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1. Introduction

One of the fundamental concepts in perturbation theory is the existence of spectral shift function and
the associated trace formula. The notion of first order spectral shift function originated from Lifshits’ work
on theoretical physics [15] and later the mathematical theory of this object elaborated by M.G. Krein in a
series of papers, starting with [12]. In [12] (see also [14]), Krein proved that given two self-adjoint operators
H and Hy (possibly unbounded) such that H — Hj is trace class, then there exists a unique real valued
L'(R)-function ¢ such that

Tr {$(H) — ¢(Ho)} = / (V) €N dA (L1)
R

holds for sufficiently nice functions ¢. The function £ is known as Krein’s spectral shift function and the
relation (1.1) is called Krein’s trace formula. The original proof of Krein uses analytic function theory.
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Later in [4] (see also [3]), Birman and Solomyak approached the trace formula (1.1) using the theory of
double operator integrals, though they failed to prove the absolute continuity of the spectral shift. In 1985,
Voiculescu [35] gave an alternative proof of the trace formula (1.1) by adapting the proof of classical Weyl-von
Neumann theorem for the case of bounded self-adjoint operators and later Sinha and Mohapatra extended
Voiculescu’s method to the unbounded self-adjoint case [30]. A similar result was obtained by Krein in [13]
for pair of unitary operators {U, UO} such that U — Uy is trace class. For each such pair there exists a
real valued L!([0,27])-function ¢, unique modulo an additive constant, (called a spectral shift function for
{U,Up}) such that

2
T {o(0) - o(Un)} = [ G{ele) € ar (12)
0

whenever ¢’ has absolutely convergent Fourier series. Later in [31], Sinha and Mohapatra also obtained
the above formula (1.2) using Voiculescu’s method. Recently, Aleksandrov and Peller [1] extended the
formula (1.2) for arbitrary operator Lipschitz functions ¢ on the unit circle T. Moreover, Peller [23] describe
completely the class of functions (viz, the class of operator Lipschitz functions on R), for which the Krein’s
trace formula (1.1) holds.

The modified second order spectral shift function for Hilbert-Schmidt perturbations was introduced by
Koplienko in [11]. Let H and Hy be two self-adjoint operators in a separable Hilbert space H such that
H — Hy =V € By(H). Sometimes Hy is known as the initial operator, V' is known as the perturbation
operator, and H = Hp + V is known as the final operator. In this case the difference ¢(H) — ¢(Hp) is no
longer of trace-class and one has to consider instead

¢(H) — ¢(Ho) — %(¢(Ho + SV))

)

s=0

d
where d—(qﬁ(Ho + sV))‘ denotes the Gateaux derivative of ¢ at Hy in the direction V' (see [2]) and
s

P
find a trace formula for the above expression under certain assumptions on ¢. Under the above hypothesis,
Koplienko’s formula asserts that there exists a unique function € L*(R) such that

T {6(H) — o(Ho) — 5 (6(Ho + V)

Sﬂ}:/w@muwA (1.3)
- R

for rational functions ¢ with poles off R. The function n is known as Koplienko spectral shift function
corresponding to the pair (Hg, H). In 2007, Gesztesy, Pushnitski and Simon [9] gave an alternative proof
of the formula (1.3) for the bounded case and in 2009, Dykema and Skripka [8,32], and earlier Boyadzhiev
[6] obtained the formula (1.3) in the semi-finite von Neumann algebra setting. Later in 2012, Sinha and
the first author of this article provide an alternative proof of the formula (1.3) using the idea of finite
dimensional approximation method as in the works of Voiculescu [35], Sinha and Mohapatra [30,31]. In
this connection it is worth mentioning that in 1984, Koplienko also conjectured about the existence of the
higher order spectral shift measures v,,, n > 2, for the perturbation V' € B,,(H) and it is remarkable to note
that recently Potapov, Skripka and Sukochev resolve affirmatively Koplienko’s conjecture and establishes
the existence of higher order spectral shift function in their outstanding and beautiful paper [24] using the
concept of multiple operator integral.

A similar problem for unitary operators was considered by Neidhardt [19]. Let U and Uy be two unitary
operators on a separable Hilbert space H such that U — Uy € By(H). Then U = ¢*4Uy, where A is a
self-adjoint operator in By(H). Note that we interpret Uy as the initial operator, A as the perturbation
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operator, and U = €U as the final operator. Denote Uy = ¢**4U,, s € R. Then it was shown in [19] that
there exists a L1([0, 27])-function 7 (unique upto an additive constant) such that

)= pteeina, (14)

0

Tr {¢(U) — ¢(Up) — %é(Us)

whenever ¢ has absolutely convergent Fourier series. The function 7 is known as Koplienko spectral shift
function corresponding to the pair (Uy, U). In [22], Peller obtained better sufficient conditions on functions ¢,
under which trace formulae (1.3) and (1.4) hold. In this connection, it is also worth mentioning that recently
Potapov, Skripka and Sukochev proved higher order analogs of the formula (1.4) in [27]. For more about
trace formulas and related topics, we refer the reader to ([16-18,20,21,25,26,28,33,34]) and the references
cited therein.

