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Abstract

By applying the Riccati technique and operator theory, we establish on a timeTsbald os-
cillation and non-oscillation criteria for Atnson’s super-linear matrix dynamic equatid&’r’?2 +
[X™ (@) Q@) X™ (1)]° X° (r) = 0. These results extend and unify earlier results for the differential
and difference equation case.
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1. Introduction

In 1955, Atkinson [1] proved that the second-order super-linear scalar ordinary differ-
ential equation

Y+ fy** =0, >0,
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with f(z) > 0 and continuous for eaagh> 0, is oscillatory if and only if
o0
/tf(t) dt = o0.
0
In 1982, Kura [2] obtained the same result for the n matrix differential equation

Y'+(Y"Q)Y*™)Y =0. (1)

Butler and Erbe [3], and Ahlbrandt, Ridenhour and Thompson [4] have done a similar study
for (). In [4] it is shown that wherQ () is Hermitian, positive definite and continuous for
eachr > 0, a necessary and sufficient condition for all prepared solution of (1) which
extend to infinity to be oscillatory is that

o]

/tkmax[Q(t)] dt = oo.
0

Mingarelli [5] has shown that Atkinson’s super-linear oscillation theorem is valid for
second-order real scalar difference equations. In 1991, Allan Peterson and Jerry Riden-
hour [8] used Riccati techniques to establise necessary and sufficient condition

Z f)»max[Q(f)] =00
=1

for all prepared solutions of Atkinson’s super-linear matrix difference equation
AYE-D+[Y"OOOY")]Y (1) =0

to be oscillatory.

In the past ten years, theory about calculus on time scales, a unified approach to contin-
uous and discrete calculus, has been studied by many authors [6,7,11,12], etc., and many
interesting results have been obtained. For example, see Hilger [6] and Agarwal and Bohner
[11]. Motivated by the ideas in [1-5], we shalttablish oscillation and non-oscillation cri-
teria for Atkinson’s matrix dynamic equation on a time scale.

2. Preliminaries

In this paper we are concerned with Atkbn’s super-linear matrix dynamic equation
X2 4 [X" () Q)X (1] X (1) =0 )
on a time scaldl'. Following [6,10], we introduce the following concepts related to the
notion of time scale.
Definition. A time scaleT is a closed subset of the dRtof real numbers equipped with
the forward jump operator

o@):=infls >¢t, s €T}
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and the backward jump operato(:) atz for ¢ € T by
p(t):=sufs <t, s €T}

We assume throughoutth@ihas the topology that it inherits from the standard topology

on the real numberR. By an interval inT we mean an interval iR intersected witHT. If

o (1) > t, we sayr is right-scattered, while ib (1) < r we sayr is left-scattered. 16 () = ¢

we sayt is right-dense, while ifo(z) =t we sayr is left-dense. A functiory : T — R is
said to be right-dense continuous providéds continuous at right-dense pointsThand

at left-dense pointsifff, left-hand limits exist and are finite. We usg,T to denote the set
of all right-dense continuous function dh If supT < oo and suf is left-scattered, we let
Tk := T\ {supT}. Otherwise, we lefT* := T. We shall use the notatioga(r) := o (1) — ¢
which is called the graininess function. Finally,fif T — R is a function, then we define
the functionf? : T — R by

frm= f(G(t))
forallt €T, i.e., f°=foo.
Definition. Assumex : T — R and fixt € T; then we definec4(¢) to be the number (pro-

vided it exists) with the property that given any- 0, there is a neighborhodd of 7 such
that

|[x(c7(t)) —x(s)] —xA(t)[cr(t) —s]| < 8|cr(t) —s|

forall s € U. We callx2(¢) the delta derivative of (¢) at+.

It follows easily that ifx : T — R is continuous at € T andt is right-scattered, then

X(G(t))—x(t).

Ay —
*) = o(t) —1t

Definition. We denote byD the set of all real matrix function¥ (¢) so that each entry of
X (1) is delta differentiable ofi* and is in G, (T*). X%° := x%°.

In this paper we always assume théatr) € D and thata € T. We assume throughout

that the coefficient matrix satisfigx(r) > 0, i.e.,Q(¢) is positive definite, for ali T* .=
(TYH* andQ(1) = Q*(1), i.e., Q(¢) is Hermitian, for allz € T*.

Definition. A solution X (r) of (2) is said to be prepared if and only X*(r) X2 (1) =
X2*()X (1), t € T*.

