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In this paper, we study random sampling in a reproducing kernel space V , which is 
the range of an idempotent integral operator. Under certain decay condition on the 
integral kernel, we show that any element in V can be approximated by an element 
in a finite-dimensional subspace of V . Moreover, we prove with overwhelming 
probability that random points uniformly distributed over a cube C is a stable 
set of sampling for the set of functions concentrated on C. Further, we discuss a 
reconstruction algorithm for functions in a finite-dimensional subspace of V from 
its random samples.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Sampling problem deals with finding a discrete sample set which allows to convert an analog signal into 
a digital signal and vice-versa without losing any information. Of course, the problem is well-posed only 
when we impose some conditions on signals (functions). For example, the Shannon-sampling theorem states 
that if f ∈ PW[− 1

2 ,
1
2 ](R), the space of functions in L2(R) whose Fourier transform is compactly supported 

in [−1
2 , 

1
2 ], then f can be reconstructed by its uniform sample values {f(k) : k ∈ Z} and its reconstruction 

is given by

f(x) =
∑
k∈Z

f(k) sin π(x− k)
π(x− k) .

Further, it is well-known by Kadec’s 1/4-theorem that if X = {xk : |xk − k| ≤ L < 1
4}, then every 

f ∈ PW[− 1
2 ,

1
2 ](R) can be reconstructed from its sample values on X. Mathematically, the sampling problem 

can be stated as follows.
Given a closed subspace V of Lp(Rn), find a countable set Γ ⊂ Rn such that

A‖f‖pLp(Rn) ≤
∑
γ∈Γ

|f(γ)|p ≤ B‖f‖pLp(Rn) for all f ∈ V, (1.1)
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for some A, B > 0. This is equivalent to say that the sampling operator S : f �→ (f(γ))γ∈Γ from the space 
V into �p(Γ) is continuous and the corresponding inverse operator S−1 : Range(S) → V is also continuous. 
Hence any f ∈ V can be reconstructed from its sample values on Γ, and the set Γ is called a stable set 
of sample, or simply stable sampling for the space V . For the detailed study of sampling problem refer to 
[6,1,16].

For the Paley-Wiener space PW[a,b](R), the set of stable sampling is characterized by Beurling density 
condition. However, a similar characterization is not true in higher dimension. In particular, the sufficient 
Beurling density condition for stable sampling in Rn (n ≥ 2) does not hold, see [16, Section 5.7]. At the 
same time, the Paley-Wiener theorem is still valid for the convex spectra in Rn, but for n ≥ 2 the zero set of 
a function in PWΩ(Rn) is analytic manifold, where Ω is a convex subset of Rn. Hence the classical result on 
the density of zeros of an entire function of exponential type is no longer valid. So the non-uniform sampling 
in higher dimension is still difficult to solve. These difficulties motivate to study the sampling problem in 
probabilistic framework.

Random sampling method has been used frequently in the field of image processing [9], learning theory 
[17,10], and compressed sensing [12]. Bass and Gröchenig [2] studied random sampling for multivariate 
trigonometric polynomial. Later, Candés, Romberg, and Tao [7,8] investigated the reconstruction of sparse 
trigonometric polynomial from a few random samples. Smale and Zhou [19] studied the function reconstruc-
tion error from its random samples satisfying (1.1) in a reproducing kernel Hilbert space.

Note that for “nice” functions f , the sample value f(γ) is close to 0 when γ is large value. Therefore, 
the sample value may not significantly contribute to sampling inequality for large sample points. Moreover, 
it is shown by Bass and Gröchenig [3] that for each random samples identically and uniformly distributed 
over each cube k + [0, 1]n in Rn, the sampling inequality (1.1) fails almost surely for Paley-Wiener space. 
For these reasons, they considered random sample points from the compact set CR =

[
−R

2 ,
R
2
]n and proved 

that the sampling inequality (1.2) hold for the functions concentrated on CR with high probability, see [3,4]. 
Then the result was generalized by Führ and Xian [13] for finitely generated shift-invariant subspace V of 
L2(Rn), and a further generalization for Lp-norm was studied by Yang and Wei [22,20]. Later, Yang and 
Tao [21] investigated random sampling for the space of continuous functions with bounded derivative.

In this paper, we study random sampling on a closed subspace V of Lp(Rn) which is defined as the image 
of an idempotent integral operator. More precisely, we derive the random sampling inequality for the set 
V �(R, δ) =

{
f ∈ V : (1 − δ)‖f‖pLp(Rn) ≤

∫
[−R

2 ,R2 ]n |f(x)|pdx
}
, and prove the following main theorem.

Theorem 1.1. Assume that {xj : j ∈ N} is a sequence of i.i.d. random variables that are uniformly distributed 
over the cube CR =

[
−R

2 ,
R
2
]n and 0 < μ < 1 −δ. Then there exist a, b > 0 such that the sampling inequality

r

Rn
(1 − μ− δ)‖f‖pLp(Rn) ≤

r∑
j=1

|f(xj)|p ≤ r

Rn
(1 + μ)‖f‖pLp(Rn) (1.2)

holds for every f ∈ V �(R, δ) with the probability at least 1 − 2a exp
(
− b

pkp−1Rn
rμ2

12+μ

)
, where k =

sup
x∈CR

‖K(x, ·)‖Lp′ (Rn) and b = min{2
4

log 2−10+n+1
n+2 (log 2)4

(n+2)4 , 3
4k}. For large R and sufficiently large sample size 

r, the constant a = exp(MRn) with M depending on the dimension n.