In this article we once again supply the new proof of Koplienko-Neidhardt trace formula (1.4), we believe
for the first time, using the idea of finite dimensional approximation method as in the works of Voiculescu,
Sinha and Mohapatra, referred earlier. The major differences between our method and the method applied
in [11,19] are the following.

e In [11,19], the authors have reduced the problem by truncating only the perturbation operator (and not
the initial operator) via finite rank projections but still, they were in an infinite-dimensional setting to
deal with the problem which makes a major contrast in comparison to our context. In other words, in our
setting, we reduce the problem into a finite dimensional one by truncating both the initial operator and
the perturbation operator simultaneously via finite dimensional projections {P,,} obtained by Weyl-von
Neumann type construction (see Lemma 3.2). Moreover, the authors have obtained the expression of
the shift function in [11,19] for the reduced system as a consequence of Theorem 3 of [3] and Krein’s
spectral shift function whereas in our context we calculate the shift function explicitly by performing
integration by-parts and using spectral theorem for unitary matrices (see Theorem 2.2).

o A concept like the continuity of the perturbation determinant has been used in [11,19] to approximate
the formula in infinite dimension but in our setting we do not need it to get the required approximation
(see Theorem 3.7).

o In [11,19], the authors dealt with the dual of C([0,2n]) (set of all continuous functions defined on
[0,27]) to get the shift function in an infinite dimension whereas we use pre-dual of L>([0,2n]) (set of
all bounded measurable functions defined on [0, 27]) to get the same (see Theorem 4.1).

The rest of the paper is organized as follows: In Section 2, we give a proof of Koplienko-Neidhardt trace
formula when dim H < oco. Section 3 is devoted to the reduction of the problem to finite dimensions and in
Section 4 we prove the trace formula by a limiting argument.

2. Koplienko-Neidhardt trace formula in finite dimension

Here, H will denote the separable Hilbert space we work in; B(#H), B1(H), B2(H) the set of bounded,
trace class, Hilbert-Schmidt class operators in H respectively with || - ||, || - |1, || - [|2 as the associated norms
and Tr{A} denote the trace of a trace class operator A.

Theorem 2.1. Let U and Uy be two unitary operators on a separable Hilbert space H such that U —
Uy € Bo(H). Then there exists a self-adjoint operator A € Ba(H) such that U = eAU.
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Proof. Since UU{ is a unitary operator, then there is a self-adjoint operator A with the spectrum in (—, 7]
(that is, 0(A) C (—m,7]) such that UU; = e and hence U = e*AUy. Let {f;} be any orthonormal basis of

H. Then from the inequality |z| < 5 le®® —1]| for x € (—m, 7] and by using the spectral theorem we conclude

oo (o) 71' 7T2 oo n ;
JAIE =477 = Y [N IB@AIP < T [1e% - 1P [E@slF
i=1 i=1"_ =17

2 2
= T lle — 1, = THlu - ol

where E(-) is the spectral measure corresponding to the self-adjoint operator A. Thus from the hypothesis
we conclude that A € By(#H). This completes the proof. O

The following theorem states Koplienko-Neidhardt trace formula in finite dimension.

Theorem 2.2. Let U and Uy be two unitary operators in a separable Hilbert space H such that U —
Uy € Ba(H) and p(A) =X (reZ), » € T.

(i) Then
Tf Ur—k=1 (jA) Ukt ifr>1,
d k=0
%(p(Us)) = 0 if r =0, (2.1)
rl—1
—HZ U=k GA) (UD*  if r < -1,
k=0

where Uy = e**4Uy, s € R.
(ii) If furthermore dim(H) < oo, then there exists a L([0,2x])-function n (unique upto an additive con-
stant) such that

27 d2 ‘
[ P
0

where p(+) is any trigonometric polynomial on T with complex coefficients and

n(t):/H{A[Eo(t)—Es(t)]}ds, t € [0,2n] (2.3)

where FEq(-) is the spectral measure of the unitary operator Us. Moreover,

27
d d?
e {p(U) — p(Uo) — = (p(U, = [ L) no) a,
T {p(0) - pt0) - 0|} O/dtg{m )} o) de (2.4
where
m®) =n(®) - oo [n(s)ds . teD2m) and nllosqoany < 5 I4I5:

0
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Proof. (i) Since U — Uy € Ba(H), then by the above Theorem 2.1 there exists a self-adjoint operator
A € By(H) such that U = e*4Up. Denote U, = €40, s € R and note that each U, is an unitary operator.
For p(A) = A" (r > 1), A€ T, we have

p(Uerh) Z U:_;_}]: 1 s+h _ Z U:+}IL€ 1 zhA _ I} U'Sk—i-l7

which converges in operator norm to
r—1
S U (GA) UET as h— 0.

k=0

Similarly for p(A) = A" (r < —1), A€ T, we have

M: %ITH(U =+t oz, - U] U)*
k=0
1 Ir|—1
= 7 D U UD) [em ™ - 1] (U
k=0

which again converges in operator norm to
—Z OIM=RGAY U as b — 0.