Using the formulag fg)2 = g + g% = fg? + f°g*, one can show that for any
solutionX (z) of (2), we have
X*(OX2(1) — XM0OX(1) =K.

A solution X (¢) is prepared only whe® is the zero matrix.
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Definition. Given a solutionX (r) of (2), the Riccati function$V (r) andV (¢) defined by
W) =X2OX 1) and V() :=X4X o). (3)

Then we have the relation
I+uOWE) =X(o®)X );
[1+u@WDO] 7 =1-p@®V©e)=XDOX o).
Let X (r) be a solution of (2). Using
[AWB®N]* = A7 (B (1) + A2 (1) B(1) = A*()B° (1) + A1) BA (1)
and
[A_l(t)]A =-At A DAH o)) =—AT o)A (AT ),
for invertible A,
it follows that
WA@ =[x20x 0] =X OXx o) + XA O [x 10)]*
=xOXx o) + X2 O[-X o)) X2 0) X 1(1)]
=x*0Xx o) - X20OX o) X2 ()X L)
=—[X"0 o0 x*" )] - X)X o )W)
=—[X"OQNOX™ )] = WO +pOW®)] W),

WA®) + [X"O0OX™ )] + WO)[I + u(t)W(t)]_lW(t) =0. (4)
We say that (4) is the Riccati equation associated with (2).

3. Main results

Theorem 3.1. Assume thaX (¢) is a solution of(2) on T. Then the following are equiva-
lent

(i) X(¢) is a prepared solution
(i) X*(1)X2(r) is Hermitian for allr € T¥;
(iii) X*(t0)X 2 (10) is Hermitian for someyg € TX.
Proof. Assume thalX () is a solution of (2) on T. Since
X*OX2(1) — X)X (1) =K

for r € TX, it follows that X (¢) is a prepared solution of (2) if and only ¥*(1) X2 (1) is
Hermitian for allz € TX if and only if X*(10) X4 (o) is Hermitian for someg € TX. O
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Lemma 3.2. Let X (r) be a solution of(2). If X (¢) is prepared, therX* (o (¢)) X (¢) is Her-
mitian for all € T¥. Conversely, if there i € T* such thatu(1g) > 0 and X* (o (19)) X (10)
is Hermitian, thenX (¢) is a prepared solution of2). Also, if X (¢) is a nonsingular pre-
pared solution, therX (o (1) X~ 1(r), X (1)) X L(o (r)), and W(r) and V (¢) are Hermitian
for all t € TX.

Proof. Let X () be a solution of (2). The relation
X* (o)X 1) = (X0 +p®OX* ) X0) = X* OXO) + 1 OXY )X (1)

proves the first two statements of this lemma. Now assumeXliat is a nonsingular
prepared solution of (2). Then

X*(0)X (1) = X*OX @) + w0 (XA D) X (1) = X*OX (1) + X (D)X (1)
= X" O(X O +pOX2 1) = X* O X7 (1), (5)
X*OXA (1) =X ()X 0) 6)

by Theorem 3.1 and what we have shown above. Now multiply Eqg. (5) on the left by
X~1(r) and on the right byX ~1(r))* to obtain thatx? (r) X ~1(¢) is Hermitian. Next mul-

tiply Eq. (5) on the left by X~1(o(1)))* and on the right byX (o (1)) to obtain that

X ()X (o (1)) is Hermitian. Finally, multiply Eq. (6YX~1(r))* from the left and with
X~1(¢) from the right shows tha’ (s) is Hermitian. From (3) an& (1) X ~1(o (¢)) being
Hermitian we havé/ (¢) is Hermitian. O

Lemma 3.3. Assume thak (¢) is a prepared solution of2) on T. Then the following are
equivalent

(i) X*(o())X(r) >00nTk;
(i) X(¢) is nonsingular andX (o (t)) X ~1(r) > 0onT¥;
(i) X () is nonsingular andX ()X (o ()) on T*.

