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Abstract

By applying the Riccati technique and operator theory, we establish on a time scaleT both os-

cillation and non-oscillation criteria for Atkinson’s super-linear matrix dynamic equationX∆2 +
[Xm(t)Q(t)X∗m(t)]σ Xσ (t) = 0. These results extend and unify earlier results for the differe
and difference equation case.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In 1955, Atkinson [1] proved that the second-order super-linear scalar ordinary d
ential equation

y ′′ + f (t)y2n+1 = 0, t � 0,
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with f (t) > 0 and continuous for eacht � 0, is oscillatory if and only if
∞∫

0

tf (t) dt = ∞.

In 1982, Kura [2] obtained the same result for then × n matrix differential equation

Y ′′ + (
YmQ(t)Y ∗m

)
Y = 0. (1)

Butler and Erbe [3], and Ahlbrandt, Ridenhour and Thompson [4] have done a similar
for (1). In [4] it is shown that whenQ(t) is Hermitian, positive definite and continuous f
eacht � 0, a necessary and sufficient condition for all prepared solution of (1) w
extend to infinity to be oscillatory is that

∞∫
0

tλmax
[
Q(t)

]
dt = ∞.

Mingarelli [5] has shown that Atkinson’s super-linear oscillation theorem is valid
second-order real scalar difference equations. In 1991, Allan Peterson and Jerry
hour [8] used Riccati techniques to establish the necessary and sufficient condition

∞∑
t=1

tλmax
[
Q(t)

] = ∞

for all prepared solutions of Atkinson’s super-linear matrix difference equation

∆2Y (t − 1) + [
Yn(t)Q(t)Y ∗n(t)

]
Y (t) = 0

to be oscillatory.
In the past ten years, theory about calculus on time scales, a unified approach to

uous and discrete calculus, has been studied by many authors [6,7,11,12], etc., an
interesting results have been obtained. For example, see Hilger [6] and Agarwal and
[11]. Motivated by the ideas in [1–5], we shallestablish oscillation and non-oscillation c
teria for Atkinson’s matrix dynamic equation on a time scale.

2. Preliminaries

In this paper we are concerned with Atkinson’s super-linear matrix dynamic equatio

X∆2 + [
Xm(t)Q(t)X∗m(t)

]σ
Xσ (t) = 0 (2)

on a time scaleT. Following [6,10], we introduce the following concepts related to
notion of time scale.

Definition. A time scaleT is a closed subset of the setR of real numbers equipped wit
the forward jump operator

σ(t) := inf{s > t, s ∈ T}
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and the backward jump operatorρ(t) at t for t ∈ T by

ρ(t) := sup{s < t, s ∈ T}.

We assume throughout thatT has the topology that it inherits from the standard topol
on the real numbersR. By an interval inT we mean an interval inR intersected withT. If
σ(t) > t, we sayt is right-scattered, while ifρ(t) < t we sayt is left-scattered. Ifσ(t) = t

we sayt is right-dense, while ifρ(t) = t we sayt is left-dense. A functionf :T → R is
said to be right-dense continuous providedf is continuous at right-dense points inT and
at left-dense points inT, left-hand limits exist and are finite. We use CrdT to denote the se
of all right-dense continuous function onT. If supT < ∞ and supT is left-scattered, we le
T

k := T \ {supT}. Otherwise, we letTk := T. We shall use the notationµ(t) := σ(t) − t

which is called the graininess function. Finally, iff :T → R is a function, then we defin
the functionf σ :T → R by

f σ (t) = f
(
σ(t)

)
for all t ∈ T, i.e.,f σ = f ◦ σ.

Definition. Assumex :T → R and fix t ∈ T; then we definex∆(t) to be the number (pro
vided it exists) with the property that given anyε > 0, there is a neighborhoodU of t such
that ∣∣[x(

σ(t)
) − x(s)

] − x∆(t)
[
σ(t) − s

]∣∣ � ε
∣∣σ(t) − s

∣∣
for all s ∈ U. We callx∆(t) the delta derivative ofx(t) at t .

It follows easily that ifx :T → R is continuous att ∈ T andt is right-scattered, then

x∆(t) = x(σ(t)) − x(t)

σ (t) − t
.

Definition. We denote byD the set of all real matrix functionsX(t) so that each entry o
X(t) is delta differentiable onTk and is in Ccd (Tk2

). Xδ2 := Xδδ
.

