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Abstract

The domain dependent versions of derivatives and Dirac’s delta are defined in distributional sense. These operations enable to
obtain domain dependent fundamental solutions and global boundary integral representation formulae. A global representation
formula is defined everywhere, also on the boundary, and includes the jump relations of the boundary. The use of the domain
dependent objects can be interpreted as taking the boundary limit in prior to integrating by parts when deriving the familiar
boundary integral equations. As an application, the representation formulae are obtained for the solutions of the Helmholtz equation
and the Maxwell equations.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Dirac’s delta § and the integration by parts form the basis in obtaining the boundary integral equations for the
solutions of boundary value problems of partial differential equations. Traditionally, the boundary integral equations
are obtained so that, first, one derives the representation formula at an observation point x that is strictly in or out of
the domain, and then lets the point x tend to the boundary [1,2]. The boundary condition then implies the boundary
integral equation. One can also use other boundary integral representations, or ansatz [2], for the solutions. In all
cases, the behaviors of the corresponding boundary integral operators have to be studied carefully on the boundary.
The operators can be continuous or have jump terms. In this article, we show that the boundary behavior analysis can
be done before having any boundary integral operators by defining distributional derivatives and Dirac’s delta in a
domain dependent way. Then the jump terms follow by integrating by parts the domain dependent derivatives. In this
way, one can obtain a global representation formula that is valid also on the boundary.
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What is the fundamental reason for not taking the observation point directly onto the boundary? To understand this,
we recall how the representation formula is obtained in the Helmholtz operator case in 3D. Let k be the wave number,
k > 0. Consider the Helmholtz operator —(A + k%) that has a fundamental solution

1 ikl
Px(y)=—— . (D
4 |x —y
for which [3]
—(A+ k%) Dy =6y )

Here 8, is Dirac’s delta at point x. Let D C R3 be an open bounded set with a smooth boundary 3D and let x €
R3\ 8D. The representation formula is obtained by testing (2) with u xp, where u is a solution of the homogeneous
Helmholtz equation in the domain D and

) {1, x€D,
X) =
xb 0, x¢D,

is the characteristic function of D. By integrating by parts,

xeD, u(x) 5 ou 0D,

— = Syudy’=“— | (A+k%)Dudy’ = | &y, —dS— ds. 3

XGRS\D, 0} /xuy /( + ) xudy / X o /anu 3
D D aD aD

1732

The integrals marked with the quote (“ ) symbols are formal, because the integrands are not functions. However, for
x ¢ 0D, the integral against §, can be defined rigorously as a distributional testing

(8, xpu) = (8x, ¥ xpu) + (xpu, (1 — Y8y, “)

where ¥ is a smooth cut off function for which ¥ = 1 in a neighborhood of x and ¥ =0 in a neighborhood of 9 D.
Now ¢ xpu and (1 — )4, are smooth functions so they can be used as test functions. The definition (4) is not possible
when x € dD in which case the singular supports of §, and xp get together.

To be able to do the calculation similar to (3) for x € 9 D also, we define the domain dependent Dirac’s delta 8P and
the domain dependent derivatives 2. These can be applied to deduce a global representation formula for which the
observation point is allowed to be also on the boundary. We derive the global representation formulae for the solutions
of the Helmholtz equation and for the solutions of the extended Maxwell system.

In Section 2 we introduce the domain dependent operators. In Section 3, we apply these to the Helmholtz equation
and show that the usual fundamental solution is also the domain dependent fundamental solution. Then the global
representation formulae follow immediately. In Section 4, the same is done for the Maxwell equations. The extended
Maxwell system [4-6] serves us as the bridge between the Helmholtz side and the Maxwell side. We apply the
Helmholtz case results to the extended Maxwell system and then restrict to the Maxwell case. Note that working with
the extended Maxwell system allows us to consider also the zero frequency, not only the wave numbers k > 0.

