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Abstract

In this paper we study the mixed summation–integral type operators having Szasz and Beta basis
functions in summation and integration, respectively, we obtain the rate of point-wise convergence,
a Voronovskaja type asymptotic formula and an error estimate in simultaneous approximation.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Recently Srivastava and Gupta [6] proposed a general family of summation–integral
type operators which include some well-known operators (see, e.g., [3,5]) as special cases.
Ispir and Yuksel [4] considered the Bezier variant of the operators studied in [6] and
estimated the rate of convergence for bounded variation functions. Several other hybrid
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summation–integral type operators were proposed by Gupta and Gupta [2]. Very recently
Finta [1] proposed yet another sequence of linear positive operators. For f ∈ Cγ [0,∞) =
{f ∈ C[0,∞): |f (t)| � M(1 + t)γ , for some M > 0, γ > 0}, the other mixed sequence of
summation–integral type operators is defined as

Sn(f, x) =
∞∫

0

Wn(x, t)f (t) dt =
∞∑

v=1

sn,v(x)

∞∫
0

f (t)bn,v(t) dt + sn,0(x)f (0), (1)

where Wn(x, t) = ∑∞
v=1 sn,v(x)bn,v(t) + sn,0(x)δ(t), δ(t) being Dirac delta-function and

sn,v(x) = e−nx (nx)v

v! , bn,v(t) = 1

B(n + 1, v)

tv−1

(1 + t)n+v+1
,

are respectively Szasz and Beta basis functions. It is easily verified that the operators (1)
are linear positive operators. The behaviour of these operators are very similar to the oper-
ators studied by Gupta and Gupta [3], but the approximation properties of the operators Sn

are different in comparison to the operators studied in [3]. The main difference is that the
operators Sn reproduce not only the constant ones but linear functions also. In the present
paper we study some direct results for the operators Sn, we obtain a point-wise rate of con-
vergence, asymptotic formula of Voronovskaja type and an error estimate in simultaneous
approximation.

2. Auxiliary results

We need the following lemmas in the sequel.

Lemma 1. For m ∈ N0 := (0,1,2,3, . . .), if the mth order moment be defined as

Un,m(x) =
∞∑

v=0

sn,v(x)
(
v.n−1 − x

)m
,

then Un,0(x) = 1,Un,1(x) = 0 and nUn,m+1(x) = x[U(1)
n,m(x) + mUn,m−1(x)]. Conse-

quently

Un,m(x) = O
(
n−[(m+1)/2]).

Lemma 2. Let the function μn,m(x),m ∈ N0, be defined as

μn,m(x) =
∞∑

v=1

sn,v(x)

∞∫
0

(t − x)mbn,v(t) dt + sn,0(x)(−x)m.

Then

μn,0(x) = 1, μn,1(x) = 0, μn,2(x) = x(2 + x)
,

n − 1



V. Gupta, M.A. Noor / J. Math. Anal. Appl. 321 (2006) 1–9 3
also we have the recurrence relation:

(n − m)μn,m+1(x) = x
[
μ(1)

n,m(x) + m(2 + x)μn,m−1(x)
] + m(1 + 2x)μn,m(x).

Consequently for each x ∈ [0,∞), we have from this recurrence relation that μn,m(x) =
O(n−[(m+1)/2]).

Remark 1. From Lemma 2, we can easily obtain the following identity:

Sn

(
t i , x

) = ni−1. (n − i)!
(n − 1)! xi + i(i − 1)

ni−2. (n − i)!
(n − 1)! xi−1 + O

(
n−2).

Lemma 3. There exist the polynomials Qi,j,r (x) independent of n and v such that

xrDr
[
sn,v(x)

] =
∑

2i+j�r
i,j�0

ni[v − nx]jQi,j,r (x)sn,v(x),

where D = d
dx

.