In this paper we always assume thatX(t) ∈ D and thata ∈ T. We assume throughou
that the coefficient matrix satisfiesQ(t) > 0, i.e.,Q(t) is positive definite, for allt ∈ T

k2 :=
(Tk)k andQ(t) = Q∗(t), i.e.,Q(t) is Hermitian, for allt ∈ T

k.

Definition. A solution X(t) of (2) is said to be prepared if and only ifX∗(t)X∆(t) =
X∆∗(t)X(t), t ∈ T

k .

Using the formulas(fg)∆ = f ∆g + f σ g∆ = fg∆ + f σ g∆, one can show that for an
solutionX(t) of (2), we have

X∗(t)X∆(t) − X∆∗(t)X(t) = K.

A solutionX(t) is prepared only whenK is the zero matrix.
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Definition. Given a solutionX(t) of (2), the Riccati functionsW(t) andV (t) defined by

W(t) := X∆(t)X−1(t) and V (t) := X∆(t)X−1(σ(t)
)
. (3)

Then we have the relation

I + µ(t)W(t) = X
(
σ(t)

)
X−1(t);[

I + µ(t)W(t)
]−1 = I − µ(t)V (t) = X(t)X−1(σ(t)

)
.

Let X(t) be a solution of (2). Using[
A(t)B(t)

]∆ = Aσ(t)B∆(t) + A∆(t)B(t) = A∆(t)Bσ (t) + A(t)B∆(t)

and [
A−1(t)

]∆ = −A−1(t)A∆(t)A−1(σ(t)
) = −A−1(σ(t)

)
A∆(t)A−1(t),

for invertibleA,

it follows that

W∆(t) = [
X∆(t)X−1(t)

]∆ = X∆2
(t)X−1(σ(t)

) + X∆(t)
[
X−1(t)

]∆
= X∆2

(t)X−1(σ(t)
) + X∆(t)

[−X−1(σ(t)
)
X∆(t)X−1(t)

]
= X∆2

(t)X−1(σ(t)
) − X∆(t)X−1(σ(t)

)
X∆(t)X−1(t)

= −[
Xm(t)Q(t)X∗m(t)

]σ − X∆(t)X−1(σ(t)
)
W(t)

= −[
Xm(t)Q(t)X∗m(t)

]σ − W(t)
[
I + µ(t)W(t)

]−1
W(t),

i.e.,

W∆(t) + [
Xm(t)Q(t)X∗m(t)

]σ + W(t)
[
I + µ(t)W(t)

]−1
W(t) = 0. (4)

We say that (4) is the Riccati equation associated with (2).

3. Main results

Theorem 3.1. Assume thatX(t) is a solution of(2) on T. Then the following are equiva
lent:

(i) X(t) is a prepared solution;
(ii) X∗(t)X∆(t) is Hermitian for all t ∈ Tk ;
(iii) X∗(t0)X∆(t0) is Hermitian for somet0 ∈ Tk.

Proof. Assume thatX(t) is a solution of (2) on T. Since

X∗(t)X∆(t) − X∆∗(t)X(t) = K

for t ∈ Tk , it follows thatX(t) is a prepared solution of (2) if and only ifX∗(t)X∆(t) is
Hermitian for allt ∈ Tk if and only if X∗(t0)X∆(t0) is Hermitian for somet0 ∈ Tk. �
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Lemma 3.2. LetX(t) be a solution of(2). If X(t) is prepared, thenX∗(σ (t))X(t) is Her-
mitian for all t ∈ Tk . Conversely, if there ist0 ∈ Tk such thatµ(t0) > 0 andX∗(σ (t0))X(t0)

is Hermitian, thenX(t) is a prepared solution of(2). Also, ifX(t) is a nonsingular pre-
pared solution, thenX(σ(t))X−1(t),X(t)X−1(σ (t)), andW(t) andV (t) are Hermitian
for all t ∈ Tk .