Proof. First note thatX* (o (r))X (1) > 0 for r € T* implies thatX (r) is nonsingular for
t € TK. SinceX (z) is prepared solution, we have by Lemma 3.2 that

X)X =(X10) X* (0 (1), (7)
XOX o) = (X" om)) X*1) (8)

on T¢. We multiply the right-hand side of (7) on the right B§(r) X ~1(r) to obtain the
equivalence of (i) and (ii). For equivalence of (i) and (iii), multiply the right-hand side of
(8) on the right byX? (1) X L(o(r)). O

Theorem 3.4. If (2) has a prepared solutioX (¢) such thatX (¢) is invertible for allr € T,
thenW (z) is a Hermitian solution offte matrix Riccati equatiotd) on T¥. Conversely, if
(4) has a Hermitian solution¥ (1) on'T*, then there exists a prepared solutigfir) of (4)
such thatX (¢) is invertible for allr € T and relation(3) holds.
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Proof. From Lemma 3.2 the first conclusion follows. ConverselyWgt) be a Hermitian
solution of (4) on T. Let g e T and putX = ew (-, 70). By Theorem 5.8 in [13]X is
defined because+ W is invertible onT*. ThenX is invertible onT by Theorem 5.21
[13], and we have

[X20)]* = (W)X 1) = WANOXT (1) + WO XA (1)
=—[X") X" )] X7 (1) = W1 + uOW®O] WO X (1)
+WOWBX (1)
=—[X"0om) X" (1)]° X% (1)
+ W[+ u(t)W(t)]_l[(I +rOWO)WDX (1) — WHX(1)]
=-[X"®om X (1)]° X% (1)
FWO[I+pOWO] H{WOX @) + p@OWOW @)X (1)
~WO[X®) +pOWOX 0]
=-[X"®m X" (1)]° X7 (1)
on T*. So thatX (r) is a solution of (2) andX (¢) is indeed a prepared solution because
X*() XA () = W() is Hermitian. O

From Lemma 3.3 and Theorem 3.4 we have

Theorem 3.5. Equation(2) has a prepared solutioX () on T with X*(o(¢))X (t) > 0 on
T* if and only if (4) has a Hermitian solutionV () on TX satisfyingl + . (t) W (¢) > O for
all t € T,

Definition. Assumea € T and sufl = co. We say that (2) is non-oscillatory on
[a, 00) provided there is grepared solutionX () of (2) and ar € [a, c0) such that
X*(o())X (1) > 0 on[tg, 00). Otherwise we say (2) is oscillatory ¢am, co).

We now introduce some notation that we will use in the remainder of this papeislf
ann x n Hermitian matrix, let; (A) denote théth eigenvalue ofA so that
Amax(A) =2A1(A) =2 -+ = An(A) = Amin(A).

The trace of a matrid is denoted by (A) := Y _"_; 1;(A). We shall frequently use Weyl's
theorem [9, p. 181, Theorem 4.3.1] which sayd iind B are Hermitian matrices, then

Xi(A) + Amax(B) = Ai (A + B) 2 1; (A) + Amin(B)
and Ostrowski's inequiies [9, pp.224—-225] which give
Li(APA™) = 1i (P)Amin(AA™) and A;(APA") > A (AA™)Amin(P).
Lemma 3.6. Suppose€X (¢) is a non-oscillatory prepared solution @¢2). Then there exists

1o € T¥ such thatw (1) and V() are both positive definite and decreasing fag [, 00)
with
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Iim W@= Ilim _V(@#) =0. 9)
t—o0, teT t—o0, teT

Furthermore, multiplication oW (¢r) and V (¢) is commutative at point where both exist

andW(r)V (t) = V(t)W(¢) is positive definite for € [g, 00).

Proof. SinceX () is non-oscillatory and prepared, we begin by choosing T* so that

I+ u@)W() > 0forr e [t, 00). SinceQ(t) is positive definite, we see from the Riccati
equation (4), Ostrowski’s inequality, and Weyl's inequality that (r) < 0 for ¢ € [tg, 00).
Hence by Weyl's inequality, each eigenvalyéW ()] (1 < i < n), is adecreasing function

of ¢ for ¢ € [1g, 00). Furthermore, each;[W ()] is bounded below for € [#g, c0) since

I+ u@)W() > 0,s0lim_ . A [W()] exists for 1< i < n. Since the eigenvalues 6+
w(t)W(t) decrease but remain positive, the eigenvalugg ef ()W (1)]~! are positive
and increasing for € [1g, c0). From (4) and the eigenvalue inequalities mentioned above
we obtain