3. Simultaneous approximation

Theorem 1. Let f ∈ Cγ [0,∞), γ > 0 and f (r) exists at a point x ∈ (0,∞), then

lim
n→∞S(r)

n

(
f (t), x

) = f (r)(x). (2)

Proof. By Taylor’s expansion of f , we have

f (t) =
r∑

i=0

f (i)(x)

i! (t − x)i + ε(t, x)(t − x)r ,

where ε(t, x) → 0 as t → x. Hence

S(r)
n

(
f (t), x

) =
r∑

i=0

f (i)(x)

i!
∞∫

0

W(r)
n (t, x)(t − x)i dt

+
∞∫

0

W(r)
n (t, x)ε(t, x)(t − x)r dt

= E1 + E2, say.

First, to estimate E1, using binomial expansion of (t − x)r , and Lemma 2, we have

E1 =
r∑

i=0

f (i)(x)

i!
i∑

v=0

(
i

v

)
(−x)i−v

∞∫
0

W(r)
n (t, x)tv dt

= f (r)(x)

r!
∞∫

W(r)
n (t, x)tr dt = f (r)(x) + o(1), n → ∞.
0



4 V. Gupta, M.A. Noor / J. Math. Anal. Appl. 321 (2006) 1–9
Next, using Lemma 3, we obtain

|E2| �
∑

2i+j�r
i,j�0

ni |Qi,j,r (x)|
xr

∞∑
v=1

|v − nx|j sn,v(x)

×
∞∫

0

bn,v(t)
∣∣ε(t, x)

∣∣(t − x)r dt + (−n)re−nx
∣∣ε(0, x)

∣∣(−x)r

= E3 + E4.

Since ε(t, x) → 0 as t → x for a given ε > 0 there exists a δ > 0 such that |ε(t, x)| < ε

whenever 0 < |t − x| < δ. Further if s � max{γ, r}, where s is any integer, then we can
find a constant M1 such that |ε(t, x)(t − x)r | � M1|t − x|s , for |t − x| � δ. Thus with
M2 = sup2i+j�r x−r |Qi,j,r (x)|, we have

E3 � M2

∑
2i+j�r
i,j�0

ni

∞∑
v=1

sn,v(x)|v − nx|j

×
{
ε

∫
|t−x|<δ

bn,v(t)|t − x|r +
∫

|t−x|�δ

bn,v(t)M1|t − x|s dt

}

= E5 + E6.

Applying Schwarz inequality for integration and summation, respectively, and using Lem-
mas 1 and 2, we obtain

E5 � εM2

∑
2i+j�r
i,j�0

ni

∞∑
v=1

sn,v(x)|v − nx|j
{ ∞∫

0

bn,v(t) dt

}1/2

×
{ ∞∫

0

bn,v(t)(t − x)2r dt

}1/2

� ε · M2

∑
2i+j�r
i,j�0

niO
(
nj/2)O(

n−r/2) = ε · O(1).

Again using Schwarz inequality, Lemmas 1 and 2, we get

E6 � M3

∑
2i+j�r
i,j�0

ni
∞∑

v=1

sn,v(x)|v − nx|j
∫

|t−x|�δ

bn,v(t)|t − x|s dt

� M3

∑
2i+j�r

ni

( ∞∑
v=1

sn,v(x)(v − nx)2j

)1/2
i,j�0
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×
( ∞∑

v=1

sn,v(x)

∞∫
0

bn,v(t)(t − x)2s dt

)1/2

=
∑

2i+j�r
i,j�0

niO
(
nj/2)O(

n−s/2) = O
(
n(r−s)/2) = o(1).

Thus due to arbitrariness of ε > 0 it follows that E3 = o(1). Also E4 → 0 as n → ∞ and
hence E2 = o(1). Collecting the estimates of E1 and E2, we get the required result. �
Theorem 2. Let f ∈ Cγ [0,∞), γ > 0 and f (r+2) exists at a point x ∈ (0,∞), then

lim
n→∞n

[
S(r)

n (f, x) − f (r)(x)
]

= r(r − 1)

2
f (r)(x) + (x + 1)rf (r+1)(x) + (

x2 + x
)
f (r+2)(x).