The paper is organized as follows. In Section 2, we introduce our hypothesis space V and prove that 
any element in V can be approximated by a finite-dimensional subspace of V with respect to ‖ · ‖Lp(CR). 
Further, we show that the set of functions in V �(R, δ) with unit norm is totally bounded and estimate 
the number of open balls which covers the set. In Section 3, we define independent random variables with 
respect to given random samples, and then using Bernstein’s inequality we prove the main result. In the end, 
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a reconstruction algorithm is discussed for functions in finite-dimensional subspace of V from its random 
samples.

2. Assumption and covering number

Let T be an idempotent integral operator from Lp(Rn) to Lp(Rn) defined by

Tf(x) :=
∫
Rn

K(x, y)f(y)dy satisfy T 2 = T, (2.1)

where 1 ≤ p < ∞, and the integral kernel K is symmetric and satisfy regularity condition

lim
ε→0

∥∥∥∥ sup
z∈Rn

|oscε(K)(· + z, z)|
∥∥∥∥
L1(Rn)

= 0, (2.2)

with decay

|K(x, y)| ≤ C

(1 + ‖x− y‖1)α
, α >

n

p′
+ n + 1 and C > 0, (2.3)

where ‖x‖1 :=
n∑

i=1
|x(i)|, x := (x(1), x(2), · · · , x(n)) ∈ Rn, 1

p + 1
p′ = 1, and

oscε(K)(x, y) = sup
x′,y′∈[−ε,ε]n

|K(x + x′, y + y′) −K(x, y)|.

Under these assumptions, we see that sup
x∈Rn

‖K(x, ·)‖L1(Rn) exists and the associated integral operator T

is bounded. Moreover, the kernel K satisfy the off-diagonal decay condition

∥∥ sup
z∈Rn

|K(· + z, z)|
∥∥
L1(Rn) < ∞. (2.4)

A reproducing kernel Banach space is a Banach space M of functions on a set Ω such that the point 
evaluation functional f �→ f(x) is continuous for each x ∈ Ω i.e., for every x ∈ Ω, there exists Cx > 0, such 
that |f(x)| ≤ Cx‖f‖, for all f ∈ M . Let us consider the space V := Range(T ). It is easily verifiable that 
the space V is closed and reproducing kernel subspace of Lp(Rn).

Originally, Nashed and Sun [15] proposed the space V as a general model to study the sampling inequality 
(1.1). They showed that if the integral kernel K satisfies off-diagonal decay condition (2.4) and regularity 
condition (2.2), then there exists a discrete stable sampling for the space V . For more details about the 
space V , we refer the reader to [15].

Note that the sampling inequality (1.2) is true for f ∈ V �(R, δ) if and only if it is true for f ∈ V �(R, δ)
with ‖f‖Lp(Rn) = 1. Hence it is enough to prove the Theorem 1.1 for the set

V (R, δ) =
{
f ∈ V : (1 − δ) ≤

∫
CR

|f(x)|pdx and ‖f‖Lp(Rn) = 1
}
.

The “key step” of Theorem 1.1 is to prove V (R, δ) is totally bounded with respect to ‖ · ‖L∞(CR). In 
the previous works, Bass and Gröchenig [3] used spectral decomposition of truncated Fourier transform on 
band-limited functions and eigenvalue decay condition of prolate spheroidal wave functions. Yang and Wei 
[22] considered shift-invariant space generated by a compactly supported function, which implies V (R, δ) is 
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a subset of finite-dimensional space. In [13], Führ and Xian calculated the maximum number of eigenvalues 
of some self-adjoint operator which are greater than 1

2 and used a similar method as in [4]. For finitely 
generated shift-invariant space [20], Yang assumed a fixed decay on each generator and approximated any 
function in V (R, δ) by a function in some finite-dimensional subspace of V . In this paper, the considered 
space generalizes the existing model spaces. Moreover, the function space need not have finite generators. 
The key idea is to use the existence of stable sampling set for the space V , which was proved in [15]. This 
allows us to represent any functions in V via some frame sequence, and then we estimate the decay of frame 
sequence using decay property of the integral kernel. Using these estimates, we are able to show that V (R, δ)
is totally bounded with respect to ‖ · ‖L∞(CR).

A collection of points U = {u : u ∈ Rn} is relatively separated if

β = inf
u,u′∈U
u�=u′

‖u− u′‖∞ > 0,

and β is called gap of the set U .
As the kernel K of the integral operator T defined in (2.1) satisfies off-diagonal decay condition (2.4)

and regularity condition (2.2), then from [15, Theorem A.2.] there exist a relatively separated set Γ = {γ :
γ ∈ Rn} with positive gap η (< 2

n ), and two families Φ := {φγ}γ∈Γ ⊆ Lp(Rn) and Φ̃ := {φ̃γ}γ∈Γ ⊆ Lp′(Rn)
such that for any f ∈ V can be written as

f(x) =
∑
γ∈Γ

〈f, φ̃γ〉φγ(x), (2.5)

where for each γ ∈ Γ, φγ is given by

φγ(x) = η−
n
p

∫
Cη

K(γ + z, x)dz, x ∈ Rn, (2.6)

and {φ̃γ : γ ∈ Γ} forms p-frame for V , i.e. there exist A, B > 0 such that

A‖f‖pLp(Rn) ≤
∑
γ∈Γ

|〈f, φ̃γ〉|p ≤ B‖f‖pLp(Rn), for all f ∈ V. (2.7)

By (2.5) and (2.7), any f in V is of the form 
∑
γ∈Γ

cγφγ for some (cγ) ∈ �p. Now, our interest is to 

approximate any function in V by an element in a finite-dimensional space. In the following lemma, given 
f in V , we determine the sufficient condition on real number N such that the truncated series 

∑
γ∈Γ∩CN

cγφγ

is close to f .
Before we move to the lemma, we define the subspace VN of V by

VN =
{ ∑

γ∈Γ∩[−N
2 ,N2 ]n

cγφγ : cγ ∈ R
}
,

where N > R + 2
n be a positive real.