L[-WAD] > WO +pOWO)] W)
> 3 [ W20 Jamin([1 + nOW )] )
> (L [WO ] Pamin([I + 10 Wi0)] ™) (10)

for 1 <i < n andr € [fg, 00). Now we claim

lim % W] =0 (11)

t—00

holds for 1< i < n. Suppose not. We chooggewith 1 < ig < n such that

lim ETAiO[W(t)] =10#£0. (12)

t—00, t

Combining (10) and (12), we can choasge [7, co) and a positive numbérsuch that

Aig[-WA(@®)]>8 fort et 00). (13)
But

t ) 1 t ,
hmax[—W () + W (tD)] =xmax[/—w (r)m] > ;tr[/—W (t)Ar:|
51 41

1 1

1 1
= —/tr[—WA(t)]At > —/Aio[—WA(r)]Ar.
n n
11 5%

By (13), this implies thatmax[— W (¢) + W (#1)] = 00 andimax] W (t)] — —oo ast — oo.
This contradicts the fact the eigenvaluesitfr) are bounded below far € [7g, o0) and
proves that (11) holds. Consequently, lim,, ;1 W(¢) = 0. Therefore W(¢) is positive
for t € [tg, 00). From (3),u()V(t) = I — [I + u(®)W()]72, so the eigenvalues df (1)
are also positive and decreasing faog [7g, 00) with lim; o A;[V(#)] =0for 1<i <n
showing that (9) holds.
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Finally, from (3), we see that
[ +uOWO][I—pOVO)]=1=[1-pOVO][I+r@OWo)],
from which it follows that
uOW@V @) =pnO) VW) =W) — V()
at allz € T where bothW (r) andV (¢) exist. Since

VOLL+pOWO]V @) = w0 VOWOV @) + VA1)
=[Wn) - VOV + VO =WOV @),
we see thaW (1) V (t) = V (r) W(¢) is positive forr € [r9, o0) completing the proof of the
lemma. O

Theorem 3.7. Suppos&)(r) is Hermitian and positive definite for alle T*. Then(2) is
oscillatory if and only if

]

/ tAmax Q(1)] At = 00 (14)

a

holds.

Proof. First, we assumez = 1 in (2), the general case will be treated later. Suppose
(14) holds but (2) has a non-oscillatory prepared solufian). Applying Lemma 3.6,
we chooseg € T* so thatX (¢) is invertible and matrice$V (r), V (r) and W)V (t) =
V (t)W(¢) are all positive definite for € [zg, c0). Then
[X 1o)X to]? =[x 10 X o) + X Lo [x*10)]?
=-XHo0)X*OX O X* o)
- xtox* o) x**0)x* 1)
=X o®)WnOX* o) - XtV x*t@. (15)
Using the product rule fon-derivatives we have
[AWBOCOHDOEM]”
= A°(1)B° (t)C° (1)D° (1) E* (t) + A° (1) B2 (t)C° (t) D° (1) E (1)
+ A% (1) B(t)C (1) D° (1) E(t) + A° (1) B(t)C (t) D* (1) E (1)
+ A% BOCODME®),
and we obtain
[(X o) X2 )X ) x* o )]
=o)X Yo 2)) X2 (0 (0)X Lo ) [X* o ))]"
+o[X o) X2 (o)X (o) X* (o ()
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+oOX o) [X2 D] X o) X* (o))
+oOX H o) X2 O[X 0] x* (o))
+X Ho) X2 Xt x* o)
=—o(MX Ho2) W2 (o (1)) X*H(o?(1))
o)X o)V (e®)W(o®))X* o) —a(®)Q(c 1))
—oX Ho®)VOWOX o)+ X Ho®)WHX* o). (16)
Applying the product rule gives

[A()B(t)C@&)DNEMN]*
= A% (1)B° (1)C? (1) D (1) E° (t) + A® (1) B® (1) C* (t) D(t) E° (1)
+ A% (1)BA(1)C()D(H)E (1) + A° (1) B(t)C(1) D(t) EZ (1)
+ A B(NC()DME®),
and we find that
[(X L) x20)X (o)X 20)]?
=—oMX Ho@)W(e®)V(e®)X* o) —o@®) ()
—oMX Ho®)WOVOX o) —ocX VO X1
+ XtV x o). (17)
Combining (15)—(17), we have

[xtox*tn]*
= XHo)WOX o) - X VO X )
=[x o)W X Ho)]* - X L)V X n]*
—20(1)Q(0 (1)) —o () H (1), (18)

where

H(@)=X"Yo20)W2(c )X L (o?®0) + X L) V20 X (1)
+X Hom)[2V(e )W (o) + 2V i)W ()] X* (o ().
Integrating both side of (18) from to ¢ yields

t

/[X_l(r)X*_l(t)]AAt

fo
13 t

= —/['CX_l(O'('C))W(T)X*_l(O’(T))]AAT - Z/G(t)Q(G(t))AT

fo fo
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t t
- /[rX_l(r)V(t)X*_l(r)]AAr - /U(I)H(I)At,
1o fo
and hence
t t
2/ o(1)Q(o (1)) AT = — / oc(0)H@®AT — X L) X* 1)
Io Io
— X o)W X* o)
-t X toyvox o +c, (19)
whereC is a constant Hermitian matrix.