Proof. Using Taylor’s expansion of f , we have

f (t) =
r+2∑
i=0

f (i)(x)

i! (t − x)i + ε(t, x)(t − x)r+2,

where ε(t, x) → 0 as t → x. Applying Lemma 2, we have

n
[
S(r)

n (f, x) − f (r)(x)
] = n

[
r+2∑
i=0

f (i)(x)

i!
∞∫

0

W(r)
n (t, x)(t − x)i dt − f (r)(x)

]

+ n

∞∫
0

W(r)
n (t, x)ε(t, x)(t − x)r+2 dt

= J1 + J2,

J1 = n

r+2∑
i=0

f (i)(x)

i!
i∑

j=0

(
i

j

)
(−x)i−j

∞∫
0

W(r)
n (t, x)tj dt − nf (r)(x)

= f (r)(x)

r! n
[
B(r)

n

(
t r , x

) − (r!)]
+ f (r+1)(x)

(r + 1)! n
[
(r + 1)(−x)B(r)

n

(
t r , x

) + B(r)
n

(
t r+1, x

)]

+ f (r+2)(x)

(r + 2)! n

[
(r + 1)(r + 2)

2
x2B(r)

n

(
t r , x

)
+ (r + 2)(−x)B(r)

n

(
t r+1, x

) + B(r+2)
n

(
t r+2, x

)]
.

Using Remark 1 for each x ∈ (0,∞), we have
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J1 = nf (r)(x)

[
nr−1(n − r)!

(n − 1)! − 1

]
+ n

f (r+1)(x)

(r + 1)!
[
(r + 1)(−x)(r!)

{
nr−1(n − r)!

(n − 1)!
}

+
{

nr(n − r − 1)!
(n − 1)! (r + 1)!x + r(r + 1)

nr−1(n − r − 1)!
(n − 1)! (r!)

}]

+ n
f (r+2)(x)

(r + 2)!
[
(r + 2)(r + 1)x2

2
(r!)n

r (n − r)!
(n − 1)!

+ (r + 2)(−x)

{
nr(n − r − 1)!

(n − 1)! (r + 1)!x + r(r + 1)
nr−1(n − r − 1)!

(n − 1)! (r!)
}

+
{

nr+1(n − r − 2)!
(n − 1)!

(r + 2)!
2

x2 + (r + 1)(r + 2)
nr(n − r − 2)!

(n − 1)! (r + 1)!x
}

+ O
(
n−2)].

In order to complete the proof of the theorem it is sufficient to show that J2 → 0 as n → ∞,
which can easily be proved along the lines of the proof of Theorem 1 and by using Lem-
mas 1–3. �
Remark 2. In particular if r = 0, we obtain the following conclusion of the above asymp-
totic formula in ordinary approximation:

lim
n→∞n

[
Sn(f, x) − f (x)

] = (
x2 + x

)
f (2)(x).

Theorem 3. Let f ∈ Cγ [0,∞) and r � m � (r + 2). If f (m) exists and is continuous on
(a − η,b + η), then for n sufficiently large

∥∥S(r)
n (f, x) − f (r)

∥∥ � M4n
−1

m∑
i=r

∥∥f (i)
∥∥ + M5n

−1/2ω
(
f (r+1), n−1/2) + O

(
n−2),

where the constants M4 and M5 are independent of f and n, ω(f, δ) is the modulus of
continuity of f on (a − η,b + η) and ‖ · ‖ denotes the sup-norm on the interval [a, b].

Proof. By Taylor’s expansion of f , we have

f (t) =
m∑

i=0

(t − x)i
f (i)(x)

i! + (t − x)mζ(t)
f (m)(ξ) − f (m)(x)

m! + h(t, x)
(
1 − ζ(t)

)
,

where ζ lies between t and x and ζ(t) is the characteristic function on the interval (a − η,

b + η). For t ∈ (a − η,b + η), x ∈ [a, b], we have

f (t) =
m∑

i=0

(t − x)i
f (i)(x)

i! + (t − x)i
f (m)(ξ) − f (m)(x)

m! .