(#4) By using the cyclicity of trace and noting that the trace now is a finite sum, we have that for
p() =N (r>1), A€T,

T o)~ n(00) ~ 0]

CIJ

1
/di }—Tr{ %p(US) B
0
1 r—1

/Tr{z Ur—k=1 (G A) Uf“} ds — Tr{rz_f UI=R=1 (i4) U }
k=0

k=0

21

0
/1r Tr ('LAU:) ds/lr Tr (iAUg) ds:Tr /1d5 / (B, (dt) —Eo(dt))},
0 0 0

where E;(-) and Ey(-) are the spectral measures determined uniquely by the unitary operators Uy and Uy
respectively such that the spectral measures are continuous at ¢t = 0, that is, E5(0) = 0 = E(0) (see page
281, [29]). Next by performing integration by-parts we have that

j

1 27

= T {r(i4) / ds (o [B4(1) ~ Bo(1)] ZO i / e B(1) — Eo(n)dt) }

0 0

Tr {p(U) —p(Uo) — d%P(Us)

s=0
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= [rpert | [ faieat - 0] }s | = [ i) ao) ar
0 0 0

where we have set

n(t) = / Tr {A[Bo(t) — Eu(t)) }ds.
0

In similar manner, we can prove the identity (2.2) for p(A) = A" (r < —1), A e T.
Now it is clear that n € L'([0,27]) and therefore it makes sense to define

o 2 27
/e’mtno(t) = /eimt n(t) — %/n(s)ds dt
0 0 0
o 27 2 o
= /eimtn(t)dt— %/n(s)ds/eimtdt = /eimtn(t)dt for m e Z\{0}.
0 0 0 0

Let f € L*°([0,27]), and consider

27
fo=1— %/f(s)ds
0

Then it is easy to observe that

27 27 2

/ F(yo(t)dt = / Loty (tydt, / fot)dt =0, and | foll. < 2[f]..

0 0 0

Therefore by using the expression (2.3) of n and using Fubini’s theorem to interchange the orders of inte-
gration and integrating by-parts, we have for g(e®) = fot fo(s)ds,t € [0, 2] that

[ mawie= [ sonwi = [ Lo | [ A - Eo)ds |
= [ as [ St TelAE 1) ~ B0
= [as{ gty mlaEa( - Bo)]| [ - [ ole) mAE @) - E(a)

0
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2m

—/ds/g A(Ey(dt) — /Tr A{g(Us) — g(Up)}]ds. (2.5)
0o 0 0

On the other hand by using the idea of double operator integrals, introduced by Birman and Solomyak [3-5]
we have

N
3

<
—~
S
~
|
Q
—~
S
~
Il
.
>
~—

— g(e"™)] Es(d\) Eo(dpe)

—
<
—~

D

3

g(e™) —g(e™)

o —pin Ls(dN)(Us = Uo)Eo(du)

3

O\l}\i’) o\:‘l\’) O\§

g(e?) —g(e™)
etA _ el

Il
St O O

GdX x du)(Us — Up), (2.6)

where G(A x 0)(V) = Es(A)VEy(8) (V € Ba(H) and A x § € R x R) extends to a spectral measure on R?
in the Hilbert space Ba(H) (equipped with the inner product derived from the trace) and its total variation

iy _ i
1) I < T oo < e

is less than or equal to ||V||2. Thus by using the standard inequality ‘

eiA _ ei,u
for A\, pu € [0, 2], we conclude from (2.6) that
l9(Us) = g(Wo)lly < 7l fllc 1Us = Uolly, (2.7)
which combining with (2.5) implies that
27 1 1
/f(t)no(t)dt < / 1All2 [l9(Us) — g(Uo)ll2 ds < 7TllflloollAllz/ 1Us = Ubll, ds
0 0 0
1
™ 2
< wlflcliAlly [ sllAlly ds = 11l llAll-
0
Therefore by Hahn-Banach theorem we conclude that
Iellsomy = sup / FOm(0)dt] < TAI3
feL=([o, 277]) 1 flle=1

This completes the proof. O
3. Reduction to the finite dimension

The following lemma deals with the fact that given a unitary operator Uy, by suitably rotating the
spectrum of Uy, or equivalently defining a new unitary operator U} = e~**U, we get a self-adjoint operator
Hy such that U} is the Cayley transform of Hy, that is U}, = (i — Ho)(i + Ho) . Note that the proof of this
lemma is available in [31, Theorem 1.1] but for reader’s convenience we are providing a proof herewith.

Lemma 3.1. Let Uy be an unitary operator in a separable Hilbert space H. Then there exists ¢ € (—m, 7]
such that (ei‘l5 + UO) is one to one, and hence invertible. Furthermore, the operator
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Hy = —i (=€ +Up) (e + Up) " =i (I — e Up) (I + e Up) "

i(I-UyIT+uyt (3.1)

is self-adjoint.

Proof. Since H is separable, then the eigenvalues of Uy are at most countable. Therefore there exists some
¢ € (—m,7] such that —e'® ¢ o,(Up) (set of eigenvalues of Uy) and hence (I + U}) is invertible, where
Ul = e~Uy. Note that the following identity
Ran (I + U))" = Ker (I + U}*) = Ker (I + U}) = {0}

implies that the operator Hy in (3.1) is densely defined and furthermore Hy is also symmetric in this domain.
Next we also observe that the ranges of i + Hy = 2i (I + U}) ™" and of i — Hy = 2iU} (I + U}) ™" are the
whole Hilbert space since Ran{ I+up)! } = Dom (I 4+ Ujj) = H and U is unitary. Thus H is self-adjoint
and hence the proof. O

In this section we prove some estimates similar to those in Section 3 of [7,30,31] and use them to reduce
the problem in finite dimension. Now we begin with a lemma collecting some results [7,10,30,31] following
from the Weyl-von Neumann type construction.