Lemma 2.1. For a given ε > 0 and f ∈ V , choose N > R+ 2
n + 2

n

[
4nB(p′−1)‖f‖p′

Lp(Rn)C
p′Rn(p′−1)

wαεp′

] 1
αp′−n

, then 

‖f −
∑

N N n

〈f, φ̃γ〉φγ‖Lp(CR) < ε.

γ∈Γ∩[− 2 , 2 ]
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Proof. Given f ∈ V we consider fN ∈ VN by

fN (x) =
∑

γ∈Γ∩[−N
2 ,N2 ]n

〈f, φ̃γ〉φγ(x). (2.8)

Let x ∈ CR, then by (2.5), (2.8) and (2.7) we have

|f(x) − fN (x)| =
∣∣ ∑
γ∈Γ�[−N

2 ,N2 ]n
〈f, φ̃γ〉φγ(x)

∣∣

≤
( ∑

γ∈Γ�[−N
2 ,N2 ]n

|〈f, φ̃γ〉|p
) 1

p
( ∑

γ∈Γ�[−N
2 ,N2 ]n

|φγ(x)|p′
) 1

p′

≤ B
1
p ‖f‖Lp(Rn)

( ∑
γ∈Γ�[−N

2 ,N2 ]n
|φγ(x)|p′

) 1
p′
.

In order to estimate the upper bound of the series, we derive the bound for φγ using the conditions (2.6)
and (2.3).

|φγ(x)| ≤ η−
n
p

∫
Cη

C

(1 + ‖γ + z − x‖1)α
dz

≤ η−
n
p

∫
Cη

C

(1 + ‖γ − x‖1 − ‖z‖1)α
dz

≤ η−
n
p

∫
Cη

C

(1 − nη
2 + ‖γ − x‖1)α

dz

≤ η
n
p′

C

(1 − nη
2 + ‖γ − x‖1)α

.

Hence,

∑
γ∈Γ�[−N

2 ,N2 ]n
|φγ(x)|p′

=
(

2
η

)n ∑
γ∈Γ�[−N

2 ,N2 ]n
|φγ(x)|p′

(η
2

)n

≤
(

2
η

)n ∑
γ∈Γ�[−N

2 ,N2 ]n

ηnCp′

(1 − nη
2 + ‖x− γ‖1)αp′

(
γ − γ + η

2

)n

≤ 2nCp′ ∑
γ∈Γ�[−N

2 ,N2 ]n

∫
B η

2
(γ)

dy

(1 − nη
2 + ‖x− y‖1)αp′ ,

where B η
2
(γ) = {y = (y1, y2, . . . , yn) ∈ Rn : γ ≤ yi ≤ γ + η

2 , 1 ≤ i ≤ n} is cube of length η2 containing γ. 
Since each cube B η

2
(γ) are disjoint, we get

∑
γ∈Γ�[−N

2 ,N2 ]n
|φγ(x)|p′ ≤ 2nCp′

∫
Rn

�[−N−η
2 ,N−η

2 ]n

dy

(1 − nη
2 + ‖x− y‖1)αp′

≤ 2nCp′
∫

n N−η−R N−η−R n

dy

(1 − nη
2 + ‖y‖1)αp′
R �[− 2 , 2 ]
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≤ 2nCp′ × 2n
∫

[N−η−R
2 ,∞)n

dy

‖y‖αp′

1

= 4nCp′ 1

wα

(
N−η−R

2 n
)αp′−n

,

where wα = (αp′ − 1)(αp′ − 2) · · · (αp′ − n).
Hence,

|f(x) − fN (x)| ≤ B
1
p ‖f‖Lp(Rn)

(
4nCp′ 1

wα

(
N−η−R

2 n
)αp′−n

) 1
p′

|f(x) − fN (x)| ≤ 4
n
p′ B

1
p ‖f‖Lp(Rn)

C

w
1
p′
α

(
N−R

2 n− 1
)(α− n

p′ )
as η <

2
n

(2.9)

Therefore,

‖f − fN‖pLp(CR) ≤ 4
np
p′ B‖f‖pLp(Rn)C

p Rn

w
p
p′
α

(
N−R

2 n− 1
)(α− n

p′ )p

< ε

whenever, N > R + 2
n + 2

n

[
4nB(p′−1)‖f‖p′

Lp(Rn)C
p′Rn(p′−1)

wαεp′

] 1
αp′−n

. �

Lemma 2.2. If f ∈ V (R, δ), then ‖f‖L∞(CR) ≤ D‖f‖Lp(CR), where D =
sup

x∈CR

‖K(x,·)‖
Lp′ (Rn)

(1−δ)
1
p

.

Proof. Since V is the range of an idempotent integral operator, we have

f(x) =
∫
Rn

f(y)K(x, y)dy, for all f ∈ V, x ∈ Rn.

Then,

|f(x)| ≤
∫
Rn

|f(y)||K(x, y)|dy

≤ ‖f‖Lp(Rn)‖K(x, ·)‖Lp′ (Rn)

‖f‖L∞(CR) ≤ sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)‖f‖Lp(Rn). (2.10)

Let f ∈ V (R, δ), then we have (1 − δ)‖f‖pLp(Rn) ≤ ‖f‖pLp(CR).

Therefore,

‖f‖L∞(CR) ≤
sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

(1 − δ)
1
p

‖f‖Lp(CR). �
The following result is a well-known bound for the number of open balls of fixed radius to cover a closed 

ball in a finite-dimensional space, see [11].
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Lemma 2.3. Let X be a Banach space of dimension s and B(0; r) denotes the closed ball of radius r centered 
at the origin. Then minimum number of open balls of radius ω to cover B(0; r) is bounded by 

(2r
ω + 1

)s.
Lemma 2.4. The set V (R, δ) is totally bounded with respect to ‖ · ‖L∞(CR).