2. Domain-dependent §” and BJI.)

Let D C R3 be an open, not necessary bounded, set with a C?-boundary. Let n = n(x) be the unit outer normal of
the boundary at point x € 9D.
The relative solid angle of domain D at point x is

1 Sy —
2= [ %dm), 5)
9Dy (x)

where

D,(x)=DN B(x,r) (6)
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and B(x,r) is the x centered ball with an arbitrary radius » > 0. It is easy to see that the definition does not depend
on r. Because 9D is C2, it holds 2]

1, xeD,
Qpx)=141/2, xedD, @)
0, xeR3\D.

Similar to the usual Dirac’s 8, the domain dependent 8 picks the value of the test function at x, but weights the
value with the relative solid angle.

Definition 2.1. The domain dependent delta §? at point x € R3 is
(87.9):=2p(0)p(), ¢ CF(R). ®)

We denote by L },(D) the space of functions u € LIIOC(D) for which the boundary value u|§’D € L}oc(a D) exists (for
some L' representative) in the sense

. D
,}E}%””bu —u(-—hn) HLlloc(aD) =0. ©

Definition 2.2. Suppose that u € Lé (D) with f = ”|3DD- The domain dependent derivative of function u is

<8j~)u,¢):=/nijde—/uajd)dx, ¢ € CF(RY). (10)

aD D
The space L}i (D) was chosen so that terms on the right-hand side of (10) are integrals. Note that if #; — u in norm

D
”u”L]lDC(D) + [ulyp ||L1]0C(8D)’
then
(9P 6]~ (8P1.9)

for every ¢.
Both definitions (8) and (10) are valid with less smooth test functions, too. For 8XD , it is sufficient that ¢ is contin-
uous at x, and for the domain dependent derivative 3” it is enough that

¢ € Co(D)NCY(D). (11)
For smooth functions, the domain dependent derivative is the restriction of the ordinary derivative to the domain.

Namely, if u € C 1 (R3 ), then

<8;)u,¢))=/nju¢dS—/u8j¢dx :/Bjmbdx = (xpd;u, d)
aD D D
and so
d jD u=xpoju.
If supp(u) C D, then 9 ]D u is the distribution derivative.
Consider the characteristic function xp of D to see how the distribution derivative and the domain dependent

derivative differ from each other if the function has discontinuity on the boundary. The distribution derivative for xp
is [3]

anD =-—n; dSaD.
However,

<8/DXD’¢)=/”j¢dS—/3j¢dx=O

oD D
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and so
3P xp =0.

Next, we show that the usual double derivative rules hold when the domain dependent derivative is acting as the
second derivative. Let

(f8)= ([ g (12)
J
for vectors f = (f;) and g = (g;). Define
oy
vP=1 9P
89
and
AP =vVP.v. (13)

Note that for the vector valued first order linear constant coefficient differential operator

3
P(V)=) Py,

j=1
the formula (10) takes form
(P(VP)U, ¢) = /(P(n)U)Tqde - / uTP(V)T ¢dy, (14)
aD D

where ¢ is a test vector field. In (14), it is sufficient that the components of P (n)U |8DD are in LIIOC(E)D).

Lemma 2.3.
VP x (Vx)=VP.v - AP, (15)
vP.vx =0, (16)
VP xv=0. (17)

Proof. Let u be a vector field with 0;ju; € Lé(D), i,j=1,2,3. Let ¢ be a test field, ¢ € C8°(R3)3. The idea is to
move the domain dependent derivatives to the test function and use the corresponding properties of usual derivatives.
For (15), compute

<VD><(qu)—VDV-u+ADu,¢)

=/[n><(V><u)~¢—(V~u)(n-¢)—|—(n~V)u~¢]dS

oD
+/[(nxu).(vx¢)+(n-u)v-¢—u-(n.V)¢]dS+/u-[(Vx)2¢—vv-¢+A¢]dx
oD D

=fDiv(nx(qsxu))ds+/[u-(¢-V)n—¢-(u-V)n]dS.

aD aD

The first term is

/Div(nx(d)xu))dS:—/(nx(d)xu))-VldS:O.

aD aD
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The second term vanishes because n = Vi for some function ¥ and so
¢-w-Vin=> ¢juidjdiy =u-(¢-Vn.
i,J
This proves (15).
Eq. (16) follows from

<VD~VXM,¢)=fn~(Vxu)¢dS—/(qu)~V¢dS
D

oD

=—/Div(nxu)d)dS—/(nxu)-Vd)dS—/u-VxV¢dx

oD aD D
:O’
because
/Div(n Xu)pdS = —/(n xu)-VodsS,
8D aD
and V x V¢ =0.