Lemma 3.2. Let Uy and Hy be as above. Then given a set of normalized vectors {fl inH and e >0

}1§Z§L
there exists a finite rank projection P such that

i) |IPHfll<e for 1<1<L,
i) PYHoP € Bo(H) and |PYHoP||, < e,

(
(
(i) ||P*(i+ Ho) ' P, <e,
(

iv) for any integer m, ||PTU"P||, < 2|mle.

Proof. Let F(-) be the spectral measure associated with the self-adjoint operator Hy. As in the proof of
Proposition 3.1 in [7] we set a, Fy, = F(Ag), where Ay, = (%_T"_ch %T_"a} for 1 <k <n,and

Fif .
TR T if Fiof, #0,

I = .
0 if ka, = 0,
for 1 <k <mand 1l <1 < L in such a way so that H[I—F((—a,a])]le < eforl <1< L and
9. € Fx’H C Dom(Hy). Let P be the orthogonal projection onto the subspace generated by {gr;: 1 <k <
n; 1 <1< L}. We need to prove only (iii) and (iv) since the first two are given in Proposition 3.1 of [7].
Since Fj, commutes with Ho, (Ho+4)"g,, = Fi(Ho£i)" /|| Fi fi]| € FxH. Thus by setting A, = 2=1=14
one has

H(Ho 2™ = w2 ol = [ |07 = e 01| 1PN
A

< [ it < (2

Ay
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It is clear that P+(Hp +i)~lg,, € Fy’H and therefore we have for any u € H (using the Gram-Schmidt
orthonormal set made out of {g,,} which are also in Dom (Hy))

L n L 2
HPL(HO ii)_1Pu||2 = PL Hy il ZZ u gkl I ZZ u gkl (HO ii)_lgm
k=11=1 k=11=1
n L 2
-3 [Stwartn 0,
k=1 |[li=1
n L 2
= ‘ > (u, g, )PH((Ho £10)7" = (A £14)"Y)g,,
k=1 |[li=1
n [ L 2
SZ Z|<uvgm>|HPL((H0:ti>_l _(Akii)_l)gk:z’|]
k=1 Li=1
a a 2
<Y (Z u gu>|> < (2) Liul®.
n n
k=1 \l=1
Thus, the Hilbert-Schmidt norm can be estimated to be
|P+(Ho £ )~ P||, < /dim(P)||P*(Ho + i)~ P|| < vVnL (%)\/Z - L(%) (3.2)
n

Moreover for m = £1 the following identity
PruFip = pt [eiw(i F Ho)(i + Ho)~ }P PL[ =9 {9i(i + Hy) ™" — 1}}

= 2i et pL [(z‘ + HO)‘l} P

along with the above equation (3.2) implies that HPLUOJEIPH2 <2+ 1|L<in) and finally principle of

mathematical induction procedure leads to ||PJ-U P H 5 < 2|m\L( ) for general m. The proof concludes
by choosing n sufficiently large. O

Lemma 3.3. Let U and Uy be two unitary operators in a separable infinite dimensional Hilbert space H such
that U — Uy € Bo(H) and let A be the corresponding self-adjoint operator in Bo(H) such that U = e*AU.
Then given € > 0, there exists a projection P of finite rank such that for any integer m and for all t with
[t <T,

(i) [|PUSP|, < 2lmle, |PTA|, < 2e,
(i) [P APy <274l e |PEUT P, < 2im| (el 1) €

Proof. Let A(-) = Y 7,(-, f,)f, be the canonical form of A with > 72 < oo. Next choose L in such a way
=1 =1

so that [[A— ALl, = >, 12 < ¢ where Ar(-) =
I=L+1
=1

we apply Lemma 3.2 with Hy as the corresponding self-adjoint operator associated with Uy (see (3.1)),
{f1, f2,.-., fr} and € in place of . Hence we get a finite rank projection P in A such that

7.(, f,)f, and € = min {e, ——} > 0. Next,

I,

lM“
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|PHf <€ <e for 1<I<L and |PTUP|, < 2/m|¢’ <2lm|e for any integer m.
Furthermore,

IPHAlly < [P+ (A= Ap)lly + [P AL, < | A = Apl, + [ P ALl

L
Z SEYPLS <€+6/<ZTL><2€.
1=1

<e+

For (i), by the same calculation as in page 831 of [30], it follows that

alt) = | PHe™APlly =[|P* ("4 — 1P|l

<||A|\/ ds+T||PlAP||2<||A||/ )ds+2Te for |t|<T  (3.3)

solving this Gronwall-type inequality (3.3) leads to
a(t) = ||[Pre™P|, < 2Te etlAl < o1eTllAlle  uniformly for t with |t < T.
Moreover by using (i) (for m = £1) and (é4) (for t = £1) we conclude
|PLUP|, = |Pte AUy P, = ||Pre(PL + P)Uy P, < 2(1 + €l 4l ¢
and
|PYUPlly = [P Uy e APy = |[PHUG H(P + PH)e AP, < 2(1 + €l e