Proof. Let X(t) be a solution of (2). The relation

X∗(σ(t)
)
X(t) = (

X(t) + µ(t)X∆(t)
)∗

X(t) = X∗(t)X(t) + µ(t)X∆∗
(t)X(t)

proves the first two statements of this lemma. Now assume thatX(t) is a nonsingula
prepared solution of (2). Then

X∗(σ(t)
)
X(t) = X∗(t)X(t) + µ(t)

(
X∆(t)

)∗
X(t) = X∗(t)X(t) + µ(t)X∗∆(t)X(t)

= X∗(t)
(
X(t) + µ(t)X∆(t)

) = X∗(t)Xσ (t), (5)

X∗(t)X∆(t) = X∆∗
(t)X(t) (6)

by Theorem 3.1 and what we have shown above. Now multiply Eq. (5) on the le
X−1(t) and on the right by(X−1(t))∗ to obtain thatXσ (t)X−1(t) is Hermitian. Next mul-
tiply Eq. (5) on the left by(X−1(σ (t)))∗ and on the right byX−1(σ (t)) to obtain that
X(t)X−1(σ (t)) is Hermitian. Finally, multiply Eq. (6)(X−1(t))∗ from the left and with
X−1(t) from the right shows thatW(t) is Hermitian. From (3) andX(t)X−1(σ (t)) being
Hermitian we haveV (t) is Hermitian. �
Lemma 3.3. Assume thatX(t) is a prepared solution of(2) on T. Then the following are
equivalent:

(i) X∗(σ (t))X(t) > 0 onTk ;
(ii) X(t) is nonsingular andX(σ(t))X−1(t) > 0 on Tk;
(iii) X(t) is nonsingular andX(t)X−1(σ (t)) on Tk.

Proof. First note thatX∗(σ (t))X(t) > 0 for t ∈ Tk implies thatX(t) is nonsingular for
t ∈ Tk . SinceX(t) is prepared solution, we have by Lemma 3.2 that

X
(
σ(t)

)
X−1(t) = (

X−1(t)
)∗

X∗(σ(t)
)
, (7)

X(t)X−1(σ(t)
) = (

X−1(σ(t)
))∗

X∗(t) (8)

on Tk . We multiply the right-hand side of (7) on the right byX(t)X−1(t) to obtain the
equivalence of (i) and (ii). For equivalence of (i) and (iii), multiply the right-hand sid
(8) on the right byXσ (t)X−1(σ (t)). �
Theorem 3.4. If (2) has a prepared solutionX(t) such thatX(t) is invertible for allt ∈ T,
thenW(t) is a Hermitian solution of the matrix Riccati equation(4) on Tk . Conversely, if
(4) has a Hermitian solutionW(t) onT

k , then there exists a prepared solutionX(t) of (4)
such thatX(t) is invertible for all t ∈ T and relation(3) holds.
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Proof. From Lemma 3.2 the first conclusion follows. Conversely, letW(t) be a Hermitian
solution of (4) on Tk . Let t0 ∈ T and putX = eW (·, t0). By Theorem 5.8 in [13],X is
defined becauseI + µW is invertible onT

k . ThenX is invertible onT by Theorem 5.21
[13], and we have[

X∆(t)
]∆ = (

W(t)X(t)
)∆ = W∆(t)Xσ (t) + W(t)X∆(t)

= −[
Xm(t)Q(t)X∗m(t)

]σ
Xσ (t) − W(t)

[
I + µ(t)W(t)

]−1
W(t)Xσ (t)

+ W(t)W(t)X(t)

= −[
Xm(t)Q(t)X∗m(t)

]σ
Xσ (t)

+ W(t)
[
I + µ(t)W(t)

]−1[(
I + µ(t)W(t)

)
W(t)X(t) − W(t)Xσ (t)

]
= −[

Xm(t)Q(t)X∗m(t)
]σ

Xσ (t)

+ W(t)
[
I + µ(t)W(t)

]−1{
W(t)X(t) + µ(t)W(t)W(t)X(t)

− W(t)
[
X(t) + µ(t)W(t)X(t)

]}
= −[

Xm(t)Q(t)X∗m(t)
]σ

Xσ (t)

on T
k . So thatX(t) is a solution of (2) andX(t) is indeed a prepared solution becau

X∗(t)X∆(t) = W(t) is Hermitian. �
From Lemma 3.3 and Theorem 3.4 we have

Theorem 3.5. Equation(2) has a prepared solutionX(t) on T with X∗(σ (t))X(t) > 0 on
T

k if and only if (4) has a Hermitian solutionW(t) onTk satisfyingI + µ(t)W(t) > 0 for
all t ∈ T

k .

Definition. Assume a ∈ T and supT = ∞. We say that (2) is non-oscillatory o
[a,∞) provided there is aprepared solutionX(t) of (2) and at0 ∈ [a,∞) such that
X∗(σ (t))X(t) > 0 on[t0,∞). Otherwise we say (2) is oscillatory on[a,∞).

