X) =< L̂, E0 > is: 

(
2 1
−1 −1

)
with the characteristic polynomial z2 − z− 1. 

Hence, δ(F ) = 1+
√

5
2 .

To prove (iii), we again observe that α2 = γ2 = 0 implies that (α1, γ1) �= (0, 0) but also that β2 �= 0 (if 
this not the case, then f would only depend on x and it would not be birational). Now, A1 = O1 = [0 : 0 :
1] ∈ I(F ) and we have to blow-up this point. To understand the action of F̃ on S1, we consider the point 
[γ1x0 : −γ0x0 : γ1x2] as limt→0[γ1x0 : t − γ0x0 : γ1x2]. Similar computations to those described above show 
that each point in S1 \ {O0, [0 : 0 : 1]} is sent to the point [γ1 : (αγ)01]E1 , and thus Ŝ1 is still exceptional 
for F̃ .

Now, we consider a point [u : v]E1 ∈ E1, which we observe as limt→0[tu : tv : 1]. Then, for t → 0,

lim
t→0

F [tu : tv : 1] = lim
t→0

[tu(γ0u + γ1v) : t(γ0u + γ1v)(α0u + α1v) : β2u].

If γ0u + γ1v �= 0 and u �= 0, then F̃ [u : v]E1 = [u : α0u + α1v]E1 .
If γ0u + γ1v = 0, then in the computation given above with [u : v]E1 = [γ1 : −γ0]E1 , we consider the 

point [γ1t : −γ0t : 1] ∈ S1 and we must apply F̃ to obtain F̃ [γ1t : −γ0t : 1] = [γ1 : (αγ)01]E1 . We observe 
that limu→γ1,v→−γ0 F̃ [u : v]E1 = [γ1 : (αγ)01]E1 , i.e., F̃ is well defined.

In the case that u = 0 , F [0 : t : 1] = [0 : 1 : 0], which implies that [0 : 1]E1 ∈ I(F̃ ).
After this blow-up, we claim that the map F̃ is AS because S0 � A0 and A0 is a fixed point of F and 

Ŝ1 � [γ1 : (αγ)01]E1 , and the iterates of this point never coincide with [0 : 1]E1 . The Picard group of X is 
now Pic(X) =< L̂, E1 > where L is a generic line of PC

2, F̃ ∗(E1) = Ŝ1 +E1, and similar computations to 
those for (ii) give the matrix:

(
2 1
−1 0

)
.

The characteristic polynomial is given by (z − 1)2. Hence, δ(F ) = 1. Furthermore, d1 = 2 and d2 = 3, so 
we obtain dn = 1 + n. �
Proposition 5. Assume that:

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

under the condition that (αγ)12 = α1γ2 − α2γ1 = 0 has zero entropy. Then, after an affine change of the 
coordinates, this can be written as:

f(x, y) =
(
α0 + α1 x,

β0 + y

x

)
, α1 �= 0.

This map preserves the fibration V (x, y) = x and this fibration is unique. If m(x) := α0 + α1x is periodic 
of period p, i.e., if αp

1 = 1 for some p > 1 , α1 �= 1, then

W (x, y) = x ·m(x) ·m(m(x)) · · ·mp−1(x)

is a first integral of f(x, y). In addition, when α1 = 1 and α0 = 0, f is integrable.
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Proof. From Theorem 4, we know that the only zero entropy maps in the family are those where α2 = γ2 = 0, 
and we also know that in this case, β2, α1, and γ1 are different from zero. Hence, we can conjugate f(x, y)
with h(x, y) =

(
β2
γ1
x− γ0

γ1
, 1
β2
y + β1

γ1

)
. By renaming, the parameters we can see that the conjugate map is 

of the form:

f(x, y) =
(
α0 + α1 x,

β0 + y

x

)
, α1 �= 0.

Clearly, this map preserves the fibration V (x, y) = x and this fibration is unique according to Theorem 2. 
If αp

1 = 1 for some p > 1 , α1 �= 1, then W (f(x, y)) = W (x, y) and the result follows. When α1 = 1, then we 
can see that f(x, y) is integrable if and only if β0 = 0. �

Next, we consider the second subfamily.