Finally mathematical induction procedure leads to |[PXU™P|, < 2|m|(ellAl + 1) € for general m. This
completes the proof. O

Lemma 3.4. Let U and Uy be two unitary operators in a separable infinite dimensional Hilbert space H such
that U — Uy € Bo(H) and let A be the corresponding self-adjoint operator in Bo(H) such that U = e*AU.
Then for € > 0 there exists a finite rank projection P such that for any integers m,k and |s| < T

(7) ||PJ‘ (em - I)||2 < 2€, H(eiSA - eiSAP) P|y < 2T,
[Pt —iA-T)||, < 2| All | AlI7* (el — [|A]l = 1)e,
(i) 1(Ug" = Ug'p) Plly < 2|mle, [P (U™ —UR) Pll, < 2|mle {(Iml — el Al 4 (Im| + 1)} )
(i1i) | Tr { PUR (eiA — eiAP) Ué“}’ < 4e%el Al
where in the above Uy p = €'®(i — PHoP)(i + PHoP)™!, Up = PAP)Uy p and Ap = PAP.

Remark 3.5. Now observe that P commutes with (i &+ PHoP), (i &+ PHoP)™! and PAP and hence P
commutes with Uy p and Up. Thus PUy pP and PUpP can be looked upon as unitary operators on the
Hilbert space PH

Proof of Lemma 3.4. Given Uy and A construct Hy and P as in Lemma 3.3 respectively.
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(7) First we note that
1
[P =Dl = || [ iptacas] < |Pa), < 2

1
||(eisA . eisAp)P||2 — H/eistAis(A - AP)1361’8(1715)14;:dt‘’2 < THPJ_AP||2 < 2T€,

and furthermore

oo

|P* (e —ia =D, = [P+ 42(

k=2

<

* (M= A) = De.

(43) Now we set Ug#m = U™ and U(f; = U(fl')”, m > 1. Thus by using Lemma 3.2 (i¢), Remark 3.5 and
the identity

(U - UFp) P =¥2ie*"(i + Ho) ™" [P HoP) (i = PHyP) "' P

we have

m—1 L ;
" ~vter|, = | X v o - vleuder],

\/\
&MS

H U (i £ Ho)~! [PAH,P) (z‘j:PHOP)—lUjfj;PH2

/\

ZHPLHOPH < 2|mle.
7=0

Now first we note that

IP(U = Up)P|l, = |[P(e"Us — "7 Ts,p)P|,
< ||Pet(Uy — Uo,p)P||, + || P(e' — e7)Us p P,
< ||(Uo = Uo,p)P||, + ||P(e"* = e¥47)]|, < e, (3.4)

by using (), (#¢). Furthermore, since P commutes with Up, we have for m > 1

m—1
[P —up)P|, = || > PUmI U~ Un)URP| |
j=0

[

m—

<y {HPU”” LU~ Up) UJPH n HPU P - Up)PUIjJPHQ}
=0

[

< { HPU ’j”PLHQJrHP(U—UP)PHQ} < 2me{(m—1)e”A”+(m+1)},
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by using the above equation (3.4) and Lemma 3.3 (4¢). Finally the estimate for m < —1 follows by taking
the adjoint.
(#i1) Now by applying trace properties and using Lemma 3.3 (i), (i7) we conclude that

Tr{PU}.J‘ (ei4 — eiAP)Ug} = | Tr [PU}.J‘ /1 {eisAi(A - Ap)Pei(l_s)AP}ds U{;}
0

1
/ Tr [PU;neisAPLAPe“l—S)APUﬂ ds
0

1
/ Tr [PLAP elI=)Ar gk pym PeisAPL} ds
0

1
g/||PLAP||2||PeiSf“PLH2 ds < 4e2el Al o
0

Remark 3.6. We can reformulate the above set of lemmas by saying that there exists a sequence {P,} of
finite rank projections such that for m,k € Z and |s| < T,

i) 1Py HoPully, |IPUG Pally, |PrU™Pally, Py Ally, — 0asn — oo,
i) || Pa (e = D), (UG = U Pallys [P = U P, —0asn— o,
i4i) H(eiSA - e”APn)Pn‘ . ’|PrfeiSAPn| o ‘Tr {pP, U} (em - eiAPn) U(]f}’ — 0 as n — oo,

i) ||Pf;(eiA fiAfI)Hl — 0 as n — oo,

~

o~ o~ o~ o~

where A,, = P, AP,, Uy, = €®(i — P,HoP,)(i + P, HyP,)™ !, U, = AU ,, and Uy, = 41, .

The next theorem show how the above set of lemmas can be used to reduce the relevant problem into a
finite dimensional one.

Theorem 3.7. Let U and Uy be two unitary operators in a separable Hilbert space H such that U—Uy € Ba(H)
and let A € By(H) be the corresponding self-adjoint operator as in Theorem 2.1 such that U = ¢"4Uy. Let
U, = 40Uy, s € R and p(-) be any trigonometric polynomial on T with complex coefficients. Then there
exists a sequence {P,} of finite rank projections in H such that

d

Tr {P(U) —p(Uo) — 75

p(Us)}

n—00

— lim Tr [Pn{p(Un) —p(Ugn) — % p(Us,n)}Pn} : (3.5)

s=0
where A, = P, AP, Uy = € (i — P,HoP,)(i + P,HoP,)" Y, U, = e(iA")Uo,n and Us ,, = esAn) g .