Now all the terms excepf on the right-hand side of (19) are negative definite for all
t € [t9, 00), and consequently there is a real constentsuch that

_ -

Amax /a(t)Q(cr(r))Ar <My forze[o(t), 00).
Lio i

By Weyl's inequality, there is another constap so that

_ -

Amax /O’(t)Q(O’(‘L’))A‘L’ <M, forte [0’([0),00). (20)

- a -

However,

t

1 t
Amax /O’(t)Q(O’(‘L’))A‘L’ 2;“‘ /G(t)Q(G(t))A‘L’

a a
t

1
= ;/tr[a(r)Q(a(t))]Ar

a
t

1
> [ rmalo@0(e@)]ar

a

By (14), fa’ Amaxlo (1) Q (o (1))]AT — 00 ast — oo contradicting (20). This proves that
(14) is a sufficient condition for (2) to be oscillatory in the case- 1.

Next, we will prove the general case. Suppose (14) holds but there is a positive integer
such that (2) has a prepared non-oscillatory solulgty). SinceXo(¢) is non-oscillatory,
we choosey € [a, oo) such thatXo(z) is invertible fort € [rg, 00) andWy(z) andVp(¢) are
positive definite for € [7g, 00). Set

00() = Xg Mo ) Q(c )Xy o), t € lto, 00).

It is not difficult to verify thatQo(¢) is Hermitian and positive definite fore [7g, oo) and
Xo(t) is also a non-oscillatory prepared solution of
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X4 4 X (0(1)) Qo) X* (0 (1)) X (0()) =0, 1 € [1o, 00). (21)

SoX{(1)Xo(t) andXo(1) X (¢) have the same eigenvalues; furthermore, we have

[X5()Xo(]* = X§(0 (1)) X5 (1) + X2 (1) Xo()
= X5 (0 (1) Vo) Xo(o (1)) + X5(1) Wo () Xo (1)

It follows that [Xg;(t)Xo(t)]A > 0 for ¢ € [19, 00), SO the eigenvalues ofo(s) X;(¢) are
increasing. Hence we can choose a positive real nuiserthatimin[ Xo(?) X ()] > &
for ¢ € [0, 00). By Ostrowski’s inequality

)»max[QO(t)] 2= )»max[Q(U(t))](Sm_l for ¢ € [1g, 00).

HenceQo(¢) is Hermitian and positive definite fore [fg, co) with

8]

/ f)»max[QO(t)]Af =00.

a

So Xo(?) is oscillatory solution of (20), even thougBo(z) may only be positive semi-
definite rather than positive definite foe [«, 19), it is clear from the first part of the proof
that (21) is oscillatory. Sinc& () is a non-oscillatory solubin, we get a contradiction.
This completes the proof that (2) is oscillatory if (14) holds.

Now we prove that (14) is a necessary condition if (14) is to be oscillatory. Suppose that

o]

/txmaX[Q(t)]At < o0.

a

We need to show that there is at leage non-oscillatory prepared solutiaf(s) of (14).

Here we recall some facts from [9] that will be used in what follows. Lgtdénote the
set ofn x n complex matrices|x| denote the modulus of the complex numbeand let
A;j denote the entry in th&h row and;jth column of a matrixA. Let | - ||oo, || - ]2 @and
|l - |l2 be the matrix norms on Minduced by thé, I1, andl, respectively. Thet - ||

is the maximum row sum norni, - ||1 is the maximum column sum norm, atid |2 is

the spectral norm with A |2 = [Amax(AA*)1Y2 for A € M,,. || H ||2 = Amax(H) whenH is

Hermitian and positive semi-definite. The relations

I Alloo < VnllAll2, 1Al < VnllAll2, [AllL <nllAlleo

hold forallA € M,,.
Let 7o € T be a fixed point. We define anx n complex matrix-valued functio (¢)

for ¢ € [rg, 00) by
X()=1- / (s = D[X" () Q)X (5)] X (5) As (22)
a(t)
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which satisfies (2) for € [a, o0). In the following discussion we use operator theory to
show thatX (¢) is a prepared non-oscillatory solution of (2). From the assumption, we
choosey € [a, 00) so large that

x -1
/ skmaX[Q(s)]As < n_1/22_2’"(37m + 1) . (23)

o (to)