4. Subfamily (βγ)12 = 0

We consider three different cases that depend on γ1γ2 �= 0 , γ1 = 0, and γ2 = 0. When (βγ)12 = β1 γ2 −
β2 γ1 = 0, we have E(F ) = {S0, S1} , I(F ) = {O0, O1}, E(F−1) = {T0, T1}, and I(F−1) = {A0, A1}
with:

S0 = {x0 = 0} , S1 = {γ0x0 + γ1x1 + γ2x2 = 0}
O0 = [0 : γ2 : −γ1] , O1 = [0 : α2 : −α1]

T0 = {x0 = 0} , T1 = {(αβ)12x0 − (αγ)12x2 = 0}
A0 = [0 : 1 : 0] , A1 = [0 : 0 : 1].

4.1. Case where (βγ)12 = 0 with γ1γ2 �= 0

Theorem 6. We consider the birational mappings

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

under the conditions that (βγ)12 = 0 and γ1γ2 �= 0. Then, either:

(i) α1 �= 0 �= α2 and δ(F ) = 2 with dn = 2n for all n ∈ N.
(ii) α1 = 0 and the dynamical degree is δ(F ) = 1+

√
5

2 with dn+2 = dn+1 + dn for all n ∈ N.
(iii) α2 = 0 and the dynamical degree is δ(F ) = 1 with dn = 1 + n for all n ∈ N.

Proof. To prove (i), we observe that S0 � A0 and S1 � A1 with F (A0) = [0 : α1γ1 : 0] = A0 /∈ I(F ) and 
F (A1) = [0 : α2γ2 : 0] = A0 /∈ I(F ). Thus, by using (8), we see that F is AS, which implies that dn = 2n
and thus δ(F ) = 2.

Now, we consider that α1 = 0, which implies that α2 �= 0. In this case, S0 � A0 = O1 ∈ I(F ). Hence, we 
blow-up A0 to obtain E0. Similar computations to those described above show that F̃ sends Ŝ0 → E0 → T̂1
and no new indeterminacy points are created.

Now, we must follow the orbit of A1 under the action of F̃ . As A1 ∈ S0, we find that F̃ (A1) = [γ2 : β2]E0

and F̃ [γ2 : β2]E0 = [γ1γ2 : α0γ2 + α2β2 : β1γ2] ∈ T1. We observe that I(F̃ ) = {O0} and O0 ∈ S0 = T0. We 
know that the only points on T0 that have preimages are A0 and A1, which implies that if the iterates of 
A1 reach O0 for some iterate of F , then O0 should be equal to either A0 or A1. However, the conditions 
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imposed on the parameters imply that A0 �= O0 �= A1, which implies that O0 has no preimages and thus 
the iterates of A1 cannot reach O0. Hence, we can see that F̃ is AS.

In this case, F̃ ∗(L̂) = 2L̂ − E0 and F̃ ∗(E0) = L̂ − E0. Hence, the characteristic polynomial of the 
corresponding matrix is z2 − z − 1, which implies that the dynamical degree is δ(F ) = 1+

√
5

2 and dn+2 =
dn+1 + dn for all n ∈ N.

Finally, for (iii), α2 = 0, so we find that α1 �= 0. Now, we observe that S0 collapses to A0 = [0 : 1 : 0] ∈ S0

and that F [0 : 1 : 0] = [0 : α1γ1 : 0] = [0 : 1 : 0]. Hence, A0 is a fixed point.
The other exceptional curve S1 � A1 = O1 = [0 : 0 : α1] = [0 : 0 : 1] ∈ I(F ). Hence, we have to 

blow-up A1 to obtain E1. Similar computations to those described above show that F̃ sends Ŝ1 → E1 → T̂1

and no new indeterminacy points are created. After this blow-up, the mapping F̃ is AS. We can see that 
F̃ ∗(L̂) = 2L̂−E0 and F̃ ∗(E1) = L̂. Hence, the matrix of F̃ ∗ is:

(
2 1
−1 0

)
. (9)

The characteristic polynomial is (z − 1)2, and thus the dynamical degree is 1. d1 = 2, d2 = 3, so we find 
that the sequence of degrees is dn = 1 + n for all n ∈ N. �

For the zero entropy mappings, we see that the only possible case is the third when α2 = 0. The result 
(and the proof) obtained is very similar to that stated in Proposition 5.

