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In this paper we study the semilinear elliptic equations

{
−Δu = f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

where Ω ⊂ RN is a smooth bounded domain. By using the minimax methods, 
bifurcation methods, Conley index theory and Morse theory, we obtain six nontrivial 
solutions for the equations with coercive nonlinearities.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The present paper deals with the existence and multiplicity of nontrivial weak solutions to semilinear 
elliptic boundary value problem {

−Δu = f(x, u) x ∈ Ω,

u = 0 x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN is a smooth bounded domain. Let 0 < λ1 < λ2 < · · · < λk < · · · be the sequence of distinct 
eigenvalues of −Δ with zero Dirichlet boundary condition in Ω. We make the following assumptions on f :

(f1) f ∈ C1(Ω ×R, R), f(x, 0) = 0 for all x ∈ Ω.
(f2) f ′

t(x, 0) = λ ∈ R for all x ∈ Ω.
(f3) There are C > 0 and 2 � p < 2∗ such that |f ′

t(x, t)| � C(1 + |t|p−2) for all x ∈ Ω and t ∈ R, where 
2∗ = 2N

N−2 for N � 3 and 2∗ = ∞ for N = 1, 2.

✩ Supported by KZ202010028048 and NSFC (11771302, 11671026, 11601353).
* Corresponding author.

E-mail addresses: chenyutong@cnu.edu.cn (Y. Chen), sujb@cnu.edu.cn (J. Su), suncut@163.com (M. Sun), 
rushun.tian@cnu.edu.cn (R. Tian).
https://doi.org/10.1016/j.jmaa.2020.124031
0022-247X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2020.124031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2020.124031&domain=pdf
mailto:chenyutong@cnu.edu.cn
mailto:sujb@cnu.edu.cn
mailto:suncut@163.com
mailto:rushun.tian@cnu.edu.cn
https://doi.org/10.1016/j.jmaa.2020.124031


2 Y. Chen et al. / J. Math. Anal. Appl. 487 (2020) 124031
(f4) There exist γ < λ1 and C1 > 0 such that

F (x, t) :=
t∫

0

f(x, s)ds � 1
2γt

2 + C1 for all x ∈ Ω and t ∈ R.

(f5)± There exists ξ > 0 such that ±(f(x, t) − λt)t > 0 for all 0 < |t| � ξ, x ∈ Ω.

Clearly, by (f1) the equation (1.1) has the trivial solution for any λ ∈ R. The existence of nontrivial 
solutions for the equation (1.1) is closely related to the position of the range of f ′ with respect to the 
spectrum of −Δ. In the autonomous case, i.e. f(x, u) ≡ f(u), Castro and Lazer in [9] found two nontrivial 
solutions for (1.1) if there is at least one eigenvalue λj between f ′(0) and f ′(∞) := lim|t|→∞ f(t)/t and 
f ′(t) < λj+1 for all t ∈ R. This result was extended by Chang in [10] and by Li and Willem in [19] using 
Morse theory. Also the results in [9] were extended by Castro and Cossio in [5] where at least four nontrivial 
solutions for (1.1) were obtained in the case when f ′(0) < λ1 and f ′(∞) ∈ (λk, λk+1) with k � 2 and 
f ′(t) � α < λk+1. The proofs in [5] were based on Lyapunov-Schmidt reduction arguments, the mountain 
pass theorem, and characterizations of the local degree of critical points. In an interesting paper [7], Castro, 
Cossio and Vélez proved the existence of six nontrivial solution in the case that f ′(0) � 0, tf ′′(t) > 0
for t �= 0 and lim|t|→∞ f ′(t) ∈ (λk, λk + ε) for k � 3 and ε > 0 small. Hofer in [18] proved the existence 
of four nontrivial solutions of (1.1) using degree theory in the case that f ′(0) ∈ (λk, λk+1) with k � 2
and lim sup|t|→∞ f(t)/t < λ1. More recently, by the combinations of the cut-off technique, the mountain 
pass theorem and the degree theory, Castro, Cossio, Herrón and Vélez in [8] proved the existence of four 
nontrivial classical solutions for (1.1) in the case that f ′(0) ∈ (λk, λk+1) with k � 2 and f(t)/t � γ < λ1 for 
large |t|. One of the novelties of [8] was that there was no subcritical growth condition on the nonlinearity f . 
Motivated by [8],[15] and [22], the purpose of this paper is giving a lower bound on the number of nontrivial 
solutions under the assumptions (f1)–(f4) and (f5)± with λ very close to a higher eigenvalue λk+1 of −Δ
for some k � 2. We note that (f4) characterizes (1.1) as a coercive elliptic problem so that the associated 
energy functional is bounded from below. We also note that (f4) includes the condition near infinity in 
[18] and the partial condition in [8] as special cases. Indeed the condition lim sup|t|→∞ f(t)/t < λ1 in [18]
implies (f4) and f(t)/t � γ < λ1 in [8] implies (f4) for t > 0. The local sign condition similar to (f5)±

was introduced by Rabinowitz, Su and Wang in [22] to prove the existence of three nontrivial solutions for 
superlinear elliptic equations with saddle point structure at zero by using bifurcation theory, homological 
linking and Morse theory.