We now introduce some notation that we will use in the remainder of this paper. IA is
ann × n Hermitian matrix, letλi(A) denote theith eigenvalue ofA so that

λmax(A) = λ1(A) � · · · � λn(A) = λmin(A).

The trace of a matrixA is denoted by tr(A) := ∑n
i=1 λi(A). We shall frequently use Weyl’

theorem [9, p. 181, Theorem 4.3.1] which says ifA andB are Hermitian matrices, then

λi(A) + λmax(B) � λi(A + B) � λi(A) + λmin(B)

and Ostrowski’s inequalities [9, pp.224–225] which give

λi(APA∗) � λi(P )λmin(AA∗) and λi(APA∗) � λi(AA∗)λmin(P ).

Lemma 3.6. SupposeX(t) is a non-oscillatory prepared solution of(2). Then there exist
t0 ∈ Tk such thatW(t) andV (t) are both positive definite and decreasing fort ∈ [t0,∞)

with
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lim
t→∞, t∈T

W(t) = lim
t→∞, t∈T

V (t) = 0. (9)

Furthermore, multiplication ofW(t) and V (t) is commutative at point where both ex
andW(t)V (t) = V (t)W(t) is positive definite fort ∈ [t0,∞).

Proof. SinceX(t) is non-oscillatory and prepared, we begin by choosingt0 ∈ Tk so that
I + µ(t)W(t) > 0 for t ∈ [t0,∞). SinceQ(t) is positive definite, we see from the Ricc
equation (4), Ostrowski’s inequality, and Weyl’s inequality thatW∆(t) < 0 for t ∈ [t0,∞).

Hence by Weyl’s inequality, each eigenvalueλi[W(t)] (1 � i � n), is a decreasing functio
of t for t ∈ [t0,∞). Furthermore, eachλi [W(t)] is bounded below fort ∈ [t0, ∞) since
I + µ(t)W(t) > 0, so limt→∞ λi [W(t)] exists for 1� i � n. Since the eigenvalues ofI +
µ(t)W(t) decrease but remain positive, the eigenvalues of[I + µ(t)W(t)]−1 are positive
and increasing fort ∈ [t0,∞). From (4) and the eigenvalue inequalities mentioned ab
we obtain

λi

[−W∆(t)
]
> λi

{
W(t)

[
I + µ(t)W(t)

]−1
W(t)

}
� λi

[
W2(t)

]
λmin

([
I + µ(t)W(t)

]−1)
�

{
λi

[
W(t)

]}2
λmin

([
I + µ(t0)W(t0)

]−1) (10)

for 1 � i � n andt ∈ [t0,∞). Now we claim

lim
t→∞, t∈T

λi

[
W(t)

] = 0 (11)

holds for 1� i � n. Suppose not. We choosei0 with 1 � i0 � n such that

lim
t→∞, t∈T

λi0

[
W(t)

] = λ0 �= 0. (12)

Combining (10) and (12), we can chooset1 ∈ [t0,∞) and a positive numberδ such that

λi0

[−W∆(t)
]
> δ for t ∈ [t1,∞). (13)

But

λmax
[−W(t) + W(t1)

] = λmax

[ t∫
t1

−W∆(τ)∆τ

]
� 1

n
tr

[ t∫
t1

−W∆(τ)∆τ

]

= 1

n

t∫
t1

tr
[−W∆(τ)

]
∆τ � 1

n

t∫
t1

λi0

[−W∆(τ)
]
∆τ.

By (13), this implies thatλmax[−W(t)+W(t1)] → ∞ andλmax[W(t)] → −∞ ast → ∞.
This contradicts the fact the eigenvalues ofW(t) are bounded below fort ∈ [t0,∞) and
proves that (11) holds. Consequently, limt→∞, t∈T W(t) = 0. Therefore,W(t) is positive
for t ∈ [t0,∞). From (3),µ(t)V (t) = I − [I + µ(t)W(t)]−1, so the eigenvalues ofV (t)

are also positive and decreasing fort ∈ [t0,∞) with limt→∞ λi [V (t)] = 0 for 1� i � n

showing that (9) holds.
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Finally, from (3), we see that[
I + µ(t)W(t)

][
I − µ(t)V (t)

] = I = [
I − µ(t)V (t)

][
I + µ(t)W(t)

]
,

from which it follows that

µ(t)W(t)V (t) = µ(t)V (t)W(t) = W(t) − V (t)

at all t ∈ Tk where bothW(t) andV (t) exist. Since

V (t)
[
I + µ(t)W(t)

]
V (t) = µ(t)V (t)W(t)V (t) + V 2(t)

= [
W(t) − V (t)

]
V (t) + V 2(t) = W(t)V (t),

we see thatW(t)V (t) = V (t)W(t) is positive fort ∈ [t0,∞) completing the proof of the
lemma. �
Theorem 3.7. SupposeQ(t) is Hermitian and positive definite for allt ∈ T

k . Then(2) is
oscillatory if and only if

∞∫
a

tλmax
[
Q(t)

]
∆t = ∞ (14)

holds.