Similarly, for (17),

(VDxvxp,q)):[(nxpr)~¢dS+/V1//-(Vx¢)dx

oD D

:—/Vl/ﬁ(nxd))dS—i—/wn-(Vx¢>)dS—/1//V~(Vx¢)dx

aD aD D
= / ¥ Div(n x c/))dS—/lpDiv(n X ¢)dS
aD D
=0. O
3. Helmholtz equation

In this section, we apply the domain dependent objects to derive the representation formulae for the solutions of
the Helmholtz equation
Au+ku=0. (18)

We show that function @, (1) is the domain dependent fundamental solution for the domain dependent Helmholtz
operator, by which we mean that

—(AP +k%xp) Py =8P, xR’ (19)

After we have (19), the global representation formula follows from the definitions of AP and § f .

Theorem 3.1. Function @, (1) is the domain dependent fundamental solution of the domain dependent Helmholtz
operator

—(AP +k*xp), k=0.
Proof. Let x € R3. Now each component of V@ is in Lé (D). Denote

Dy = D, (x),

see (6). For a test function ¢,
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(8 + )0 g) = [n-Vopas+ [V, Vody - [ egdy 0)
aD D D
= Ip\p, + Ip, + Jp,, 21
where
Ip\p, = — / n-Vo,pdS+ / (VO - Vo — K> 0.0) dy,
d(D\Dy) D\D,
Ip, = — / n-Vo,pds, Jp, = /(V@x Vo — k2 ®¢)dy.
dD, D,

We take the limit » — 0. In D \ D,, @, is a smooth function with

(A+k2)®, =0
and so
Ip\p, = — / (A+ k)P pdy =0.
D\D,

Also,
Jp, >0 asr—0,

because the integrand is an integrable function in D. The integral kernel of Ip, is

V. = A G —X) !
Ve, = T +O(lx —yI™")
and so
Ip, = 2O [ 2OV O =) oy L 0G) > 2pm() asr— 0.
4w ly —x|3
D,
Hence,

(—(AP +Kxp)®x, )= 2p()p(x) =[50, 4). D

Corollary 3.2. Suppose D is bounded. If u € C2(D) N CY(D) solves the Helmholtz equation (18) in D, then

9 3D
QD(x)u(x)zfcbx%dS—/ anxudS, x eR3. 22)
oD oD

Proof. Because D is bounded, the solution # can be used as a test function. Now, by (8) and (19),

2pux) =—(VP Vo, + kb, xp, u)

0P, )
=— 3 udS+ [ Vo, -Vudy —k D udy

n
aD D D
L o
=_/ xudS—i—/@x—udS—/¢x(Au+k2u)dy,
on on
aD oD D

which proves the claim. O

Corollary 3.3. Suppose D is bounded and let D¢ = R3 \ D be the unbounded exterior domain. If u € C*(D€) N
CY(D¢) solves the Helmholtz equation (18) in D¢, and u satisfies the Sommerfeld radiation condition [2]

N . 1 . X
x-Vu(x)—zku(x):o(—), X= (23)

|x| x|’
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as |x| — oo, then

B AP
.QDe(x)u(x)z—/dﬁxa—ZdS—}—/ anxudS, x eR3.
aD aD

Proof. Fix x € R?. Let R > |x| be large. We apply (22) in domain
D% =D°NB(0,R)
to get

u 0P, u 0P,
.QDE(x)u(x)z— @x%— o uldS+ @xﬁ— o uldsS.
oD

3B(O,R)

The integral on d B(0, R) vanishes by the Sommerfeld radiation condition (23), see [2]. By definition,
£2pe, (x) = 2pe (x)

for a fixed x. This proves the claim. O
4. The time-harmonic Maxwell system
The normalized homogeneous time-harmonic Maxwell system with the wave number k > 0 is
0 V% E [ E
(o ) () ()=
From (25), it follows
V.-E=0=V-H.