For t ∈ [0,∞) \ (a − η,b + η), we define

h(t, x) = f (t) −
m∑

(t − x)i
f (i)(x)

i! .
i=0
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Thus

S(r)
n (f, x) − f (r)(x) =

{
m∑

i=0

f (i)(x)

i!
∞∫

0

W(r)
n (t, x)(t − x)i dt − f (r)(x)

}

+
{ ∞∫

0

W(r)
n (t, x)

f (m)(ξ) − f (m)(x)

m! (t − x)mζ(t) dt

}

+
{ ∞∫

0

W(r)
n (t, x)h(t, x)

(
1 − ζ(t)

)
dt

}

= K1 + K2 + K3.

Using Remark 1, we obtain

K1 =
m∑

i=0

f (i)(x)

i!
i∑

j=0

(
i

j

)
(−x)i−j

∞∫
0

W(r)
n (t, x)tj dt − f (r)(x)

=
m∑

i=0

f (i)(x)

i!
i∑

j=0

(
i

j

)
(−x)i−j ∂r

∂xr

×
[
nj−1(n − j)!

(n − 1)! xj + j (j − 1)
nj−2(n − j)!

(n − 1)! xj−1 + O
(
n−2)] − f (r)(x).

Hence

‖K1‖ � M4n
−1

m∑
i=r

∥∥f (i)
∥∥ + O

(
n−2),

uniformly in x ∈ [a, b]. Next

|K2| �
∞∫

0

W(r)
n (t, x)

|f (m)(ξ) − f (m)(x)|
m! |t − x|mζ(t) dt

� ω(f (m), δ)

m!
∞∫

0

∣∣W(r)
n (t, x)

∣∣(1 + |t − x|
δ

)
|t − x|m dt.

Next, we shall show that for q = 0,1,2, . . .

∞∑
v=1

sn,v(x)|v − nx|j
∞∫

0

bn,v(t)|t − x|q dt = O
(
n(j−q)/2).

Now by using Lemmas 1 and 2, we have
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∞∑
v=1

sn,v(x)|v − nx|j
∞∫

0

bn,v(t)|t − x|q dt

�
( ∞∑

v=1

sn,v(x)(v − nx)2j

)1/2( ∞∑
v=1

pn,v(x)

∞∫
0

bn,v(t)(t − x)2q dt

)1/2

= O
(
nj/2)O(

n−q/2) = O
(
n(j−q)/2),

uniformly in x. Thus by Lemma 3, we obtain

∞∑
v=1

∣∣s(r)
n,v(x)

∣∣ ∞∫
0

bn,v(t)|t − x|q dt

� M6

∑
2i+j�r
i,j�0

ni

[ ∞∑
v=1

sn,v(x)|v − nx|j
∞∫

0

bn,v(t)|t − x|q dt

]
= O

(
n(r−q)/2),

uniformly in x, where M6 = sup2i+j�r, i,j�0 supx∈[a,b] |Qi,j,r (x)|x−r . Choosing δ =
n−1/2, we get for any s > 0

‖K2‖ � ω(f (m), n−1/2)

m!
[
O

(
n(r−m)/2) + n1/2O

(
n(r−m−1)/2) + O

(
n−s

)]
� M5ω

(
f (m), n−1/2)n−(m−r)/2.

Since t ∈ [0,∞) \ (a − η,b + η), we can choose a δ > 0 in such a way that |t − x| � δ for
all x ∈ [a, b]. Applying Lemma 3, we obtain

‖K3‖ �
∞∑

v=1

∑
2i+j�r
i,j�0

ni |Qi,j,r (x)|
xr

|v − nx|j sn,v(x)

∫
|t−x|�δ

bn,v(t)
∣∣h(t, x)

∣∣dt

+ (−n)re−nx
∣∣h(0, x)

∣∣
= E3 + E4.

If β is any integer greater than equal to {γ,m}, then we can find a constant M7 such that
|h(t, x)| � M7|t − x|β for |t − x| � δ. Now applying Lemmas 1 and 2, it is easily verified
that K3 = O(n−q) for any q > 0 uniformly on [a, b]. Combining the estimates of K1,K2
and K3, we get the required result. �
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