Proposition 7. Let:

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

with the conditions (βγ)12 = 0 and γ1γ2 �= 0, and assume that f(x, y) has zero entropy. Then, after an 
affine change of the coordinates, this can be written as:

f(x, y) =
(
α0 + α1 x,

β0

x + y

)
, α1 �= 0.

This map preserves the fibration V (x, y) = x and this fibration is unique. If m(x) := α0 + α1x is periodic 
of period p, i.e., if αp

1 = 1 for some p > 1 , α1 �= 1, then

W (x, y) = x ·m(x) ·m(m(x)) · · ·mp−1(x)

is a first integral of f(x, y). In addition, when α1 = 1 and α0 = 0, f is integrable.

4.2. Case where (βγ)12 = 0 with γ1 = 0

In the next theorem, we discuss the behavior of dn within this family. As shown in the following, after an 
affine change of the coordinates, these mappings can be studied easily and the sequence of degrees dn can 
be deduced using elementary methods. We employed this approach in the proof of item (ii). However, in the 
first part, we prefer the blow-up approach. In fact, multiple blow-ups are implemented and it is interesting 
to see how this method detects the different behaviors of dn.
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Theorem 8. Consider the birational mappings

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1 + β2x2

γ0 + γ1x1 + γ2x2

)
, (γ1, γ2) �= (0, 0)

under the conditions that (βγ)12 = 0 and γ1 = 0.

(i) Assume that α2 �= 0. Then, after an affine change of the coordinates, f(x, y) can be written as:

f(x, y) =
(
α0 + α1x + y,

β0

γ0 + y

)
, α1 �= 0 �= β0 (10)

and the following hold.
(a) If the one-dimensional mapping h(y) := β0

γ0+y is not a periodic map, then the sequence of degrees 
is dn = 1 + n.

(b) If h(y) is a k-periodic map and 1 + αk
1 + α2k

1 + · · ·+ αnk
1 �= 0 for all n ∈ N, then dn = 1 + n for all 

n ≤ k − 1 and dn = k for all n ≥ k.
(c) If h(y) is a k-periodic map and 1 + αk

1 + α2k
1 + · · · + αnk

1 = 0 for some n ∈ N, then dn is an 
(n + 1)k-periodic sequence.

(ii) Assume that α2 = 0. Then, after an affine change of the coordinates f(x, y) can be written as:

f(x, y) =
(
α0 + α1x,

β0

γ0 + y

)
, α1 �= 0 �= β0 (11)

and the following hold.
(a) If the one-dimensional mapping h(y) := β0

γ0+y is not a periodic map, then dn = 2 for all n ∈ N.
(b) If h(y) is a k-periodic map, then dn is a k-periodic sequence.

Proof. We note that since γ1 = 0 , γ2 �= 0, then we can conjugate f(x, y) with:

ψ(x, y) =
(
α2

γ2
x,

1
γ2

y + β2

γ2

)
.

By renaming the coefficients if necessary, we obtain the desired map (10). Now, we have:

S0 = {x0 = 0} , S1 = {γ0x0 + x2 = 0} , A0 = [0 : 1 : 0] , A1 = [0 : 0 : 1],

and

T0 = {x0 = 0} , T1 = {x2 = 0} , O0 = [0 : 1 : 0] , O1 = [0 : 1 : −α1].

A0 = O0, so we have to blow-up this point to obtain E0. Then:

F̃ [u : v]E0 = [γ0u + v : β0u]E0 , [u : v]E0 �= [1 : −γ0]E0

and

Ŝ0 � [1 : 0]E0 .

The point [1 : −γ0]E0 is now an indeterminacy point of F̃ . Hence, if F̃ p[1 : 0]E0 �= [1 : −γ0]E0 for all p ∈ N, 
then since Ŝ1 � A1 ∈ S0 , F̃ (A1) = [1 : 0]E0 and we find that F̃ is AS. We can see that the matrix of 
F̃ ∗ : Pic(X) → Pic(X) =< L̂, E0 > is:
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(
2 1
−1 0

)
. (12)

The characteristic polynomial is (z − 1)2, and thus the dynamical degree is 1. d1 = 2, d2 = 3 so we find 
that the sequence of degrees is dn = 1 + n for all n ∈ N.