(24)

(25)

(26)

The divergence equations (26) are, however, lost when k = 0, and this causes the low frequency problems to the

boundary integral equations derived from (25), see [7].

Let
0 V. 0 0
\Y% 0 Vx 0
AV) = 0 —Vx 0 V
0 0 v- 0

Note that A is symmetric as a matrix, because

0 -& &

§X=< 5 0 —sl>=—<sx>T, £=¢".
& & 0

The extended Maxwell system is [4,5]

(A(V) +ikI)U =0, U=(¢,E,H )", k>0,

27)

where [ is an identity matrix, E, H are vector fields and ¢, ¥ are scalar fields. The Maxwell system (25) and the

extended Maxwell system (27) have the following connection.

Lemma 4.1. Suppose U = (¢, E, H, V)T solves the extended Maxwell system (27). Then (E, H) solves the Maxwell

system (25) if and only if
p=0=1.

Note that the electromagnetic fields E and H solving the extended Maxwell system with ¢ = 0 =  still have the
divergence condition (26) valid also at kK = 0. As a consequence, the boundary integral equations that arise from the

extended Maxwell system survive well with the low frequencies [7].
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The equality
(A(V) —ikI)(A(V) +ikl) = (A +K)I
is the basis in obtaining the fundamental solution for the extended Maxwell system. Define
Gy =—(AV) —ikl)(P:]). (28)
Because A is symmetric as a matrix,
Gl =¢G,.

Interchanging x and y leads to the reciprocity relation

Gy(x) = —(A(Va®y(x)) — ikDy(x)]) = (A(Vy) +ikI)(Px()]). (29)

Theorem 4.2. Matrix G is the domain dependent fundamental solution of the domain dependent extended Maxwell
system

(A(VP) +ikxpl)Gy =82, xeR’, (30)
with the reciprocity relation

—(A(VD) = ikxpI)Gy(x) =8P (). (31)
Proof. Now,

(A(VP) +ikxpl)Gy = —(A(VP) +ikxpI)(A(V) — ikI)(®y1)

=—(A(VP)A(V) —ikxpA(V) +ikA(VP) + K> xpI)(®s D).

Because V@, is a function

A(VP)(@xD) = xp AV) (@ ).
By Lemma 2.3,

A(VPYA(V) = AP, (32)
and hence,

(A(VP) +ikypl)Gy = —(AP +k*xpI) @y

This proves (30) by (19). The proof for Eq. (31) is similar. O

Similarly to the Helmholtz equation, the global representation formulae for the extended Maxwell system follow
by applying the domain dependent fundamental solution G .
Let

S¢(X)=/‘P>~(X)¢(y)d5(y), xeR’, (33)

aD

be the single layer operator of 9 D.

Corollary 4.3. Suppose D is bounded. If U € [C(D) N C'(D)]® solves the extended Maxwell system (27) in D, then

2p@Ux) = (AV) —ikD)S[AmU]x), xeR>. (34)
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Proof. By (8), (14), and (31),
2p@)U(x) = (—(A(VY) —ikxpI)Gy(x),U)

:—/[A(n)Gy(x)]TUdS(y)+/Gy(x)TA(V)TUdy—i—ik/Gy(x)TUdy

aD D D
:—/Gy(x)A(n)UdS(y)+/Gy(x)[A(V)U+ikU]dy,
aD D

which proves the claim by (28) since G, and A(V) are symmetric matrices. [

Corollary 4.4. Suppose D is bounded and let D* =R> \ D be the unbounded exterior domain. If U € [C(D¢) N
C! (D‘f)]8 solves the extended Maxwell system (27) in D¢ with the radiation condition

o 1 . X
(A(x)+I)U(x)=o(—), xX=—, 35)
x| x|
as |x| — oo, then
2pe(V)U (x) = —(A(V) — ikI)S[AMU](x), xeR’. (36)

Proof. As in the proof of Corollary 3.3, we need to show that the integral arising from the representation formula on
the boundary 9 B(0, R) vanishes as R — oo.
For simplicity, suppose x = 0. From the definition (28) and the triangle inequality, we get an estimate