In this paper, by combining bifurcation analysis, Morse theory and Conley index theory, we will prove 
that the equation (1.1) has at least six nontrivial solutions, including two constant-sign solutions and two 
sign-changing solutions. It is well-known that, in comparison with the degree theory used in [8], critical 
groups provide both a finer structure and better estimate of the number of solutions. The Conley index we 
use in this paper can be regarded as an extension of both the Leray-Schauder degree and the critical groups.

The main results of the present paper are the following theorems.

Theorem 1.1. Assume (f1)–(f5)+ hold and let k � 2 be fixed. Then there is δ > 0 such that for λ ∈
(λk+1− δ, λk+1), equation (1.1) has at least six nontrivial solutions, in which one is positive, one is negative 
and two are sign-changing.

Theorem 1.2. Assume (f1)–(f5)− hold and let k � 2 be fixed. Then there is δ > 0 such that for λ ∈
(λk+1, λk+1 + δ), equation (1.1) has at least six nontrivial solutions, in which one is positive, one is negative 
and two are sign-changing.
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The paper is organized as follows. In Section 2 we get two constant sign solutions and one mountain pass 
solution. In Section 3, we prove the existence of two bifurcation solutions by giving information on their 
Morse indices and sign-changing property. In Section 4, we give the proofs of the main theorems with some 
comments.

2. Variational solutions

In this section, we will apply variational methods to find three nontrivial solutions of (1.1). The proofs 
of the existence of these solutions follow exactly the same ideas used by Castro, Cossio, Herrón and Vélez 
in [8] and these results were proven in [8] for a similar problem. For the sake of completeness we sketch out 
the proofs.

Denote by ‖u‖ = (
∫
Ω |∇u|2dx)1/2 the norm of H1

0 (Ω). For k � 1, H1
0 (Ω) has a orthogonal decomposition 

as follows,

H1
0 (Ω) = Ek ⊕ E⊥

k , where E(λk) = ker(−Δ − λk), Ek =
k⊕

i=1
E(λi). (2.1)

Denote νk = dimE(λk) and 
k = dimEk. We have that 
k+1 = 
k+νk+1. The energy functional Φ associated 
to the equation (1.1) is given by

Φ(u) = 1
2

∫
Ω

|∇u|2dx−
∫
Ω

F (x, u)dx, u ∈ H1
0 (Ω). (2.2)

By (f1) and (f3), Φ is a well-defined C2 functional on H1
0 (Ω) with derivatives

〈Φ′(u), ϕ〉 =
∫
Ω

∇u∇ϕdx−
∫
Ω

f(x, u)ϕdx, (2.3)

〈Φ′′(u)ϕ,ψ〉 =
∫
Ω

∇ϕ∇ψdx−
∫
Ω

f ′
t(x, u)ϕψdx (2.4)

where u, ϕ, ψ ∈ H1
0 (Ω). Thus the weak solutions of (1.1) correspond to the critical points of Φ in H1

0 (Ω), 
and are contained in

K(Φ) =
{
u ∈ H1

0 (Ω) : Φ′(u) = 0
}
.

Also denote

Φc =
{
u ∈ H1

0 (Ω) : Φ(u) � c}, Kc(Φ) = {u ∈ K(Φ) : Φ(u) = c
}
.

Associated with the functional Φ, we introduce two truncated functionals Φ± : H1
0 (Ω) → R as

Φ±(u) = 1
2

∫
Ω

|∇u|2dx−
∫
Ω

F±(x, u)dx,

where F±(x, t) :=
∫ t

0 f±(x, s)ds, and

f±(x, t) =
{

f(x, t), ±t � 0,
0, ±t < 0.
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Under (f1)–(f3), f± is locally Lipschitz continuous on t for all x ∈ Ω and then we have Φ± ∈ C2−0(H1
0 (Ω), R)

(see [1,14]). For a ∈ R, let a+ = max{a, 0}, a− = max{−a, 0}, then for u ∈ H1
0 (Ω), u = u+ −u− and u± ∈

H1
0 (Ω).
First we verify the compactness of the functional Φ and compute the critical groups Cq(Φ, ∞) of Φ at 

infinity. This notation was introduced by Bartsch and Li in [2].