Now, we assume that some p ∈ N exists such that F̃ p[1 : 0]E0 = [1 : −γ0]E0 . In this case, we claim that 
F̃ : E0 → E0 is a (p + 2)-periodic map. To prove the claim, we distinguish between the case where γ0 = 0
(which gives a 2-periodic map and corresponds to p = 0) and the case where γ0 �= 0. We have:

[1 : 0]E0 −→F̃p

[1 : −γ0]E0 −→F̃ [0 : 1]E0 −→F̃ [1 : 0]E0 .

Hence, F̃ p+2, which is in fact a Moebius map, and at least three different points are fixed. Clearly, this 
implies that F̃ p+2 is the identity map. The restriction of F̃ at E0 is exactly the map h(y) = β0

γ0+y extended 

to the projective line, so we can assert that F̃ p[1 : 0]E0 = [1 : −γ0]E0 if and only if h(y) is a (p + 2)-periodic 
map. Hence, (a) is proved.

Following the same process, if F̃ p[1 : 0]E0 = [1 : −γ0]E0 , then we have to blow-up all the points F̃ j [1 : 0]E0

for j = 0, 1, . . . , p. We refer to E0j as the corresponding principal divisors and we obtain:

E00 −→ E01 −→ E02 −→ · · · −→ E0p. (13)

We refer to F̃ as the map for this new variety and we find the image of S0, which is the image of E0p.
A point coordinate k in E00 is considered as limt→0[t : 1 : kt2]. Then, for any point in S0 that differs 

from the indeterminacy points and for t ∼ 0, we have:

F (t, x1, x2) ∼ [x2t : (α1x1 + α2x2)x2 : β0t
2] =

[
t

α1x1 + α2x2
: 1 : β0

x2(α1x1 + α2x2)
t2
]
.

We set T := t
α1x1+α2x2

and this point resembles 
[
T : 1 : β0(α1x1+α2x2)

x2
T 2

]
, i.e.,

F̃ [0 : x1 : x2] = β0(α1x1 + α2x2)
x2

∈ E00.

Now, we consider a point coordinate k in E0p. This point is considered as limt→0[t : 1 : −γ0t +kt2]. Then, 
for t ∼ 0:

F [t : 1 : −γ0t + kt2] ∼ [kt : α1k : β0] →t→0 [0 : α1k : β0] ∈ S0.

Hence, (13) can be completed and we obtain the cycle:

Ŝ0 −→ E00 −→ E01 −→ E02 −→ · · · −→ E0p −→ Ŝ0.

Now, S1 � A1 ∈ S0 and F̃ p+2 sends Ŝ0 to itself, so it is possible that for some n ∈ N , F̃n(p+2)(A1) = O0, 
which still is an indeterminacy point of F̃ .

If this is not the case, then F̃ is AS. Let us compute the matrix of F̃ ∗. The Picard group of X is 
Pic(X) =< L̂, E00, E01, . . . , E0p, E0 >. In order to write Ŝ0 and Ŝ1 as a linear combination of their basis 
elements, we use the identity (6). For instance, π∗(F−1(L)) = ˆF−1(L)+

∑p
j=1 mjE0j , where the multiplicities 

mj are the order of vanishing for F−1(L) at the generic points of E0j. If δ0x0+δ1x1+δ2x2 = 0 is the equation 
for a generic straight line L, then a calculation gives δ0F [t : 1 : wt +kt2][1] + δ1F [t : 1 : wt +kt2][2] + δ2F [t :
1 : wt + kt2][3] = δ1α1(γ0 +w)t + o(t2), which allows us to write π∗(F−1(L)) = ˆF−1(L)+

∑p−1
E0j +2E0p. 
j=1



776 A. Cima, S. Zafar / J. Math. Anal. Appl. 474 (2019) 765–781
Now, from π∗(F−1(L)) = 2L̂, we obtain F̃ ∗(L̂) = 2L̂−
∑p−1

j=1 E0j − 2E0p. By proceeding in this manner, we 
find that the matrix of F̃ ∗ is: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 0 0 . . . 0 0
−1 −1 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

−1 −1 0 0 . . . 1 0
−2 −1 0 0 . . . 0 0
−1 −1 0 0 . . . 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Some simple calculations show that the characteristic polynomial of this matrix is (−z)p (z− 1)2. Hence, 
the sequence of degrees satisfies dn+p+2 = 2dn+p+1−dn+p and its behavior depends on the initial conditions, 
i.e., on the first terms d1, d2, . . . , dp+2. Thus, if h(y) is k-periodic, then k = p + 2 and fk(x, y)[2] = y, which 
implies that dk = dk−1. The first degrees are 2, 3, 4, . . . , k, k from dn+k = 2dn+k−1 − dn+k−2, so we find 
that dn = k for all n ≥ k. We still need to prove that the condition F̃n(p+2)(A1) = O0 is equivalent to 
1 + αk