Proof. Let ε > 0 and f ∈ V (R, δ) be given. Then by Lemma 2.1 and Lemma 2.2 there exists fN in a 
finite-dimensional subspace VN of V such that ‖f − fN‖L∞(CR) <

ε
2 .

Let B(0;D + ε
2) be a closed ball in VN with respect to ‖ · ‖L∞(CR). We know that B(0;D + ε

2 ) is totally 
bounded, and let A(ε) be the finite collection of ε2 -net for B(0;D + ε

2).
Since ‖f‖L∞(CR) ≤ D and ‖f − fN‖L∞(CR) <

ε
2 , we get fN ∈ B(0;D + ε

2 ). This implies that there exists 
f̃ ∈ A(ε) such that ‖fN − f̃‖L∞(CR) <

ε
2 , and hence ‖f − f̃‖L∞(CR) < ε. Therefore, the finite set A(ε) forms 

an ε-net for V (R, δ). �
Remark 2.5.

1. In the above lemma, we choose fN ∈ VN such that ‖f − fN‖L∞(CR) < ε
2 , and N > R + 2

n +

2
n

[
4nB(p′−1)(2C)p

′

wαεp′

] 1
αp′−n

.

In particular, we select N = R + 2 + 2
n

[
4nB(p′−1)(2C)p

′

wαεp′

] 1
αp′−n

, then dimension of VN is bounded by

NnN0(Γ) = N0(Γ)

⎡
⎣R + 2 + 2

n

(
4nB(p′−1)(2C)p′

wαεp
′

) 1
αp′−n

⎤
⎦
n

≤ 2nN0(Γ)
[
(R + 2)n + C1ε

− np′
αp′−n

]
:= dε,

where N0(Γ) = sup
k∈Zn

(
k +

[
−1

2 ,
1
2
]n) ∩ Γ, and C1 =

( 2
n

)n(4nB(p′−1)(2C)p
′

wα

) n
αp′−n

.

2. If N(ε) denotes the number of elements in A(ε), i.e. the minimum number of open balls of radius ε
2

covers for B(0;D + ε
2 ) with respect to ‖ · ‖L∞(CR), then from Lemma 2.3 we have

N(ε) ≤
(
1 + 4D + 2ε

ε

)dε

= exp
(
dε log

(
3 + 4D

ε

))
≤ exp

(
dε log

(8D
ε

))
.

3. Random sampling

In this section, we define independent random variables on V through random samples and estimate 
their variance and bound. Later, we use Bernstein’s inequality to prove the sampling inequality for the set 
of functions in V (R, δ) with high probability.

Let {xj : j ∈ N} be a sequence of i.i.d. random variables uniformly distributed over CR. For every f ∈ V , 
we introduce the random variable

Zj(f) = |f(xj)|p −
1
Rn

∫
CR

|f(x)|pdx. (3.1)

Then {Zj(f)}j∈N is a sequence of independent random variable with expectation E[Zj(f)] = 0.

Lemma 3.1. Let f, g ∈ V with ‖f‖Lp(Rn) = ‖g‖Lp(Rn) = 1 and j ∈ N. Then the following inequalities hold:
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(i) V arZj(f) ≤ 1
Rn

(
sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p
,

(ii) ‖Zj(f)‖∞ ≤
(

sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p
,

(iii) V ar(Zj(f) − Zj(g)) ≤ 2p
Rn

(
sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p−1
‖f − g‖L∞(CR),

(iv) ‖Zj(f) − Zj(g)‖∞ ≤ p
(

sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p−1
‖f − g‖L∞(CR).

Proof. (i) For random variable Zj(f) with E(Zj(f)) = 0 and by (2.10),

V arZj(f) = E
(
[|f(xj)|p − E(|f(xj)|p)]2

)
= E(|f(xj)|2p) − [E(|f(xj)|p)]2

≤ E(|f(xj)|2p)

= 1
Rn

∫
CR

|f(x)|2pdx

≤ 1
Rn

‖f‖pLp(CR)‖f‖
p
L∞(CR)

≤ 1
Rn

(
sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p
.

(ii) Since f ∈ V with ‖f‖Lp(Rn) = 1 and by (2.10), we obtain

‖Zj(f)‖∞ = sup
ω∈Ω

∣∣∣|f(xj(ω))|p − 1
Rn

∫
CR

|f(x)|pdx
∣∣∣

≤ max
{
‖f‖pL∞(CR),

1
Rn

‖f‖pLp(CR)

}

= ‖f‖pL∞(CR) ≤
(

sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p
.

(iii) Using the same method as in (i), we get

V ar(Zj(f) − Zj(g)) = E
(
[|f(xj)|p − |g(xj)|p]2

)
− (E(|f(xj)|p − |g(xj)|p))2

≤ 1
Rn

∫
CR

(|f(x)|p − |g(x)|p)2dx

≤ 1
Rn

∫
CR

∣∣|f(x)|p − |g(x)|p
∣∣(|f(x)|p + |g(x)|p)dx

≤ 1
Rn

‖|f |p − |g|p‖L∞(CR)

(
‖f‖pLp(CR) + ‖g‖pLp(CR)

)

≤ 2
Rn

‖(|f | − |g|)(|f |p−1 + |f |p−2|g| + · · · + |f ||g|p−2 + |g|p−1)‖L∞(CR)

≤ 2
Rn

pmax
{
‖f‖L∞(CR), ‖g‖L∞(CR)

}p−1 ‖f − g‖L∞(CR)