Lemma 2.1. Assume that f satisfies (f1), (f3) and (f4). Then

(i) the functional Φ is coercive on H1
0 (Ω);

(ii) the functional Φ satisfies the Palais-Smale condition;
(iii) Cq(Φ, ∞) ∼= δq,0F .

Proof. (i) For u ∈ H1
0 (Ω), we have by (f4) that

Φ(u) � 1
2‖u‖

2 − 1
2γ‖u‖

2
L2(Ω) − C1|Ω|. (2.5)

Since γ < λ1, we have that Φ(u) → ∞ as ‖u‖ → ∞. This proves that Φ is coercive.
(ii) Let {un} ⊂ H1

0 (Ω) be a Palais-Smale sequence i.e. Φ′(un) → 0 and Φ(un) → c for some c ∈ R

as n → ∞. By the coerciveness of Φ, {un} is bounded and then by [21, Proposition B.35] it contains a 
convergent subsequence.

(iii) Since Φ is coercive and is weakly lower semicontinuous on H1
0 (Ω), Φ attains its global minima at 

some u∗:

Φ(u∗) = min
u∈H1

0 (Ω)
Φ(u).

Take b < Φ(u∗). Then

Cq(Φ,∞) := Hq(H1
0 (Ω),Φb) ∼= Hq({u∗}, ∅) ∼= δq,0F . �

Next we apply the cut-off techniques and the direct method of the calculus of variations to find nontrivial 
solutions of (1.1) with constant sign.

Theorem 2.2. Assume that (f1)–(f4) hold with λ > λ1. Then the equation (1.1) admits two constant sign 
solutions, one is strictly positive and the other is strictly negative in Ω, which are local minimizers of the 
energy functional Φ.

Proof. It is easy to see from Lemma 2.1 that Φ+ is coercive in H1
0 (Ω), and there exists u+ ∈ H1

0 (Ω) s.t.

Φ+(u+) = min
u∈H1

0 (Ω)
Φ+(u). (2.6)

In particular, u+ ∈ K(Φ+), we claim that u+ �= 0. By (f2) and λ > λ1, we can find σ > 0 such that 
F+(x, u) > λ1

2 u2 for a.e. x ∈ Ω and all 0 < u � σ. Let φ1 be a positive eigenfunction associated to λ1. Then 
for all t > 0 small enough we have ‖tφ1‖∞ � σ and thus

Φ+(tφ1) = 1
2‖tφ1‖2 −

∫
Ω

F+(x, tφ1)dx =
∫
Ω

(
1
2λ1t

2φ2
1 − F+(x, tφ1)

)
dx < 0. (2.7)

By (2.6) we have Φ+(u+) < 0, hence u+ �= 0. Take ϕ = (u+)− in (2.3) with Φ replaced by Φ+, we can get 
(u+)− = 0 and thus u+ = (u+)+ � 0 a.e. in Ω. This implies that u+ satisfies
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{
−Δu+ = f(x, u+) x ∈ Ω,

u+ = 0 x ∈ ∂Ω.
(2.8)

By standard elliptic arguments we deduce u+ ∈ C1
0 (Ω̄). Noting that there exists 0 < θ < 1 such that

|f(x, u+) − f(x, 0)| = |f ′
t(x, θu+)|u+ � κu+, uniformly in x ∈ Ω̄,

where κ = sup
x∈Ω̄, 0�ξ�‖u+‖C(Ω̄)

|f ′
t(x, ξ)|, we obtain f(x, u+) � −κu+, i.e. it follows from (2.8) that

{
−Δu+ + κu+ � 0, x ∈ Ω,

u+ � 0, x ∈ Ω.

It follows from [4, Theorem 3] and u+ �= 0 that there is some ε > 0 such that

u+(x) � ε dist(x, ∂Ω) > 0 in Ω. (2.9)

Thus if u ∈ C1
0 (Ω̄) and ‖u − u+‖C1 � ε then

u � 0 in Ω.

So, for such a u ∈ C1
0 (Ω̄), there holds

Φ(u+) = Φ+(u+) � Φ+(u) = Φ(u), (2.10)

we see that u+ is a local minimizer of Φ in the C1 topology. Hence by [4, Theorem 1] it is a local minimizer 
of Φ in the H1

0 topology. Therefore u+ ∈ K(Φ), and u+ is a positive solution of (1.1).
Similarly, we find another local minimizer u− ∈ H1

0 (Ω) of Φ, which turns out to be a negative solution 
of (1.1). �

Next we find the third variational solution as a mountain pass point of Φ.