Proof. First, we assumem = 1 in (2), the general case will be treated later. Supp
(14) holds but (2) has a non-oscillatory prepared solutionX(t). Applying Lemma 3.6,
we chooset0 ∈ T

k so thatX(t) is invertible and matricesW(t),V (t) and W(t)V (t) =
V (t)W(t) are all positive definite fort ∈ [t0,∞). Then[

X−1(t)X∗−1(t)
]∆ = [

X−1(t)
]∆

X∗−1(σ(t)
) + X−1(t)

[
X∗−1(t)

]∆

= −X−1(σ(t)
)
X∆(t)X−1(t)X∗−1(σ(t)

)
− X−1(t)X∗−1(σ(t)

)
X∗∆(t)X∗−1(t)

= −X−1(σ(t)
)
W(t)X∗−1(σ(t)

) − X−1(t)V (t)X∗−1(t). (15)

Using the product rule for∆-derivatives we have[
A(t)B(t)C(t)D(t)E(t)

]∆

= Aσ(t)Bσ (t)Cσ (t)Dσ (t)E∆(t) + Aσ (t)B∆(t)Cσ (t)Dσ (t)E(t)

+ Aσ(t)B(t)C∆(t)Dσ (t)E(t) + Aσ(t)B(t)C(t)D∆(t)E(t)

+ A∆(t)B(t)C(t)D(t)E(t),

and we obtain[
tX−1(σ(t)

)
X∆(t)X−1(t)X∗−1(σ(t)

)]∆
= σ(t)X−1(σ 2(t)

)
X∆

(
σ(t)

)
X−1(σ(t)

)[
X∗−1(σ(t)

)]∆
+ σ(t)

[
X−1(σ(t)

)]∆
X∆

(
σ(t)

)
X−1(σ(t)

)
X∗−1(σ(t)

)
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+ σ(t)X−1(σ(t)
)[

X∆(t)
]∆

X−1(σ(t)
)
X∗−1(σ(t)

)
+ σ(t)X−1(σ(t)

)
X∆(t)

[
X−1(t)

]∆
X∗−1(σ(t)

)
+ X−1(σ(t)

)
X∆(t)X−1(t)X∗−1(σ(t)

)
= −σ(t)X−1(σ 2(t)

)
W2(σ(t)

)
X∗−1(σ 2(t)

)
− σ(t)X−1(σ(t)

)
V

(
σ(t)

)
W

(
σ(t)

)
X∗−1(σ(t)

) − σ(t)Q
(
σ(t)

)
− σ(t)X−1(σ(t)

)
V (t)W(t)X∗−1(σ(t)

) + X−1(σ(t)
)
W(t)X∗−1(σ(t)

)
. (16)

Applying the product rule gives[
A(t)B(t)C(t)D(t)E(t)

]∆

= Aσ(t)Bσ (t)Cσ (t)D∆(t)Eσ (t) + Aσ (t)Bσ (t)C∆(t)D(t)Eσ (t)

+ Aσ(t)B∆(t)C(t)D(t)Eσ (t) + Aσ (t)B(t)C(t)D(t)E∆(t)

+ A∆(t)B(t)C(t)D(t)E(t),

and we find that[
tX−1(t)X∆(t)X−1(σ(t)

)
X∗−1(t)

]∆
= −σ(t)X−1(σ(t)

)
W

(
σ(t)

)
V

(
σ(t)

)
X∗−1(σ(t)

) − σ(t)Q
(
σ(t)

)
− σ(t)X−1(σ(t)

)
W(t)V (t)X∗−1(σ(t)

) − σ(t)X−1(t)V 2(t)X∗−1(t)

+ X−1(t)V (t)X∗−1(t). (17)

Combining (15)–(17), we have[
X−1(t)X∗−1(t)