≤ 2p
n

(
sup ‖K(x, ·)‖Lp′ (Rn)

)p−1
‖f − g‖L∞(CR).
R x∈CR



D. Patel, S. Sampath / J. Math. Anal. Appl. 491 (2020) 124270 9
(iv) The estimate follows similarly from (ii).

‖Zj(f) − Zj(g)‖∞ = sup
ω∈Ω

∣∣∣|f(xj(ω))|p − |g(xj(ω))|p − 1
Rn

( ∫
CR

(|f(x)|p − |g(x)|p)dx
)∣∣∣

≤ max
{
‖|f |p − |g|p‖L∞(CR),

1
Rn

‖|f |p − |g|p‖L1(CR)

}
= ‖|f |p − |g|p‖L∞(CR)

≤ p
(

sup
x∈CR

‖K(x, ·)‖Lp′ (Rn)

)p−1
‖f − g‖L∞(CR).

The last inequality follows from the estimation in (iii). �
In the rest of the paper, we denote k = sup

x∈CR

‖K(x, ·)‖Lp′ (Rn). The following Bernstein’s inequality plays 

an important role in Theorem 1.1.

Theorem 3.2 (Bernstein’s inequality [5]). Let Yj , j = 1, 2, · · · , r be a sequence of bounded, independent 
random variable with EYj = 0, V arYj ≤ σ2, and ‖Yj‖∞ ≤ M for j = 1, 2, · · · , r. Then

P
(∣∣∣ r∑

j=1
Yj

∣∣∣ ≥ λ
)
≤ 2 exp

(
− λ2

2rσ2 + 2
3Mλ

)
. (3.2)

Theorem 3.3. Let {xj : j ∈ N} be a sequence of i.i.d. random variables that are drawn uniformly from 
CR = [−R/2, R/2]n. Then there exist constants a, b > 0 depending on n, R, and δ such that

P
(

sup
f∈V (R,δ)

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≥ λ

)
≤ 2a exp

(
− b

pkp−1
λ2

12rR−n + λ

)
. (3.3)

Proof. The proof follows from the similar idea of Bass and Gröchenig [3]. To determine the required prob-
ability, we use Bernstein’s Inequality (3.2) repeatedly on independent random variable Zj. We prove the 
result in the following steps:

Step 1: Let f ∈ V (R, δ). By Lemma 2.4 we can construct a sequence {fl}l∈N such that fl ∈ A(2−l) and 
‖f − fl‖L∞(CR) < 2−l. Then we write

Zj(f) = Zj(f1) +
∞∑
l=2

(
Zj(fl) − Zj(fl−1)

)
. (3.4)

Indeed, sm(f) = Zj(f1) +
∑m

l=2 (Zj(fl) − Zj(fl−1)) = Zj(fm) and

‖Zj(f) − Zj(fm)‖∞ ≤ pkp−1‖f − fm‖L∞(CR)

→ 0 as m → ∞.

Now consider the events

E =
{

sup
f∈V (R,δ)

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≥ λ

}
,

E1 =
{
∃ f1 ∈ A

(
1
2

)
:
∣∣∣ r∑

Zj(f1)
∣∣∣ ≥ λ

2

}
,

j=1
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and for l ≥ 2

El =
{
∃ fl ∈ A(2−l) and fl−1 ∈ A(2−l+1) with

‖fl − fl−1‖L∞(CR) ≤ 3 · 2−l :
∣∣∣ r∑
j=1

(Zj(fl) − Zj(fl−1))
∣∣∣ ≥ λ

2l2

}
.

Claim. If sup
f∈V (R,δ)

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≥ λ, i.e. P (E) > 0 then one of the events El hold for l ≥ 1, i.e. E ⊆

∞⋃
l=1

El.

Suppose for all l ≥ 1, P (El) = 0, then for f ∈ V (R, δ) and (3.4) we get

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≤ ∣∣∣ r∑

j=1
Zj(f1)

∣∣∣+ ∞∑
l=2

∣∣∣ r∑
j=1

(Zj(fl) − Zj(fl−1))
∣∣∣

<
λ

2 +
∞∑
l=2

λ

2l2 = π2

12λ < λ.

This is a contradiction.
Step 2: We compute bound for the probability of the event E1. Using Bernstein’s inequality (3.2) for the 

sequence of independent random variable Zj(f1), and the results in Lemma 3.1 (i) & (ii), we get

P
(∣∣∣ r∑

j=1
Zj(f1)

∣∣∣ ≥ λ

2

)
≤ 2 exp

(
−

λ2

4
2rR−nkp + 1

3k
pλ

)

= 2 exp
(
− 3

4kp
λ2

6rR−n + λ

)
.

Therefore,

P (E1) ≤ 2N
(

1
2

)
exp

(
− 3

4kp
λ2

6rR−n + λ

)
. (3.5)

Step 3: The bound of the probability of the event El can be found in a similar way as in Step 2. From 
(3.2) and Lemma 3.1 (iii) & (iv), we have

P
(∣∣∣ r∑

j=1
(Zj(fl) − Zj(fl−1))

∣∣∣ ≥ λ

2l2
)

≤ 2 exp
(
−

λ2

4l4

4rpR−nkp−1‖fl − fl−1‖L∞(CR) + 1
3pk

p−1‖fl − fl−1‖L∞(CR)
λ
l2

)

≤ 2 exp
(
− 1

4l4
λ2

(4rR−n + λ
3l2 )pkp−13 · 2−l

)

≤ 2 exp
(
− 2l

4l4
λ2

pkp−1(12rR−n + λ)

)
.