Theorem 2.3. Assume that (f1)–(f4) hold with λ > λ1. Then (1.1) admits a solution ũ of mountain pass 
type differing from u±.

Proof. By Lemma 2.1, Φ is coercive and satisfies (PS) condition. Next we check that the functional Φ has 
a mountain pass geometry (see [21, Theorem 2.2]).

Without loss of generality, we assume that Φ(u+) � Φ(u−) and u+ is a strict local minimizer of Φ. 
Clearly, there exists r ∈ (0, ‖u+ − u−‖) such that Φ(u) > Φ(u+) for all u ∈ Br(u+) \ {u+} ⊂ H1

0 (Ω). 
Moreover, there holds

ηr := inf
u∈∂Br(u+)

Φ(u) > Φ(u+).

Otherwise, we could find a sequence {un} ⊂ ∂Br(u+) satisfying Φ(un) → Φ(u+) and Φ′(un) → 0 as n → ∞
(see [20, Corollary 5.12]). Since Φ verifies the (PS) condition, there exists ū ∈ ∂Br(u+) such that un → ū

in H1
0 (Ω), a contradiction. Thus Φ possesses the mountain pass theorem geometry.

Now set Γ = {σ ∈ C([0, 1], H1
0 (Ω)) : σ(0) = u+, σ(1) = u−}, and define

c := inf max Φ(σ(t)).

σ∈Γ t∈[0,1]
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By standard minimax arguments, we have c � ηr and there exists ũ ∈ Kc(Φ). By Φ(ũ) = c � ηr > Φ(u+) �
Φ(u−) we have that ũ �= u±. �

We note that the conclusion of Theorem 2.2 is valid in the case that f ′
t(x, 0) ≡ λ1 and 2F (x, t) � λ1t

2

for small |t| and all x ∈ Ω̄. We also note that in the situation of λ1 < λ < λ2 the solution ũ obtained in 
Theorem 2.3 may not be different from 0.

3. Bifurcation solutions

In this section, we prove the existence of bifurcation solutions of (1.1) and then give the information on 
Morse indices and the sign-changing property (see [6]) for the bifurcation solutions. We have the following 
results.

Theorem 3.1. Let k � 1 be fixed. Assume that f satisfies (f1)–(f3) and (f5)+ (or (f5)−, respectively). Then 
there is δ > 0 such that for every λ ∈ (λk+1 − δ, λk+1) (or λ ∈ (λk+1, λk+1 + δ), respectively), the equation 
(1.1) has at least two nontrivial solutions ui

λ(i = 1, 2). Furthermore, there hold the following conclusions.

(i) ui
λ → 0 in C1

0 (Ω) as λ → λk+1, (i = 1, 2).
(ii) The Morse index m(ui

λ) and the nullity n(ui
λ) of Φ at ui

λ (i = 1, 2) satisfy

m(ui
λ) � 
k, n(ui

λ) � νk+1, for all 0 < |λ− λk+1| < δ. (3.1)

(iii) The bifurcation solutions ui
λ (i = 1, 2) are sign-changing.

Proof. There is δ1 > 0 small such that for any λ satisfying 0 < |λ −λk+1| < δ1, the existence of two solutions 
ui
λ (i = 1, 2) of the equation (1.1) has been proved in Rabinowitz, Su and Wang [22, Proposition 2.3] by 

applying the well-known Rabinowitz’s bifurcation theorem (see [21, Theorem 11.35]). In fact, the conditions 
(f5)± ensure the validity of the second case of [21, Theorem 11.35]).

Since ui
λ ∈ H1

0 (Ω) (i = 1, 2) are bifurcation solutions near the bifurcation point (λk+1, 0) ∈ R ×H1
0 (Ω) of 

the equation (1.1), it is known that ui
λ → 0(i = 1, 2) in H1

0 (Ω) as λ → λk+1. By standard elliptic regularity 
arguments we have the conclusion (i).