Proof. It will be sufficient to prove the theorem for p(\) = A",r € Z, A € T. Note that for » = 0, both sides
of (3.5) are identically zero. First we prove for r > 1. Using the sequence {P,} of finite rank projections as
obtained in Lemma 3.3 and Lemma 3.4 and using an expression similar to (2.1) in B(#), we have that

d

1 { [p(v) ~ p(U0) - 2

p(U)] = P [p(Us) = p(Uo.) — o

p(Us,n)} Pn}

s=0

s=0

r—1 r—1
—Tr { U7 = U5 = 0T A - U - U = UG AU Pn}
§=0 §=0



A. Chattopadhyay et al. / J. Math. Anal. Appl. 505 (2022) 125467 13

1
- {[TZUT J— 1(U UO U] ZUS Jj— 1 UJ+1:|

7=0
r—1
- P, [ZU’" TP (Un = Vo) Pal3 = D Ug (i )Ué,ﬂPn}
7=0
r—1 r—1
—Tr { [Z; Ui (A — Uit - ZO Ug‘j‘l(z'A)Ug“}
J= 1=

r—1 r—1
-P, [Z Uy 7 Py — DPUE = U&;j_l(z’An)Ug;l} Pn}
j=0 j=0
1
= Tr{ [U’" TN —iA- DT (U - Ug‘j‘l)(iA)Ug“]
J

ﬁ
I

I
o

r—1
= P [ D2 U P = Ay — DPUEE + (U = U3 AU P”}
j=0

1
—Tr { [U’“ﬂ‘*l(e“‘ —iA — UL — PUTI7IP, (64 — A, — I)PnUgij"}

g
I

=0
r—1 . ) ) )
3 (@ TGS - PaU T = U PaiA) UG P } (3.6)

Using the results obtained in Lemma 3.3 and Lemma 3.4, the first term of the expression (3.6) leads to

r—1
Tr{ [Uw’*l(em —iA— U™ = PU 77 Py (e —iA, — )P ULT ] }‘

r—1
Tr { [(U“j’l —Ur Y P (e —iA - DU + U PR (e —iA - DU
+UTITIP (e —iA =T — e +iA, + UL

UL P (e — i, = DP(UF - U] H

r—1
Tr { > [Pn(U’“*J‘*1 —Ur YR, (e —iA - DU + PrUTI P, (e —iA — DU

=0

+ U —iA = DU 4 U7 P (e — A — e i, 1)U

F UL P — iy — DP(UT = U] }

<
|
—

IN

{HP (U = U Py (e —iA = Dy + [ PO Rl [l = iA = 1],

<.
I
o

+ || Pt —iA=T)||, + ‘ Tr (PUL 97 Py (e —iA — e +iA,) U3 P,)

[l — i = DL Pa (g™ - U, }
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r—1

< (A — ) = ) AY TS { | Pa@r I = U |y + [PV R, )
j=0
r—1
+o|PE(EA —ia— D), + Z ‘ Tr (P UL Py (e — e U3 P,)
j=0
r—1 ) r—1 )
+ ) [P UL T P AP U P 4 (M4 = Al = D) 1A || Pa (U = U,
j=0 j=0
r—1
< (M= AL = ) AITY {IP O U Py + [P R
7=0
[P = UEN N, + 7l PR —ia - 1)),
r—1 r—1
+ D | T (PUL T Py (e — e U P | + || PaAPE]], D || PUT P, (3.7)
7=0 =0
and the estimate of the second term of the right hand side of (3.6) is as follows
r—1
( [ (Ur=i=t g Y AU — Py (U — Ug’njl)PnAnUg;1D|
7=0
r—1
1 (Z (= =07 - 7 = g bRV
=0
+ (U UG T PR AU+ (U U ) PalA = AU
+W$*4—MﬂFUBAH%W$&—Wfﬂ>
r—1
<> {(H (U = U ) Pally + (U5 = U2 ™) Pall, ) [ PaAU
j=0
o= =g || P AT+ U = UG Pl | Pa AP
+MAMW’U”*—U”1M}
r—1 ] ] ] ]
< Jall, {7 oY Py + (O = U T Pl
j=0
+2 PO — W) + L, ot (3.8)

Now using all estimates listed in Remark (3.6) we conclude that the right hand sides of (3.7) and (3.8) tend
to zero as n approaches to infinity. Hence from (3.6) we deduce the desire approximation (3.5). On the other
hand for p(\) = A", r < —1, we have

d

o { [p() ~p(wo) ~ & :

p(Us)} - P, [p(Un) —p(Uon) — ds| _,

p(Us,n)} Pn}

[r|—1
- Tr{ > (U*'T'*J*Ug(e*“‘ — DU + Ua“rl’J’lUg(iA)Ugj)
§=0



A. Chattopadhyay et al. / J. Math. Anal. Appl. 505 (2022) 125467 15

[r|—1
- P, Z (Uilr‘_]_lUgm(eiiA" B 1)U(3k,nj JrU* [r|—j— 1U*m(iAn)U§7n])Pn}

Jj=0

1
[U*"“lfﬂ’*lzjg(eﬂ?4 +id - DU — PUSTI 0 Pu(em ™ 1 iA, — IPUG, Pn}

7|

=Tr

——

Il
o

J

I
-

I7|

= 2 @I G (AU — P U5, O, Paid )Ugann]}

<.
I
o

(3.9)

Similarly as above with an appropriate rearrangement and using Remark 3.6, one can show that the right-
hand side of (3.9) approaches to zero as n tends to infinity. This completes the proof. O

4. Existence of shift function

In this section, we derive the trace formula corresponding to the pair (U, Up). The following theorem is
one of the main results in this section.