]∆
= −X−1(σ(t)

)
W(t)X∗−1(σ(t)

) − X−1(t)V (t)X∗−1(t)

= −[
tX−1(σ(t)

)
W(t)X∗−1(σ(t)

)]∆ − [
tX−1(t)V (t)X∗−1(t)

]∆
− 2σ(t)Q

(
σ(t)

) − σ(t)H(t), (18)

where

H(t) = X−1(σ 2(t)
)
W2(σ(t)

)
X∗−1(σ 2(t)

) + X−1(t)V 2(t)X∗−1(t)

+ X−1(σ(t)
)[

2V
(
σ(t)

)
W

(
σ(t)

) + 2V (t)W(t)
]
X∗−1(σ(t)

)
.

Integrating both side of (18) fromt0 to t yields

t∫
t0

[
X−1(τ )X∗−1(τ )

]∆
∆τ

= −
t∫ [

τX−1(σ(τ)
)
W(τ)X∗−1(σ(τ)

)]∆
∆τ − 2

t∫
σ(τ)Q

(
σ(τ)

)
∆τ
t0 t0
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all

at

ger
−
t∫

t0

[
τX−1(τ )V (τ)X∗−1(τ )

]∆
∆τ −

t∫
t0

σ(τ)H(τ)∆τ,

and hence

2

t∫
t0

σ(τ)Q
(
σ(τ)

)
∆τ = −

t∫
t0

σ(τ)H(τ)∆τ − X−1(t)X∗−1(t)

− tX−1(σ(t)
)
W(t)X∗−1(σ(t)

)
− tX−1(t)V (t)X∗−1(t) + C, (19)

whereC is a constant Hermitian matrix.
Now all the terms exceptC on the right-hand side of (19) are negative definite for

t ∈ [t0,∞), and consequently there is a real constantM1 such that

λmax

[ t∫
t0

σ(τ)Q
(
σ(τ)

)
∆τ

]
� M1 for t ∈ [

σ(t0),∞
)
.

By Weyl’s inequality, there is another constantM2 so that

λmax

[ t∫
a

σ (τ )Q
(
σ(τ)

)
∆τ

]
� M2 for t ∈ [

σ(t0),∞
)
. (20)

However,

λmax

[ t∫
a

σ (τ )Q
(
σ(τ)

)
∆τ

]
� 1

n
tr

[ t∫
a

σ (τ )Q
(
σ(τ)

)
∆τ

]

= 1

n

t∫
a

tr
[
σ(τ)Q

(
σ(τ)

)]
∆τ

� 1

n

t∫
a

λmax
[
σ(τ)Q

(
σ(τ)

)]
∆τ.

By (14),
∫ t

a
λmax[σ(τ)Q(σ(τ))]∆τ → ∞ as t → ∞ contradicting (20). This proves th

(14) is a sufficient condition for (2) to be oscillatory in the casem = 1.
Next, we will prove the general case. Suppose (14) holds but there is a positive intem

such that (2) has a prepared non-oscillatory solutionX0(t). SinceX0(t) is non-oscillatory,
we chooset0 ∈ [a,∞) such thatX0(t) is invertible fort ∈ [t0,∞) andW0(t) andV0(t) are
positive definite fort ∈ [t0,∞). Set

Q0(t) = Xm−1
0

(
σ(t)

)
Q

(
σ(t)

)
X∗m−1

0

(
σ(t)

)
, t ∈ [t0,∞).

It is not difficult to verify thatQ0(t) is Hermitian and positive definite fort ∈ [t0,∞) and
X0(t) is also a non-oscillatory prepared solution of
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-
f
.

e that
X∆2 + X
(
σ(t)

)
Q0(t)X

∗(σ(t)
)
X

(
σ(t)

) = 0, t ∈ [t0,∞). (21)

SoX∗
0(t)X0(t) andX0(t)X

∗
0(t) have the same eigenvalues; furthermore, we have

[
X∗

0(t)X0(t)
]∆ = X∗

0

(
σ(t)

)
X∆

0 (t) + X∗∆
0 (t)X0(t)

= X∗
0

(
σ(t)

)
V0(t)X0

(
σ(t)

) + X∗
0(t)W0(t)X0(t).