By (f1), (f2) and (i), for given constants λ∗ and λ∗ satisfying λk < λ∗ < λk+1 < λ∗ < λk+2, there exist 
0 < τ � ξ and a corresponding δ2 > 0, such that for all λ ∈ (λk+1 − δ2, λk+1 + δ2),

‖ui
λ‖C1

0 (Ω) � τ � ξ, (3.2)

λk < λ∗ � f ′
t(x, ui

λ(x)) � λ∗ < λk+2, for all x ∈ Ω. (3.3)

By (f3) we have (2.4). Then for v ∈ Ek \ {0}, we have

〈Φ′′(ui
λ)v, v〉 =

∫
Ω

|∇v|2dx−
∫
Ω

f ′
t(x, ui

λ)v2dx �
(

1 − λ∗
λk

)
‖v‖2 < 0. (3.4)

For w ∈ E⊥
k+1 \ {0}, we have

〈Φ′′(ui
λ)w,w〉 =

∫
Ω

|∇w|2dx−
∫
Ω

f ′
t(x, ui

λ)w2dx �
(

1 − λ∗

λk+2

)
‖w‖2 > 0. (3.5)

Take δ = min{δ1, δ2}. The conclusion (ii) follows from (3.4) and (3.5).
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Now we follow a similar argument as in [21, Remark 5.19] to prove conclusion (iii). Since ui
λ(i = 1, 2)

satisfies (1.1), multiplying both sides of (1.1) by φ1 and integrating over Ω, there holds
∫
Ω

f(x, ui
λ)φ1dx =

∫
Ω

(−Δui
λ)φ1dx =

∫
Ω

(−Δφ1)ui
λdx = λ1

∫
Ω

φ1u
i
λdx.

Consequently
∫
Ω

(f(x, ui
λ) − λui

λ)φ1dx = (λ1 − λ)
∫
Ω

φ1u
i
λdx. (3.6)

On the one hand, if ui
λ is positive (negative, resp.) in Ω, by φ1 > 0 in Ω, the right-hand side of (3.6) is 

negative (positive, resp.). On the other hand, it follows from (3.2) and (f5)+ that the left-hand side of 
(3.6) is positive (negative, resp.), a contradiction. In the case of (f5)− the argument is similar. The proof is 
complete. �
Remark 3.2. We conclude this section by some remarks. (1) The sign-changing property of bifurcation 
solutions of (1.1) in this paper is new. (2) The conclusion (ii) of Theorem 3.1 indicates an essential property 
in terms of Morse indices of bifurcation solutions that emanate from trivial solution branch. (3) For any 
solution u of (1.1) with ‖u‖C1 small enough, it holds that the Morse index m(u) and the nullity n(u) of Φ
at u satisfying m(u) � 
k and n(u) � νk+1. Furthermore, the information on Morse indices of bifurcation 
solutions will provide a way to distinguish them from the solutions obtained by variational methods.

4. Proof of the main results

In this section, we will complete the proof of Theorems 1.1 and 1.2. Let us keep in mind all the assumptions 
on f in the main theorems. Then up to now we have six solutions of (1.1), in which, u± and ũ from 
Theorems 2.2 and 2.3 are variational solutions; ui

λ(i = 1, 2) from Theorem 3.1 are bifurcation solutions and 
one is the trivial solution 0. What we need to do is that to distinguish these solutions. It is well-known that 
critical group is a very useful tool in distinguishing the known critical points of a differential functional 
obtained by other ways.

Recall that the q-th critical group of Φ at its isolated critical point u is defined as

Cq(Φ, u) := Hq(Φc ∩ U,Φc ∩ U \ {u}).

Here c = Φ(u) and Hq(A, B) is the q-th relative singular cohomology group of the topological pair (A, B)
with coefficients in a field F (see [11]).

We first compute the critical groups of the functional Φ defined by (2.2) at 0. We have

Lemma 4.1. Assume that f satisfies (f1)–(f3). Then

(i) For λ ∈ (λk, λk+1), it holds that Cq(Φ, 0) ∼= δq,�kF .
(ii) For λ ∈ (λk+1, λk+2), it holds that Cq(Φ, 0) ∼= δq,�k+1F .
(iii) If λ = λk+1 and (f5)± holds, then 0 is an isolated solution of (1.1). Furthermore,

(a) Cq(Φ, 0) ∼= δq,�k+1F if (f5)+ holds; (b) Cq(Φ, 0) ∼= δq,�kF if (f5)− holds.