1 + α2k
1 + · · ·+ αnk

1 = 0 for k = p + 2. Therefore, by considering the terms for the maximum degree of 
fk(x, y), (see (15) below), we find that:

F̃ k[0 : x1 : x2] = [0 : αk−1
1 (α1x1 + x2) : x2],

and thus:

F̃nk[0 : 0 : 1] = [0 : αk−1
1 (1 + αk

1 + α2k
1 + · · · + α

(n−1)k
1 ) : 1].

Therefore, F̃nk[0 : 0 : 1] = O1 = [0 : 1 : −α1] if and only if:

1 + αk
1 + α2k

1 + · · · + αnk
1 = 0. (14)

Statement (b) is now proved. To prove (c), we simply compute f (n+1)k. In this case, α1 �= 1, so we can 
consider (a translation may be performed if necessary) that α0 = 0. Now, the expression for fk is:

fk(x, y) =
(
αk

1x + αk−1
1 y + αk−2

1 h(y) + αk−3
1 h2(y) + · · · + α1h

k−2(y) + hk−1(y), y
)

(15)

Hence:

f (n+1)k(x, y) =
(
α

(n+1)k
1 x + (1 + αk

1 + α2k
1 + · · · + αnk

1 )(αk−1
1 y + αk−2

1 h(y) + hk−1(y)), y
)
.

Then, condition (14) implies that α(n+1)k
1 = 1, so condition (14) is satisfied and f is a (n + 1)k-periodic 

map, and thus the sequence of degrees is also (n + 1)k-periodic.
Next, we prove (ii). First, γ1 = 0 implies that γ2 �= 0, and from γ1β2 − γ2β1 = 0, we obtain β1 = 0. 

By performing a translation on y and renaming the coefficients, we obtain Equation (11). This map is very 
simple so we can prove the result based on the behavior of dn using elementary arguments. We observe that 
the first component of fk(x, y) is akx + bk for certain ak, bk. The second components are simply the iterates 
of h(y) = β0

γ0+y , which is a one-dimensional Möbius map. We claim that if h(y) is not a periodic map, then 
hk(y) is a Möbius map with non-constant denominator for all k ∈ N, and that the denominators of hi(y)
and hj(y) are also different for i �= j. From this claim, we can deduce that when h(y) is not a periodic 
map, then dn = 2 for all n ∈ N. In addition, when h(y) is a k-periodic map, then the sequence of degrees is 
dn = 2 for all n, which is not a multiple of k, and dn = 1 when n is a multiple of k.
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To prove the claim, we consider Nk and Dk with hk(z) = Nk

Dk
, and we see that if we do not perform 

simplifications, then Nk+1 = β0 Dk and Dk+1 = γ0 Dk +Nk. Let pk, qk ∈ C such that Dk = pk + qk z. Then, 
Dk+2 − γ0 Dk+1 − β0 Dk = 0, which implies that qk+2 − γ0 qk+1 − β0 qk = 0. The claim follows by analyzing 
this linear recurrence with constant coefficients and considering that this sequence is k-periodic if and only 

if 
(

λ2
λ1

)k

= 1, where λ1, λ2 are the two different roots of λ2 − γ0 λ − β0 = 0 ([9]). �
Proposition 9. We consider the birational mappings:

f(x, y) =
(
α0 + α1x + y,

β0

γ0 + y

)
, α1 �= 0 �= β0. (16)

Then, the following hold.