Hence,

P (El) ≤ 2N(2−l)N(2−l+1) exp
(
− 2l

4
λ2

p−1 −n

)
l ≥ 2. (3.6)
4l pk (12rR + λ)
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In the view of the fact in Remark 2.5 that N(ε) is bounded and

N(ε) ≤ exp
(

2nN0(Γ)
[
(R + 2)n + C1ε

− np′
αp′−n

]
log 8D

ε

)
,

we have

N(2−l) ≤ exp
(

2nN0(Γ)
[
(R + 2)n + C12

lnp′
αp′−n

]
log 2l+3D

)

≤ exp
(

2nN0(Γ)
[
(R + 2)n + C12

lnp′
αp′−n

] [
(l + 3) log 2 + logD

])

and similarly,

N(2−l+1) ≤ exp
(

2nN0(Γ)
[
(R + 2)n + C12

(l−1)np′
αp′−n

] [
(l + 2) log 2 + logD

])

≤ exp
(

2nN0(Γ)
[
(R + 2)n + C12

lnp′
αp′−n

] [
(l + 2) log 2 + logD

])
.

Therefore,

N(2−l)N(2−l+1) ≤ exp
(

2nN0(Γ)
[
(R + 2)n + C12

lnp′
αp′−n

] [
(2l + 5) log 2 + 2 logD

])
.

Since (α− n
p′ ) > (n + 1),

P (El) ≤ 2 exp
(

2nN0(Γ)
[
(R + 2)n + C12

lnp′
αp′−n

] [
(2l + 5) log 2 + 2 logD

]

− 2l

4l4
λ2

pkp−1(12rR−n + λ)

)

≤ 2 exp
(

2nN0(Γ)
[
(R + 2)n + C12

ln
n+1

] [
(2l + 5) log 2 + 2 logD

]

− 2l

4l4
λ2

pkp−1(12rR−n + λ)

)

= 2 exp
[
2

n+1
n+2 l

(
2nN0(Γ)

[
(R + 2)n2−

n+1
n+2 l + C12−

l
(n+1)(n+2)

][
(2l + 5) log 2 + 2 logD

]

− 2
l

n+2

4l4
λ2

pkp−1(12rR−n + λ)

)]

= 2 exp
[
2

n+1
n+2 l

(
2nN0(Γ)

[
(R + 2)n(2l + 5)2−

n+1
n+2 l log 2 + 2(R + 2)n2−

n+1
n+2 l logD

+ C1(2l + 5)2−
l

(n+1)(n+2) log 2 + 2C12−
l

(n+1)(n+2) logD
]

− 2
l

n+2

4l4
λ2

pkp−1(12rR−n + λ)

)]

≤ 2 exp
[
2

n+1
n+2 l

(
2nN0(Γ)

[
9(R + 2)n2−

2(n+1)
n+2 log 2 + 2(R + 2)n2−

2(n+1)
n+2 logD

+ C12(n + 1)(n + 2)2−
2(n+1)(n+2)−5 log 2
2(n+1)(n+2) log 2 + C121− 2

(n+1)(n+2) logD
]
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− 2
4

log 2

4
[

4(n+2)
log 2

]4 λ2

pkp−1(12rR−n + λ)

)]
.

Let

c1 = 2
4

log 2−10(log 2)4

(n + 2)4 ,

c2 = 2nN0(Γ)
[
9(R + 2)n2−

2(n+1)
n+2 log 2 + 2(R + 2)n2−

2(n+1)
n+2 logD

+ C12(n + 1)(n + 2)2−
2(n+1)(n+2)−5 log 2
2(n+1)(n+2) log 2 + C121− 2

(n+1)(n+2) logD
]
,

φ = λ2

pkp−1(12rR−n + λ) .

Then P (El) ≤ 2 exp
(
−2

n+1
n+2 l(c1φ− c2)

)
, for λ large enough such that c1φ − c2 > 0.

Step 4: Since E ⊆
∞⋃
l=1

El, we have

P (E) ≤
∞∑
l=1

P (El). (3.7)

The series 
∞∑
l=2

P (El) ≤
∞∑
l=2

2 exp
(
−2

n+1
n+2 l(c1φ− c2)

)
, and a further upper bound can be obtained by the fact 

∞∑
l=2

e−ulv ≤ 1
uv logue

−uv.

Therefore,

∞∑
l=2

P (El) ≤ 2 × 1
2

n+1
n+2 (c1φ− c2) log 2

n+1
n+2

exp
(
−2

n+1
n+2 (c1φ− c2)

)

= 2
1

n+2 (n + 2)
(n + 1)(c1φ− c2) log 2 exp

(
−2

n+1
n+2 (c1φ− c2)

)
.

Choose λ large enough such that (c1φ − c2) ≥ 2
1

n+2 (n+2)
(n+1) log 2 .

Then

∞∑
l=2

P (El) ≤ e2
n+1
n+2 c2 exp{−2

n+1
n+2 c1φ}

≤ e2
n+1
n+2 c2 exp

(
− 2

n+1
n+2 c1

λ2

pkp−1(12rR−n + λ)
)
. (3.8)

Let a1 = max
{
e2

n+1
n+2 c2 , N

(
1
2

)}
and b = min

{
2

n+1
n+2 c1, 3

4k

}
. Now from (3.7), (3.5), and (3.8) we have

P (E) ≤ 2a1 exp
(
− b

pkp−1
λ2

12rR−n + λ

)
.

Now we compute a bound for the constant a1: consider
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exp
(
2

n+1
n+2 c2

)
≤ exp

(
2n+1N0(Γ)

[
(R + 2)n(9 log 2 + 2 logD) + 4C1(n + 1)(n + 2) + 2C1 logD

])
≤ exp

(
2n+1N0(Γ)

[
5(R + 2)n log 4D + 4C1(n + 1)(n + 2) log 4D

])
and since α > n

p′ + n + 1

N
(1

2

)
≤ exp

(
2nN0(Γ)

[
(R + 2)n + 2C1

]
log 16D

)
.