It follows that [X∗
0(t)X0(t)]∆ > 0 for t ∈ [t0,∞), so the eigenvalues ofX0(t)X

∗
0(t) are

increasing. Hence we can choose a positive real numberδ so thatλmin[X0(t)X
∗
0(t)] > δ

for t ∈ [t0,∞). By Ostrowski’s inequality

λmax
[
Q0(t)

]
� λmax

[
Q

(
σ(t)

)]
δm−1 for t ∈ [t0,∞).

HenceQ0(t) is Hermitian and positive definite fort ∈ [t0,∞) with

∞∫
a

tλmax
[
Q0(t)

]
∆t = ∞.

So X0(t) is oscillatory solution of (20), even thoughQ0(t) may only be positive semi
definite rather than positive definite fort ∈ [a, t0), it is clear from the first part of the proo
that (21) is oscillatory. SinceX0(t) is a non-oscillatory solution, we get a contradiction
This completes the proof that (2) is oscillatory if (14) holds.

Now we prove that (14) is a necessary condition if (14) is to be oscillatory. Suppos

∞∫
a

tλmax
[
Q(t)

]
∆t < ∞.

We need to show that there is at leastone non-oscillatory prepared solutionX(t) of (14).
Here we recall some facts from [9] that will be used in what follows. Let Mn denote the
set ofn × n complex matrices,|x| denote the modulus of the complex numberx, and let
Aij denote the entry in theith row andj th column of a matrixA. Let ‖ · ‖∞,‖ · ‖1 and
‖ · ‖2 be the matrix norms on Mn induced by thel∞, l1, andl2, respectively. Then‖ · ‖∞
is the maximum row sum norm,‖ · ‖1 is the maximum column sum norm, and‖ · ‖2 is
the spectral norm with‖A‖2 = [λmax(AA∗)]1/2 for A ∈ Mn. ‖H‖2 = λmax(H) whenH is
Hermitian and positive semi-definite. The relations

‖A‖∞ �
√

n‖A‖2, ‖A‖1 �
√

n‖A‖2, ‖A‖1 � n‖A‖∞

hold for allA ∈ Mn.
Let t0 ∈ T be a fixed point. We define ann × n complex matrix-valued functionX(t)

for t ∈ [t0,∞) by

X(t) = I −
∞∫

(s − t)
[
Xm(s)Q(s)X∗m(s)

]
X(s)∆s (22)
σ(t)
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to
, we
which satisfies (2) fort ∈ [a,∞). In the following discussion we use operator theory
show thatX(t) is a prepared non-oscillatory solution of (2). From the assumption
chooset0 ∈ [a,∞) so large that

∞∫
σ(t0)

sλmax
[
Q(s)

]
∆s < n−1/22−2m

(
3m

2
+ 1

)−1

. (23)

Let Ht0 denote the set of alln × n complex matrix-valued functionsZ(t) defined fort ∈
[t0,∞) and such that limt→∞ Z(t) exists as a finite matrix. ForZ ∈ Ht0, let

‖Z‖ = sup
t∈[t0,∞)

∥∥Z(t)
∥∥∞.

Ht0 equipped with this norm is a Banach space. LetA = {Z ∈ Ht0: ‖Z − I‖ � 1}. ThenA
is a nonempty closed subset of Ht0. DefineT X by

T X(t) = I −
∞∫

σ(t)

(s − t)
[
Xm(s)Q(s)X∗m(s)

]
X(s)∆s for X ∈A. (24)

Then forX ∈A, ands � t ,∣∣[(s − t)Xm(s)Q(s)X∗m(s)X(s)
]
ij

∣∣
�

∥∥(s − t)Xm(s)Q(s)X∗m(s)X(s)
∥∥∞

� s
∥∥X(s)

∥∥m+1
∞

∥∥Xm(s)
∥∥∞

∥∥Q(s)
∥∥∞ � s‖X‖m+1

∥∥Xm(s)
∥∥∞

√
n

∥∥Q(s)
∥∥

2

� 22m+1n1/2sλmax
[
Q(s)

]
. (25)

From (25), we see that the integral on the right-hand side of (24) is convergent ast → ∞.
Moreover, from (23) and (24) we see that, fort ∈ [t0,∞),

∥∥T X(t) − I
∥∥∞ � 22m+1n1/2

∞∫
σ(t0)

sλmax
[
Q(s)

]
∆s < 1,

so‖T X − I‖ � 1, that is,T X(t) ∈ A. ThusT is a mapping fromA into A. ForX andY

both inA, we have∣∣[T X(t) − T Y (t)
]
ij

∣∣
�

∞∫
σ(t0)

s
∥∥Xm(s)Q(s)X∗m(s)X(s) − Ym(s)Q(s)Y ∗m(s)Y (s)