Let H,, denote the set of alt x n complex matrix-valued functiong () defined forr €
[70, 00) and such that lig, » Z(r) exists as a finite matrix. F&f € H,,, let

1zl = sup)||Z(t)Hoo.

t€(tg,00

H,, equipped with this norm is a Banach space. det {Z € H,,: |Z — I|| <1}. ThenA
is a nonempty closed subset of HDefineT X by

TX@t)=1- / (s —D[X" () Q)X ™ (s)] X (s)As for X € A. (24)
o(t)
ThenforX € A, ands > 1,

[[s =DX" () Q)X ™ ()X (5],
<[ =DX"$QOX™ ()X ()|,
<X x| e@ ] <sIXH x| oV |26 ],
<22 Y2 0man] Q(5)]- (25)

From (25), we see that the integral on the right-hand side of (24) is convergent as.
Moreover, from (23) and (24) we see that, fof [79, 00),

o0
|7X () — 1] < 22"+ n3/2 / Ama] Q)]s < 1.
o (to)
so||ITX —I|| <1,thatis,TX(t) € A. ThusT is a mapping fromA into A. For X andY
both in 4, we have

[TX @) — TY(t)]l.j|

< f 5[ X" () Q)X ()X (5) = Y™ (5) Q)Y ()Y (5) | o As. (26)
o (10)

Shortening the notation in a self-evident way,
”Xm Qx*mx _ Ym QY*mY”oo
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<X N5/ Amad QU X oo | X = Y lloo + 1 X™ loon/n Amaxl Q111 X"
=Y ool lloo + 1 X" = Y™ [loon/n Amaxl Q1IIY [[257 (27)
and
X" =Yl

N e R e e e TR PO A N

<xmrx -v| Xm0y o+ [ - xm T

<m2" X =Y oo (28)
Combining (27) and (28) yields

3
[ X" QXX — Y™ QY*™Y ||oo < (7’" + 1>22'"n1/zxmax[Q1||X — Ylloo- (29)

From (26) and (29) we find

ITX =TY| < [(37’" + 1)2%1/2 / S)»max(Q(S))AS] IX Y.

(19

Therefore, from (23) it follows thal : . A — A is a contraction mapping. Consequently,
there is a solutiorX (¢) of (24) which is also a solution of (2) fare [z, c0). Extending
this solution backward to= a, we obtain a solution satisfying (2) fore [a, co). Since

lim X(t)=1 and lim X4(r) =0,
t—00 1—>00
it follows that X () is a prepared solution of (2). Finally,
lim W) = lim X4®»)X 1) =0.
11— 00 11— 00

So limy_ [W(2) + I1 =1 making X (+) a non-oscillatory solution of (2). This completes
the proof of Theorem 3.7. 0

4. Examples

The following examples illustrate the applications of our oscillation criteria.
Example 1. Consider the second-order matrix system (2) on time SEalchZ = {hk: k €
Z} (h > 0); where

Q(t)=<”52 g)

Fort € T;0(t) =t+h; nu(t) = h. Lettg € T be given and picko € Z so that := hko > 1o.
Fort € T; consider
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o0

f(r+h)(r+h+2>m=Z(hj+h)<hj+h+2)

a j=k0
e a2 2am] =
—h ;;o[(]+1) +h(j+h)i|—oo.

Hence from Theorem 3.7, we get that this equation is oscillator§.on

Example 2. It will show that theg-difference equation
X2 () + [X"(1)q(q — DX ] X (0 (1)) =0

is oscillatory onT = qNO, whereg > 1 is a constant. In facty € [1; co) is given and dick
ko € N so thata := g0 > 9. Forr € T; let

0() = 0 Wrma] Q(0 (1))] = 41— L
=0 X o = =
ma M@ —1Dgn? ~ q2q -1y
and
n/ q}’l n N 1
[ owai= [ o0ar= Y 0l )nla) = 3 g7t~ e’
a qko j=k0 j:kO
"1 1 n?+n— k(z) +k
=Y S =Stk —ko+ )= 0T
2 2 2
il 2q
Since lim,— oo % = o00. Thatis [ o (1) Amaxl @ (0 (1))] At = o0.

Remark. WhenT =R andT = Z, argument in this paper is just as [4,8], respectively.
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