(a) If the one-dimensional mapping h(y) := β0
γ0+y is not a periodic map, then f(x, y) has the unique invariant 

fibration V1(x, y) = y.
(b) If h(y) is a k-periodic map and 1 + αk

1 + α2k
1 + · · ·+ αnk

1 �= 0 for all n ∈ N, then f(x, y) is integrable to

H1(x, y) = y + h(y) + h(h(y)) + · · · + hk−1(y)

as a first integral and it also has a second invariant fibration V2(x, y):
(b1) If αk

1 �= 1, we can assume that α0 = 0 and thus V2(x, y) =

(αk
1 − 1)x + αk−1

1 y + αk−2
1 h(y) + αk−3

1 h2(y) + · · · + α1h
k−2(y) + hk−1(y) (17)

satisfies V2(f(x, y)) = α1V2(x, y).
(b2) If αk

1 = 1 but α1 �= 1, we can assume that α0 = 0 and thus V2(x, y) =

kx + (k − 1)αk−1
1 y + (k − 2)αk−2

1 h(y) + (k − 3)αk−3
1 h(h(y)) + · · · + 2α2

1h
k−3(y) + α1h

k−2(y)
αk−1

1 y + αk−2
1 h(y) + αk−3

1 h(h(y)) + · · · + α1hk−2(y) + hk−1(y)

satisfies V2(f(x, y)) = V2(x, y) + 1.
(b3) If α1 = 1, then:

V2(x, y) = kx + (k − 1)y + (k − 2)h(y) + (k − 3)h(h(y)) + · · · + 2hk−3(y) + hk−2(y)
kα0 + y + h(y) + h(h(y)) + · · · + hk−2(y) + hk−1(y)

satisfies V2(f(x, y)) = V2(x, y) + 1.
(c) If h(y) is a k-periodic map and 1 +αk

1 +α2k
1 + · · ·+αnk

1 = 0 for some n ∈ N, then f(x, y) has a second 
first integral H2(x, y), which can be given by H2(x, y)) = V

(n+1)k
2 (x, y) and V2(x, y) is defined by (17).

The proofs are straightforward. We only note that finding the fibrations requires that we consider the 
combinations of x, y, h(y), h(h(y)), . . . , hk−1(y) or their quotients.

Remark 10. Assuming that hypothesis (b) holds, and since dn is a bounded sequence and f(x, y) is not 
a periodic map, then from [6], we know that f(x, y) is birationally equivalent to either (x, y) → (ax, by)
where a is a root of unity and b is not, or to (x, y) → (ax, y + 1). The fibrations encountered in (b) allow 
us to construct these conjugations. In fact, when V2(f(x, y)) = α1V2(x, y), we are considering the first case, 
whereas we are considering the second case when V2(f(x, y)) = V2(x, y) + 1.
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The invariant fibrations and first integrals that correspond to the mappings while satisfying (ii) in 
Theorem 8 appear simple after a suitable affine change of the coordinates. The next proposition gives this 
information.

Proposition 11. We consider the birational mappings:

f(x, y) =
(
α0 + α1x,

β0

γ0 + y

)
, α1 �= 0 �= β0. (18)

These mappings preserve the two generically transverse invariant foliations V1(x, y) = x and V2(x, y) = y. 
Furthermore:

(a) If h(y) = β0
γ0+y is k-periodic, then

H1(x, y) = y + h(y) + h(h(y)) + · · · + hk−1(y)

is a first integral of f(x, y).
(b) If m(x) := α0 + α1x is p-periodic, then

H2(x, y) = x + m(x) + m(m(x)) + · · · + mp−1(x)

is a first integral of f(x, y).
(c) If h(y) and m(x) are k-periodic, then f(x, y) is a k-periodic mapping with two independent first integrals 

H1(x, y) and H2(x, y) with p = k.

4.3. Case where (βγ)12 = 0 with γ2 = 0

If γ2 = 0, we know that γ1 �= 0 and from (βγ)12 = 0, we obtain β2 = 0. In addition, α2 �= 0 if f(x, y)
does not depend only on x.

Theorem 12. We consider the birational mappings:

f(x1, x2) =
(
α0 + α1x1 + α2x2,

β0 + β1x1

γ0 + γ1x1

)
, (γ1, α2) �= (0, 0). (19)

(a) If we assume that α1 �= 0, then the dynamical degree of F is δ(F ) = 1+
√

5
2 and dn+2 = dn + dn+1.

(b) If we assume that α1 = 0, then after an affine change of the coordinates, f(x, y) takes the form:

f(x1, x2) =
(
x2,

β0

γ0 + x1

)
, (20)

and the dynamical degree of F is δ(F ) = 1. Furthermore:
(b1) If h(z) := β0

γ0+z is not a periodic map, then dn = 2 for all n ∈ N.
(b2) If h(z) is a k-periodic map, then dn is a 2k-periodic sequence.