∥∥∞∆s. (26)

Shortening the notation in a self-evident way,

‖XmQX∗mX − YmQY ∗mY‖∞
� ‖XmQX∗mX − XmQX∗mY‖∞ + ‖XmQX∗mY − XmQY ∗mY‖∞

+ ‖XmQY ∗mY − YmQY ∗mY‖∞
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tly,

es
� ‖X‖m∞
√

nλmax[Q]‖Xm‖∞‖X − Y‖∞ + ‖Xm‖∞
√

nλmax[Q]‖Xm

− Ym‖∞‖Y‖∞ + ‖Xm − Ym‖∞
√

nλmax[Q]‖Y‖m+1∞ (27)

and

‖Xm − Ym‖∞
�

∥∥Xm − Xm−1Y
∥∥∞ + ∥∥Xm−1Y − Xm−2Y 2

∥∥∞ + · · · + ∥∥XYm−1 − Ym
∥∥∞

�
∥∥Xm−1(X − Y )

∥∥∞ + ∥∥Xm−2(X − Y )Y
∥∥∞ + · · · + ∥∥(X − Y )Xm−1

∥∥∞
� m2m−1‖X − Y‖∞. (28)

Combining (27) and (28) yields

‖XmQX∗mX − YmQY ∗mY‖∞ �
(

3m

2
+ 1

)
22mn1/2λmax[Q]‖X − Y‖∞. (29)

From (26) and (29) we find

‖T X − T Y‖ �
[(

3m

2
+ 1

)
22mn1/2

∞∫
σ(t0)

sλmax
(
Q(s)

)
∆s

]
‖X − Y‖.

Therefore, from (23) it follows thatT :A → A is a contraction mapping. Consequen
there is a solutionX(t) of (24) which is also a solution of (2) fort ∈ [t0,∞). Extending
this solution backward tot = a, we obtain a solution satisfying (2) fort ∈ [a,∞). Since

lim
t→∞X(t) = I and lim

t→∞X∆(t) = 0,

it follows thatX(t) is a prepared solution of (2). Finally,

lim
t→∞W(t) = lim

t→∞X∆(t)X−1(t) = 0.

So limt→∞[W(t) + I ] = I makingX(t) a non-oscillatory solution of (2). This complet
the proof of Theorem 3.7.�

4. Examples

The following examples illustrate the applications of our oscillation criteria.

Example 1. Consider the second-order matrix system (2) on time scaleT = hZ = {hk: k ∈
Z} (h > 0); where

Q(t) =
(

t + 2 0
0 3

)
.

For t ∈ T; σ(t) = t +h; µ(t) = h. Let t0 ∈ T be given and pickk0 ∈ Z so thata := hk0 > t0.

For t ∈ T; consider
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on

mmu-

c.

ec-
∞∫
a

(t + h)(t + h + 2)∆t =
∞∑

j=k0

(hj + h)(hj + h + 2)

= h2
∞∑

j=k0

[
(j + 1)2 + 2

h
(j + h)

]
= ∞.

Hence from Theorem 3.7, we get that this equation is oscillatory onT.

Example 2. It will show that theq-difference equation

X∆2
(t) + [

Xm(t)q(q − 1)t2X∗m(t)
]σ

X
(
σ(t)

) = 0

is oscillatory onT = qN0, whereq > 1 is a constant. In fact,t0 ∈ [1;∞) is given and dick
k0 ∈ N so thata := qk0 > t0. For t ∈ T; let

Q̄(t) = σ(t)λmax
[
Q

(
σ(t)

)] = qt
1

q(q − 1)(qt)2
= 1

q2(q − 1)t

and

n′∫
a

Q̄(t)∆t =
qn∫

qk0

Q̄(t)∆t =
n∑

j=k0

Q̄
(
qj

)
µ

(
qj

) =
n∑

j=k0

1

(q − 1)qj+2
(q − 1)qj

=
n∑

j=k0

1

q2 = 1

2q2(n + k0)(n − k0 + 1) = n2 + n − k2
0 + k

2q2 = ∞.

Since limn→∞
n2+n−k2

0+k

2q2 = ∞. That is
∫ ∞
a

σ (t)λmax[Q(σ(t))]∆t = ∞.

Remark. WhenT = R andT = Z, argument in this paper is just as [4,8], respectively.
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