Theorem 4.1. Let U and Uy be two unitary operators in a separable Hilbert space H such that U—Uy € Ba(H)
and let A € By(H) be the corresponding self-adjoint operator as in Theorem 2.1 such that U = e*AU,.
Denote U, = €%4Uy, s € R. Then for any trigonometric polynomial p(-) on T with complex coefficients,

{p) - w0 - Lo

constant) such that

} € B1(H) and there exists an L ([0, 27])-function n (unique upto an additive
s=0

T {p(U) ~ p(U) ~ Lp(U)|

— [ o e

1Al

Moreover, |1l 11 (0,247 < 2

Proof. By Theorems 2.2 and 3.7, we have that

1 {p(U) ~ p(Uo) ~ p(U)

j

s=0

. d
= nh—{gc Tr |:Pn {p(Un) - p(UO,n) - % o p(Ua,7z)}Pn:|
27 27
= lim d—Q{ (e")}n, (t)dt = lim d—Q{ (") }no,n (t)dt
i | a2 p M. e | a2 p No,n ,
0 0
where
1 2
T
770,n(t) =nn(t) — o /nn(s)ds , te [0,271'] and ||770,n||L1([0,27r §HA”2 (4.1)
0

Next we want to show that {1} is a Cauchy sequence in L*([0,27]). Indeed, for any f € L>°([0,27]) we
consider
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27
£olt) = £0) - o [ F(s)ds
0
Now it is easy to observe that
2m 2m 2m
[ 1000 = (@t = [ 500100 =m0}, [ ful0dt =0 and 11,1 <2071
0 0 0

Therefore by following the idea contained in the paper of Gestezy et al. [9] (see also [7]), using the expression
(2.3) of n, using Fubini’s theorem to interchange the orders of integration and integrating by-parts, we have
t

for g(e®) = ({fo(s)ds, t € [0,27] that

[ FO00n @) = nom @yt = [ o), = 0, ®)}de

27 1

%{g(en)} (/Tr {An{Eovn(t) — Esn(t)} — Ap{Eom(t) — Es,m(t)}} ds> dt

0

27
ds/%{g(eit)} Tt [An{ Eon(®) = Bun()} = An{Bon() = Bom()}]dt
0

27

T Ot Tt~

ds (9<eit) Tr [AH{EO,n(t) - ES,n(t>} - Am{EO,m<t) - ES,m(t)}}

t=0

_ /g(eit) Tr [An{Eo,n(dt) — Egn(dt)} — Ap{ Eom(dt) — E57m(dt)}}>
0

1 2
_ / ds / g(et) Tr [An{Eo,n(dt) — Bap(dt)} — Ay { o (dt) — Es,m(dt)}}
0 0

1

= [ ds T [Au{olUe) = 900} = A {Uein) = 9V}

:/dsTr

0

— An{{9Wem) = 90} = {9Woum) = 9(00)} } + (An = An) {g(Us) — 9(U)} |,

where E ,(-) and Ep ,(-) are the spectral measures determined uniquely by the unitary operators U, ,, and
Uy, respectively such that they are continuous at ¢ = 0 and noted that all the boundary terms vanish. Next
we note that as in (2.6)

Pu{g(Usn) — 9(U)} Pr — pn{ //M G (dA x dps) (Po{Usn = UL}) }Pm
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where G, (A x §)(V) = E; o,(A)VE () (V € Ba(H), A x§ C R xR and E,(-) is the spectral measure
determined uniquely by the unitary operator Us such that it is continuous at 0) extends to a spectral
measure on R? in the Hilbert space Ba(H) (equipped with the inner product derived from the trace) and
its total variation is less than or equal to ||V||2. Therefore

HPn{g<Us,n) - g(US)}PnH2 S 7THf||OOHPn{Us,n - US}||2a

Ny _ (el
since w‘ < E||fo||oo < 7| flloo, for A, u € [0, 27]. But on the other hand
et — ettt 2
HPn(Us,n - Us>H2 § HPn(eiSAn - eiSA)UO,n + PneiSA(UO,n - UO>H2
< [Pl = )|, + [P AP (U — Ul + | Paci® P Ui — U,
< [Pule*tn =) + [Pl = U0, + 2 Puc 1B
< || PuAP; ||y + ||Pa(Uon — Uo) |, + 25]| AP,
and hence

| T [ {9(Uan) = 9D} | < 7l Al { | P AP, + [ PaUon = T, + 25| AP, ) (4.2)
Similarly we conclude that
| T[40 {9(U0.0) = 9(U0)}]| < 7S IAlLy 1PV = o)l (4.3)
Furthermore we also have
[T [(An = 4n){9(0,) = 900} ]| < 7l 140 = Aully 1Us = Toll,
< allflls 114n — Amlly (51412, (4.4)

by using the estimate as in (2.7). Therefore using equations (4.2), (4.3) and (4.4) we get