Also

C1 =
(

2
n

)n
(

4nB(p′−1)(2C)p′

wα

) n
αp′−n

≤
(

4nB(p′−1)(2C)p′

wα

) 1
p′+1

≤ 4
n

p′+1 × 2BCw
− 1

p′+1
α

Hence, for R ≥ 2, and M = 2n+1N0(Γ)
[
2n5 + 4

n
p′+1+ 3

2BC(n + 1)(n + 2)w
− 1

p′+1
α

]
log 16D, then a1 ≤

exp(MRn) := a. This completes the proof. �
Proof of Theorem 1.1. As mentioned in Section 2, it is enough to prove the result for the set V (R, δ). Put 
λ = rμ

Rn , then

Ec =
{

sup
f∈V (R,δ)

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≤ rμ

Rn

}
.

Let {xj} be a random sample set such that the event Ec is true, then

∣∣∣ r∑
j=1

|f(xj)|p −
r

Rn

∫
CR

|f(x)|pdx
∣∣∣ ≤ rμ

Rn
∀ f ∈ V (R, δ)

r

Rn

∫
CR

|f(x)|pdx− rμ

Rn
≤

r∑
j=1

|f(xj)|p ≤ r

Rn

∫
CR

|f(x)|pdx + rμ

Rn
(3.9)

r

Rn
(1 − δ) − rμ

Rn
≤ r

Rn

∫
CR

|f(x)|pdx− rμ

Rn
≤

r∑
j=1

|f(xj)|p ≤ r

Rn

∫
CR

|f(x)|pdx + rμ

Rn
≤ r(1 + μ)

Rn

r

Rn
(1 − δ − μ) ≤

r∑
j=1

|f(xj)|p ≤ r(1 + μ)
Rn

.

Hence random sample {xj} satisfy the above sampling inequality with probability

P (Ec) = 1 − P (E)

≥ 1 − 2a exp
(
− b

pkp−1

(
rμ
Rn

)2
12rR−n + rμ

Rn

)

P (Ec) ≥ 1 − 2a exp
(
− b

pkp−1Rn

rμ2

12 + μ

)
. (3.10)
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This completes the proof. �
Remark 3.4.

1. From (3.10) one can make the probability close to 1 by taking a sufficiently large sample size.

2. The sampling inequality (1.2) is true for sufficiently large λ = rμ
Rn such that (c1φ − c2) ≥ 2

1
n+2 (n+2)

(n+1) log 2 , i.e.

r ≥ pkp−1Rn(12 + μ)
c1μ2

[2 1
n+2 (n + 2)

(n + 1) log 2 + c2

]
= O(R2n).

Example. Let φ(x, y) = 2√
3 max{1 − 2|x| − 2|y|, 0} and supp(φ) ⊆

[
− 1

2 , 
1
2
]2.

Consider Λ = {(α, β)} ⊂ R2 be a relatively separated countable collection of points with gap greater 
than or equal to 1.

Now for each distinct (α1, β1), (α2, β2) ∈ Λ, we have
∫
R2

φ(x− α1, y − β1)φ(x− α2, y − β2) dxdy = 0

and
∑

(α,β)∈Λ

sup
x,y∈

[
− 1

2 ,
1
2
] |φ(x− α, y − β)|2 = 4

3 < ∞.

This implies the space Vφ :=
{ ∑

(α,β)∈Λ
cα,βφ(· − α, · − β) : c = (cα,β) ∈ �2(Λ)

}
⊆ L2(R2) is an image of an 

idempotent integral operator and the kernel defined by

K((x1, y1), (x2, y2)) =
∑

(α,β)∈Λ

φ(x1 − α, y1 − β)φ(x2 − α, y2 − β),

is symmetric and satisfy (2.2), see [15]. Further, it is easy to show that the kernel K satisfies the decay 
condition (2.3). Indeed, we observe that

|φ(x, y)| ≤ e−(x2+y2),

so we get

|K((x1, y1), (x2, y2))| ≤
∑

(α,β)∈Λ

|φ(x1 − α, y1 − β)φ(x2 − α, y2 − β)|

≤ 4
3
∑

(α,β)∈Λ

e−((x1−α)2+(y1−β)2)e−((x2−α)2+(y2−β)2)

≤ 4
3
∑

(α,β)∈Λ

e−
1
4 ((3x2

1−2x1x2+3x2
2)+(3y2

1−2y1y2+3y2
2))e−2(α−x1+x2

2 )2−2(β− y1+y2
2 )2

≤ 4
3e

− 1
4‖(x1,y1)−(x2,y2)‖2

2

∫
R2

e−2(z1− x1+x2
2 )2−2(z2− y1+y2

2 )2 dz1dz2

≤ π

3 e
− 1

4‖(x1,y1)−(x2,y2)‖2
2 .
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Since the collection {φ(· − α, · − β) : (α, β) ∈ Λ} is an orthonormal basis for V (φ), it follows that it is a 
tight frame for Vφ. Therefore, the frame bound constant B is equal to 1.

For given ε > 0, the sampling inequality (1.2) holds with minimum probability 1 − ε if

2a exp
(
− b

pkp−1R2
rμ2

12 + μ

)
< ε.

Here k = sup
x∈CR

‖K(x, ·)‖Lp′ (Rn) ≤
2π

√
π

3 and b = 2
3
4 + 4

log 2 (log 2)4
218 > (log 2)4

24 .