Proof. In the cases (i) or (ii), 0 is a nondegenerate critical point of Φ with Morse index 
k or 
k+1, the 
conclusions then follow from [11, Theorem 4.1,Chapter II].
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In the case (iii), λ = λk+1, then 0 is a degenerate critical point of Φ with Morse index 
k and nullity 
νk+1. We need to prove that 0 is an isolated solution of (1.1) under (f5)±. Let (f5)+ hold. Assume that 0
is not an isolated solution of (1.1). Then there exists a sequence {un} ⊂ H1

0 (Ω) \ {0} such that un → 0 in 
H1

0 (Ω) as n → ∞, and for each n ∈ N, un satisfies

{
−Δun = f(x, un) x ∈ Ω,

un = 0 x ∈ ∂Ω.
(4.1)

By standard elliptic regularity arguments we have un → 0 in C1
0 (Ω). Thus there holds that ‖un‖C1 < ξ for 

all n > N1 for some N1 ∈ N. We consider the weighted linear eigenvalue problem
{
−Δv = μηn(x)v x ∈ Ω,

v = 0 x ∈ ∂Ω,
(4.2)

where ηn(x) = f(x,un(x))
un(x) for un(x) �= 0 and ηn(x) = λk+1 for un(x) = 0. For n > N1, it follows from (f2)

and (f5)+ that λk+2 > ηn(x) � λk+1 holds in Ω. Let σ(ηn) ⊂ R+ be the set of all eigenvalues of (4.2). 
Then by (4.1) we have 1 ∈ σ(ηn) with un being an associated eigenfunction. By the unique continuation 
property for eigenfunctions of the linear elliptic eigenvalue problem (recall that {x ∈ Ω : un(x) = 0} has 
zero measure) we have λk+2 > ηn(x) > λk+1 for a.e. x ∈ Ω. Thus by the monotonicity of the weighted 
eigenvalue problem [16, Proposition 1.12A] we have

μk+1(ηn) < μk+1(λk+1) = 1 = μk+2(λk+2) < μk+2(ηn),

which contradicts to the fact that 1 is an eigenvalue of (4.2). The case (f5)− is proved in the same way.
When (f5)+ (or (f5)−) holds, one can verify that Φ has a local linking structure at 0 with respect to 

H1
0 (Ω) = Ek+1 ⊕ E⊥

k+1 (or H1
0 (Ω) = Ek ⊕ E⊥

k ) (see [23, Lemma 3.6]). Therefore [23, Proposition 2.2] can 
be applied. The proof is complete. �

Now we use critical groups to distinguish the solutions found in previous sections. By Theorem 2.2, the 
equation (1.1) has two nontrivial solutions u± with Φ(u±) < 0. Since u± are local minimizers of Φ, their 
critical groups read as (see [4,11])

Cq(Φ, u±) ∼= δq,0F for all q ∈ Z. (4.3)

By Theorem 2.3, the equation (1.1) has a solution ũ which is a mountain pass point of Φ. Thus a standard 
argument involving Kato-Hess Theorem and [11, Theorem 1.6 in Chapter II] shows that

Cq(Φ, ũ) ∼= δq,1F for all q ∈ Z. (4.4)

By the Gromoll-Meyer Theorem [17] and Theorem 3.1(ii), the critical groups of Φ at the two bifurcation 
solutions ui

λ(i = 1, 2) read as

Cq(Φ, ui
λ) ∼= 0, ∀ q /∈ [
k, 
k+1], ∀ 0 < |λ− λk+1| < δ, i = 1, 2. (4.5)

As k � 2 is fixed, we have 
k � 2. It follows from (4.3), (4.4), (4.5) and Lemma 4.1 (i) or (ii) that ũ �= 0
and {u1

λ, u
2
λ} are different from {u±, ̃u}.

We end the proofs of Theorems 1.1 and 1.2 by finding the sixth nontrivial solution of (1.1) via the Conley 
index theory. For the reader’s convenience we recall briefly some concepts and basic results from [13,12]. 
This part is almost a copy from [15] with the notations used here.
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Let X be a Banach space, Φ ∈ C1(X, R) satisfy (PS) and η be an associated pseudo-gradient flow. A 
subset S of the critical point set K(Φ) of Φ is said be a dynamically isolated critical set if there exist a 
closed neighborhood O of S and regular values α < β such that

cl(Õ) ∩ K(Φ) ∩ Φ−1[α, β] = S, Õ = ∪t∈Rη(t, O).