27

/ O Toon () = 1o (1) bt

0
1
S/ds
0

Tr

Au{{9(Un) (U}~ {9(U0.0) — 9(U0)} }

= An{{9Usm) = 9(U)} = {9(Wom) = 9(U0)} } + (A — An){9(Us) — 9(Uo)}

< Kl flloos
where
Ko =l Ally | {[PAAPE ], + [ Pa (U0 = Vo)l + AP, + 1 PaUon = Ul }

+ {0 APL |+ | P Wo = Vo), + 1AP ], + 1BV — Do)l |

1
+ 5 ”An - AMHQ
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Therefore by Hahn-Banach theorem

27

/ S {on(t) = 1o, () }dt
0

1M = Mol = sup < Ky — 0 as m,n — oo,

fFeL=([0,27]):(Ifll =1

by using Remark 3.6 and hence {n, ,} is a Cauchy sequence in L'([0,27]). Therefore there exists a 7 €
L'([0,2n]) such that 7, , converges to n in L*([0, 27]) norm. Thus

2m
d zt _ d2 it
T {p(U) —plo) = gopls)| _ § = nh%o/ 22 (P(e) Y00 (1) dt = / Z{pE)n@)dt. (4.5)
0
Moreover, from (4.1) it follows that |1l 11 (g 247) < ||AH2 Regarding uniqueness of 7, let n; and 72 be two

L'([0,27]) functions which satisfy (4.5) for any polynomlal p(-) on T. Now by considering p(z) = z™ for
n € Z\ {0} we get

27

/emt () —m®}dt=0  Vnez\ {0},

0

and consequently uniqueness of Fourier series implies (1 — 72) is constant. This completes the proof. O
Our next aim is to extend the class of functions ¢ for which the trace formula (1.4) holds true.

Lemma 4.2. Let f,(s) = a,U?, where a,, € C and U, = AUy as in the statement of Theorem 4.1 be such
that > n?%|an| < co. Then

n=—oo

d

ds| (n_zoofn )-n_i)o (d% B fn(s)), (4.6)

where the infinite series on both sides of (4.6) converge in operator norm.

o0

Proof. The expression in (2.1) along with the fact > m?|a,| < oo implies both infinite series in (4.6)
n=0

converge in operator norm. Next we denote 7, = sgn(n),n € Z. Then the definition of Gateaux derivative

and the following estimate

In| -
3 U'"‘ I (14) UIH ifn>1,
7=0

> an 0 ifn=0,

n=-—o00 In|—1

=X U (iA) GG i< 1,

<{i({|an|+|an}-[@nAn%n(e'A'—|A||—1)D}-|s| —0ass—0,

w | =

oo o0
§ anUg—nln‘ _ § anUgn|n|

n=—oo n=—oo

n=1

yields equation (4.6). O
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Let Ay := {be :T - C, (z)= Y. apz" with > n?la,| < oo}

n=—oo n=—oo

Theorem 4.3. Let U and Uy be two unitary operators in an infinite dimensional separable Hilbert space H

d
such that U — Uy € Ba(H). Then for any ® € Ar, {@(U) —®(Uy) — %Q)(Us) € Bi(H) and there
s=0
exists an L([0, 27])-function 1, unique up to an additive constant, such that

2w
d d? ;
1 {a(U) - a(Uy) - G| a(U.)} = /@{Q(et)}n(t)dt
0
Proof. Using the above Lemma 4.2 we have
B(U) - (o) — L aw,) = i a, U™ " — i a Ut — & i a, U™

ds s=0 ’ n=—oo ! n=—oo "o dS s=0 n=—oo e
_ N rlnl _gralnl _ L] rinl
_n;ooan g - U - — B urn. (4.7)

Moreover, using (2.1) we conclude that (U“‘"l - UOWW _

Ur "ln‘) is trace class and the following

s=0
trace norm estimate

d

UT"‘nl _ UT,,L\n| e UTnln\

H 0 ds s=0 3 1
In|—
YU A Ut itns
7=0

— g — Ug"‘nl _ if n =0,

T o
L

In . .
- X ) GA) (@GP it -1

< [P a2 (bt — g - 1) | g

<.

implies

n

d

> anl||U

n(n—1 _
Z onl +la-al) |25 ] (b0 = ) = 1) | Bl < o

1

Therefore the series in (4.7) converges in trace norm and hence {@(U) O(Uy) — di @(Us)} is trace
s
class and furthermore
Tr{cb(U) o) — L (Ug)} - }OO: an Tr [UMUM d U"} (4.8)
ds|, ‘ e O ds

Thus by combining Theorem 4.1 and (4.8) and applying Fubini’s theorem we get
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27

2U)}= > [ntanem = [ (e
0

S:O n=—oo 0

Tr {@(U) — &(Up) — d%

This completes the proof. O

Corollary 4.4. If U and Uy are two unitary operators in an infinite dimensional separable Hilbert space H
such that U — Uy € Ba(H). Then there exists an L'([0,27])-function n, unique up to an additive constant,
such that for any z € C with |z| # 1,

Tr{(U— )7 - (Up—2)t = %

s=0

2
2
U =27 = [ e =2 .
0
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