Proof. To prove (a), we observe that S1 � A1 = O0 = [0 : 0 : 1] and F (A0) = [0 : α1γ1 : 0] = A0 /∈ I(F ). 
Thus, we must blow-up A1 = [0 : 0 : 1] to obtain E1. Then, F̃ sends S1 → E1 � [0 : 1 : 0] = A0. Since 
A1 ∈ S1 , π∗(S1) = Ŝ1 + E1 and the matrix of F̃ ∗ is:(

2 1
−1 −1

)
. (21)
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Then, the characteristic polynomial associated with F is z2 − z − 1. Hence, the dynamical degree is 
δ(F ) = δ∗ and dn+2 = dn+1 + dn for all n ∈ N.

Next, we prove (b). When α1 = 0, (19) can be transformed into (20) via the conjugation

ψ(x, y) =
(

1
γ1

x + α0γ1 + α2β1

γ1
,

1
γ1α2

y + β1

γ1

)
.

From (20), we find that f(f(x, y)) = (h(x), h(y)) and generally:

f2n(x, y) = (hn(x), hn(y)) , f2n+1(x, y) =
(
hn(y), hn+1(x)

)
. (22)

Based on the same arguments given above, if h is not periodic, then dn = 2 for all n ∈ N. If h is k-periodic, 
then f2k(x, y) = (x, y), and from (22), we find that dn = 2 for all n ∈ N such that it is not a multiple of 
2k and dn = 1 for all n ∈ N such that it is a multiple of 2k. In all cases, the dynamical degree of F is 
δ(F ) = 1. �
Proposition 13. We consider the family of mappings:

f(x, y) =
(
y,

β0

γ0 + x

)
.

Then:

(a) If γ2
0 +4 β0 �= 0, let p and q be the two different roots of z2−γ0 z−β0 = 0, and let m such that m2 = q/p, 

then f(x, y) preserves the generically transverse fibrations:

H1(x, y) = m2 p2 + mpx + p(m2 −m + 1)y + xy

(x + p) (y + p) ,

H2(x, y) = m2 p2 −mpx + p(m2 + m + 1)y + xy

(x + p) (y + p)

with H1(f(x, y)) = mH1(x, y) , H2(f(x, y)) = −mH2(x, y). Furthermore, f(x, y) is 2k-periodic if and 
only if m2k = 1, and in this case, H2k

1 (x, y) and H2k
2 (x, y) are two independent first integrals of f(x, y).

(b) If γ2
0 + 4 β0 = 0, then it preserves the two generically transverse fibrations:

K1(x, y) = γ2
0 − 2γ0 x + 6γ0 y + 4x y

(2x + γ0) (2 y + γ0)
, K2(x, y) = 2 γ0 (x + y + γ0)

(2x + γ0) (2 y + γ0)
,

with K1(f(x, y)) = −K1(x, y) , K2(f(x, y)) = K2(x, y) + 1. Furthermore, f(x, y) is integrable to 
W (x, y) = (K1(x, y))2 as the first integral.

Proof. When γ2
0 +4 β0 �= 0, some calculations show that in fact, H1(f(x, y)) = mH1(x, y) and H2(f(x, y)) =

−mH2(x, y). Furthermore, H1(x, y), H2(x, y) are generically transverse because the determinant of the Ja-
cobian of H1(x, y), H2(x, y) is

− 2p2m(m2 − 1)
(p + x)2(p + y)2 ,

which is different from zero (if this is not the case, m2 = 1, and this occurs if and only if p = q, which 
contradicts γ2

0 + 4 β0 �= 0).
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In addition, when γ2
0 + 4 β0 = 0, the determinant of the Jacobian of K1(x, y), K2(x, y) is different from 

zero because it is equal to:

16c2

(2y + c)2(2x + c)2 .

Finally, W (x, y) = (K1(x, y))2 is a first integral of f(x, y) because W (f(x, y)) = (K1(f(x, y)))2 =
(−K1(x, y))2 = W (x, y). �
Remark 14. Simple computations show that when γ2

0 + 4 β0 �= 0, f is birationally conjugated to (mx, −my)
via the conjugation ϕ(x, y) = (H1(x, y), H2(x, y)), and that when γ2

0 +4 β0 = 0, f is birationally conjugated 
to (−x, y + 1) via ψ(x, y) = (K1(x, y), K2(x, y)).
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