We call (O, α, β) an isolating triple for S and

Cq(Φ, S) = Hq(Φβ ∩ Õ+,Φα ∩ Õ+), Õ+ = ∪t�0η(t, O)

the critical groups for S.
A pair (W, W−) is called a Gromoll-Meyer pair for S with respect to η if the following conditions hold: 

(i) W is a closed neighborhood of S with mean value property (MVP) that for any u ∈ X and t1 < t2, 
η(ti, u) ∈ O(i = 1, 2) implies η([t1, t2], u) ⊂ O; (ii) W− is an exit set for W , i.e. for each u0 ∈ W and t1 > 0
such that η(t1, u0) /∈ W , there exists t0 ∈ [0, t1) such that η([0, t0], u0) ⊂ W and η(t0, u0) ∈ W−; (iii) W−

is closed and is a union of a finite number of submanifolds that are transversal to η.
The Gromoll-Meyer pair (W, W−) for a critical set SΦ of Φ is stable under C1 perturbation on W , i.e. if 

(W, W−) is a Gromoll-Meyer pair for Φ, ‖Φ −Ψ‖C1(W ) < ε for ε > 0 small, and both Φ and Ψ satisfy (PS), 
then there is a pseudo-gradient flow ξ of Ψ for which (W, W−) is still a Gromoll-Meyer pair for any critical 
set SΨ for Ψ such that W ∩ K(Ψ) = SΨ (see [13, Theorem 3.4]).

It is known from [13] that if (O, α, β) is an isolating triple for S and O satisfies (MVP) then

[S] := {u ∈ X : ω(u) ∪ ω∗(u) ⊂ S} = ∩t∈Rη(t, O)

is an isolated invariant set with respect to η where ω(u) and ω∗(u) are the ω- and ω∗- limit sets of u. For 
an isolated critical point u0 of Φ that is located on an isolated critical level, the singleton S = {u0} is a 
dynamically isolated critical set and [S] = S = {u0}.

A neighborhood U of an invariant set A with respect to η is called isolating if U is closed and 
∩|t|�T η(t, U) ⊂ int(U) for some T > 0 and ∩t∈Rη(t, U) = A. In particular, if (O, α, β) is an isolated 
triple for a dynamically isolated critical point set S, then U = Oβ

α = Õ ∩ f−1[α, β] is an isolating neigh-
borhood of [S] (see [13]). By [13, Proposition 3.2], for any MVP closed neighborhood U of [S] satisfying 
U ⊂ Oβ

α where (O, α, β) is an isolating triple for S, there exists a Gromoll-Meyer pair (W, W−) for S such 
that W ⊂ int(U). In particular, W = Oβ

α and W− = W ∩ Φ−1(α) is a Gromoll-Meyer pair for S.
According to Benci [3], a pair (N, N0) of closed subsets of X is called an index pair for an isolating 

neighborhood U if

(1) There exists T > 0 such that ∩|t|�T η (t, cl(N \N0)) ⊂ int(N \N0).
(2) N0 is positively invariant with respect to N , i.e., for any t > 0 and for all u ∈ N0, η([0, t], u) ⊂ N implies 

that η([0, t], u) ⊂ N0.
(3) N0 is an exit set for N , i.e., for all u ∈ N and t1 > 0 such that η(t1, u) /∈ N , there exists t0 ∈ [0, t1)

such that η([0, t0], u) ⊂ N and η(t0, u) ∈ N0.
(4) cl(N \N0) ⊂ U and there exists T > 0 such that ∩|t|�T η(t, U) ⊂ cl(N \N0).

The Conley index of the isolating neighborhood of U is defined to be the Alexander-Spanier cohomology 
H̄∗(N, N0). It is well known that the Conley index is a topological invariant for isolating neighborhoods, 
i.e., if (N, N0) and (N ′, N ′

0) are two index pairs for U , then H̄∗(N, N0) = H̄∗(N ′, N ′
0). Conley index enjoys 

the continuation property.
It is proved in [13] that if (W, W−) is a Gromoll-Meyer pair for a dynamically isolated critical set S

satisfying W ⊂ Oβ
α, then (W, W−) is a Conley index pair for any isolated neighborhood U of [S] satisfying 
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W ⊂ U ⊂ Oβ
α. Therefore if U is any isolating neighborhood for [S] such that U ⊂ Oβ

α, then for any Conley 
index pair (N, N0) of U , we have H̄∗(N, N0) = C∗(Φ, S).

We are ready to finish the proof of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Denote by Φλk+1 the energy functional Φ in the case λ = λk+1 in (f2), and 
K(Φλk+1) = {u ∈ H1

0 (Ω) : Φ′
λk+1

(u) = 0}. We consider the functional Φλk+1 with k � 2 be fixed and 
regard the functional Φ as a perturbation of Φλk+1 for λ ∈ (λk+1 − δ, λk+1) and δ > 0 small. By (f5)+
and Lemma 4.1 we see that 0 is an isolated critical point of Φλk+1 . Thus by definition ([13]), S = {0} is a 
dynamically isolated critical set of Φλk+1 .