/ Gy(x)A(n)U(y)dS(y)‘ <k / %|(1 +AM)U|dS + / %|U|dS. (37)
dBR dBRr dBgr

The first term on the right-hand side vanishes by the radiation condition (35) as R grows. For the second term, we
apply the Holder inequality to get

1 1 1/2 ) 1/2
/F|U|d5< /FdS /|U| s)
9Bg

3Bg 3Bg
which proves the claim because

1 _ _
lim | |UPdS= lim - / |(A(9)+1)U|2dS—/A(n)U-UdS:—/A(n)U-Uds
R—o0 R—00 2
9BR 9BR EY?; R
is bounded. O

Corollary 4.5. Suppose D is bounded. If (E, H) € [C(D)NC'(D)]° solves the Maxwell system (25) in D with k > 0,
then

Qp()E(x) = <%vv : —ikI)S(n x H)(x) — V x S(n x E)(x).
! | x e R3, (38)
Qp)HX) = -V x St x H)(x) — (gvv : —ikI) S(n x E)(x).

Proof. Now,
U=(0,E,H, 07
solves the extended Maxwell system in D. By substituting
n-E
nxH

—nxE
n-H

An)U =
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in (34), the first and the last rows imply
_{V-S(an)—ikS(n-E),
| =V-S( x E)—ikS(n - H).

Hence,
n-E
E \% 0 Vx 0 nxH . nxH
'QD(X)(H>_(O —Vx 0 V)S —nxE _’kS<—an>
n-H

O

_(®YV Vx o "¥H \ _is( "*H
—Vx ++VV. —nxE —nxE)"

Corollary 4.6. Suppose D is bounded and let D¢ =R3\ D be the unbounded exterior domain. If (E, H) € [C(D¢) N
CY(D9)1° solves the Maxwell system (25) in D¢ with k > 0 and with the radiation condition

0 xx Ex)\_ (1 e
|:<—)?x 0>+I:|(H(x)>_0<|x|)’ ST o

as |x| — oo, then

Qpe(X)E(x) = —<%vv : —ik]>S(n x HY(x) + V x S(n x E)(x),
! 1 x € R3, (40)
Qpe()HX) =V x S(n x H)(x) + (?W : —ikI)S(n x E)(x),
l

Proof. Now,
U=(0,E, H 07

is the solution for the extended Maxwell system (27) and U satisfies the radiation condition (35). Hence, the claim
follows from (36) in the same way as in the interior case. O

5. Conclusions

We defined the domain dependent Dirac’s delta §” and derivatives 9 jD . For convenience, the definitions were given

in R3. The space L ;)(D) in which the derivatives operate was chosen so that the definitions can be applied to the
fundamental solution @,,.

We applied the domain dependent operators to get global representation formulae for the Helmholtz equation
and for the Maxwell equations. The globality occurs so that the observation point x can be in whole R? and not
restricted away from the boundary. The key point was to show that the usual fundamental solution of the Helmholtz
equation is also the domain dependent fundamental solution. From this the global representation formulae followed.
The results of the Helmholtz equation case were applied to the extended Maxwell system to obtain their global
representation formulas. The corresponding formulae for the Maxwell equations were then an immediate consequence.
The representations for the extended Maxwell system were valid also for the zero frequency.

When obtaining the boundary integral equations by using the global representation formulae, one can think that
the use of the domain dependent objects interchanges the order of the boundary limiting process and the integration
by parts. Traditionally, one integrates by parts to obtain the representation formulae, and then takes the limits onto
the boundary. When the domain dependent objects are used, the limiting process is already taken into count when
defining these objects, and only the integration by parts is needed.

There are some directions to develop the theory of domain dependent objects. One is to weaken the assumptions
for the domain and to define the domain dependent objects when the boundary is not smooth and the relative solid
angle on the boundary is not necessarily 1/2, see [8] for the definition of traces on such boundaries. Another direction
is to define the domain dependent objects in more general spaces than L 5. An obvious task is to define new domain
dependent objects.
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