Thus

exp
(
MR2 − (log 2)4

24 × 3
4π

√
πR2 × rμ2

12 + μ

)
<

ε

2 ,

=⇒ (log 2)4

24 × 3
4π

√
πR2 × rμ2

12 + μ
−MR2 > log 2

ε
,

=⇒ r >
64π

√
π(12 + μ)

3μ2(log 2)4 R2
(
MR2 + log 2

ε

)
.

Therefore, if we choose the number of sample r satisfying the above inequality, then the stable set of sampling 
is true for the set Vφ(R, δ) with high probability.

4. Reconstruction algorithm

As mentioned in [3], the set V (R, δ) is neither a subspace nor a convex set, so we cannot employ frame 
or projection algorithms for function reconstruction. At the same time, we observe from Lemma 2.1 and 
2.2 that the finite-dimensional space VN is an approximation of V (R, δ). Thus we discuss a reconstruction 
algorithm for functions in VN from its random sample (see [20]).

Let N be a fixed positive integer and

V �
N = {f ∈ VN : ‖f‖Lp(Rn) = 1}.

Then V �
N is totally bounded with respect to ‖ · ‖L∞(CR) and the number of open balls of radius ε that covers 

V �
N is bounded by exp

(
N0(Γ)Nn log 8D

ε

)
. Now we follow the same lines of proof of Theorem 3.3 to show 

that

P
(

sup
f∈V �

N

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≥ λ

)
≤ 2aN exp

(
− b

pkp−1
λ2

12rR−n + λ

)
, (4.1)

where the constant aN = exp(M1N
n) with M1 = 22− 2(n+1)

n+2 N0(Γ) log 16D.
Consequently, we derive stable set of sampling sets for the finite-dimensional space VN with some addi-

tional assumption on the frame sequence {φγ} of V .

Theorem 4.1. Let {xj : j = 1, . . . , r} be a sequence of i.i.d. random variables uniformly drawn from CR and 
suppose the set of functions {φγ}γ∈Γ∩CN

is linearly independent over CR, i.e. there exists a constant σ > 0
such that for all c = {cγ}γ∈Γ∩CN

,

∥∥∥ ∑
cγφγ

∥∥∥p
Lp(CR)

≥ σ
∑

|cγ |p.

γ∈Γ∩CN γ∈Γ∩CN
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Then for μ ∈ (0, σA)

r

Rn
(σA− μ)‖f‖pLp(Rn) ≤

r∑
j=1

|f(xj)|p ≤ r

Rn
(1 + μ)‖f‖pLp(Rn) (4.2)

holds for every f ∈ VN with probability 1 − 2aN exp
(
− b

pkp−1
λ2

12rR−n+λ

)
.

Proof. Let λ = rμ
Rn , then for all f ∈ VN \ {0}

∣∣∣ r∑
j=1

Zj

( f

‖f‖Lp(Rn)

)∣∣∣ ≤ rμ

Rn

with probability at least 1 − 2aN exp
(
− b

pkp−1
λ2

12rR−n+λ

)
, i.e. with same probability bound

∣∣∣ r∑
j=1

Zj(f)
∣∣∣ ≤ rμ

Rn
‖f‖pLp(Rn) ∀f ∈ VN

∣∣∣ r∑
j=1

|f(xj)|p −
r

Rn
‖f‖pLp(CR)

∣∣∣ ≤ rμ

Rn
‖f‖pLp(Rn)

r

Rn
(‖f‖pLp(CR) − μ‖f‖pLp(Rn)) ≤

r∑
j=1

|f(xj)|p ≤ r

Rn
(‖f‖pLp(CR) + μ‖f‖pLp(Rn))

Since {φγ}γ∈Γ∩CN
are linearly independent over CR and every f ∈ VN satisfy (2.7), then

‖f‖pLp(CR) ≥ σA‖f‖pLp(Rn)

This completes the proof. �
In the following theorem, we give a reconstruction algorithm for finite-dimensional space. We follow the 

ideas of Yang [20] where the reconstruction algorithm is discussed for finite-dimensional shift-invariant space 
from random samples. A similar idea can also be found in [14,18].

Theorem 4.2. Under the assumptions of Theorem 4.1, there exists a set of reconstruction functions 
(Sj(x))rj=1 such that for all f ∈ VN ,

f(x) =
r∑

j=1
f(xj)Sj(x)

holds with probability at least 1 − 2aN exp
(
− b

pkp−1Rn
rμ2

12+μ

)
.

Proof. Let f =
∑

γ∈Γ∩CN

cγφγ be an arbitrary function in VN and (xj , f(xj))rj=1 be a given random data.

Then we have a system of linear equations

f(xj) =
∑

cγφγ(xj) 1 ≤ j ≤ r

γ∈Γ∩CN
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with the unknown coefficient c = (cγ)Tγγ∈Γ∩CN
(need to be determined). This linear system can be rewritten 

as Uc = b, where U is a rectangular matrix with entry Uj,γ = φγ(xj) and b = (f(xj))T1≤j≤r is a column 
matrix.

Now by (4.2) and (2.7)

‖Uc‖p�p(Γ∩CN ) =
r∑

j=1
|f(xj)|p ≥ r(σA− μ)

BRn
‖c‖p�p(Γ∩CN ) ∀c ∈ �p(Γ ∩ CN ). (4.3)

This implies UTU is invertible and c = (UTU)−1UT b.
Define Θ(x) = (φγ(x))Tγ∈Γ∩CN

and (Sj(x))T1≤j≤r = U(UTU)−1Θ. Then we have the following reconstruc-
tion formula

f(x) =
r∑

j=1
f(xj)Sj(x), ∀ x ∈ Rn

with probability at least 1 −2aN exp
(
− b

pkp−1Rn
rμ2

12+μ

)
, as the relation (4.3) valid with the same probability 

bound. �
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