Let Bρ(0) = {u ∈ H1
0 (Ω) : ‖u‖ < ρ} be an isolated neighborhood of 0 such that K(Φλk+1) ∩Bρ(0) = {0}, 

the special choice of ρ will be given below. Define O = Bρ(0), and let α, β be regular values of Φλk+1

satisfying

α < inf
O

Φλk+1 < sup
O

Φλk+1 < β.

By Lemma 2.1(ii), Φλk+1 satisfies (PS), (O, α, β) is an isolating triple for S = {0} (see [13,12]). Define

W = Oβ
α = Õ ∩ Φ−1

λk+1
[α, β], W− = W ∩ Φ−1

λk+1
(α),

where Õ =
⋃

t∈R ϑ(t, O) and ϑ is the negative gradient flow of Φλk+1 . Then (W, W−) is a bounded Gromoll-
Meyer pair for S = {0}, and there holds by [11, Theorem 5.2, Chapter I] and Lemma 4.1(iii)(a) that

Hq(W,W−) = Cq(Φλk+1 , 0) ∼= δq,�k+1F , for all q ∈ Z. (4.6)

Let (N, N0) be the Conley index pair of an isolating neighborhood U = Oβ
α, by the topological invariance 

of Conley index and the fact that a Gromoll-Meyer pair is also a Conley index pair (see [13,12]), we have

H̄q(N,N0) = Hq(W,W−) ∼= δq,�k+1F .

Besides, for δ > 0 small enough and λ ∈ (λk+1−δ, λk+1), (W, W−) is also a Gromoll-Meyer pair for K(Φ) ∩W
(see [13,12]).

Claim: δ > 0 can be chosen so small that for ρ > 0 small but fixed,

u±, ũ /∈ O, ui
λ ∈ O, i = 1, 2, for any λ ∈ (λk+1 − δ, λk+1). (4.7)

First, for ρ > 0 small enough, we have u±, ̃u /∈ O. Otherwise, Theorem 3.1(ii) and Remark 3.2(3) imply 
that C0(Φ, u±) ∼= 0 and C1(Φ, ̃u) ∼= 0, which contradict to (4.3) and (4.4). Second, fix such a ρ > 0, then 
by the bifurcation nature of solution ui

λ, for δ > 0 small and λ ∈ (λk+1 − δ, λk+1), ‖ui
λ‖ < ρ, i.e. ui

λ ∈ O, 
i = 1, 2. It must be ui

λ ∈ N , while u± and ũ outside N for all λ ∈ (λk+1 − δ, λk+1) due to the definition of 
the Conley index pair.

Suppose that K(Φ) \ {0} = {u±, ui
λ, ̃u}, we can construct a larger index pair (N ′, N ′

0) for K(Φ), which 
contains the Conley index pair (N, N0) and the known critical points u± and ũ outside N . By Lemma 2.1, 
Φ is coercive and bounded from blow. It follows that (H1

0 (Ω), ∅) is also an index pair for K(Φ). Therefore

H̄∗(N ′, N ′
0) = H̄∗(H1

0 (Ω), ∅) = δ∗,0F . (4.8)

The Morse relation gives (−1)0 = (−1)�k+1 + (−1)0 + (−1)0 + (−1)1, which is a contradiction. Therefore Φ
has at least one more nontrivial critical point which is also outside N . �
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Proof of Theorem 1.2. In this case, (4.6) becomes

Hq(W,W−) = Cq(Φλk+1 , 0) ∼= δq,�kF , (4.9)

since 
k � 2, the Morse relation gives the contradiction. �
By Lemma 2.1, (4.3), (4.4) and Lemma 4.1(iii), applying the Morse theory, we can obtain the following 

theorem on the existence of four nontrivial solutions of (1.1) in the case that the trivial solution 0 is a 
degenerate critical point of Φ. We note that this theorem extends the known results mentioned in the 
introduction.

Theorem 4.2. Assume (f1)–(f5)± hold and λ = λk+1 with k � 2 being fixed. Then the equation (1.1) has at 
least four nontrivial solutions, in which one is positive, one is negative.

Remark 4.3. In Theorem 4.2, (f5)± can be weaken as

(f ′
5)± There exists ξ > 0 such that ±(2F (x, t) − λt2) � 0 for all 0 < |t| � ξ and x ∈ Ω.

The conclusions of Theorems 1.1–1.2 and Theorem 4.2 are still valid when (f4) is replaced by

(f4)′ there holds that

lim
|t|→∞

2F (x, t)
t2

= λ1, lim
|t|→∞

(2F (x, t) − λ1t
2) = −∞, uniformly in x ∈ Ω.

Notice that (f4)′ means the equation (1.1) is resonant near infinity at λ1 from the left side.
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