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We obtain Wong-type comparison theorems for second order linear dynamic equations
on a time scale. The results obtained extend and are motivated by Wong’s comparison
theorems. As a particular application of our results, we show that the difference equation

�2x(n) + b
(−1)n

nc
x(n + 1) = 0

where c < 1, b �= 0, is oscillatory.
© 2008 Elsevier Inc. All rights reserved.

1. Introduction

In a fundamental paper [15], Wong extended and improved oscillation criteria and comparison theorem due to many
earlier authors for the differential equation

x′′ + p(t)x = 0

in the cases when p(t) is not eventually of one sign. His work also surveyed earlier results of Wintner [16], Fite [11],
Hille [13], and Hartman [12] for the cases when

∫ ∞ p(s)ds exists. In this paper we obtain a ‘Wong-type’ comparison
theorem for dynamic equations on time scales by means of a second-level Riccati integral equation on time scales (see
[1,2]) which Wong [15] refers to as a new Riccati integral equation in the continuous case (see [3] for the discrete case).
Using this approach, one is able to handle various critical cases. These ideas are of particular importance in treating the
case when P (t) := ∫ ∞

t p(s)ds is not of one sign for large t .
Let T be a time scale (i.e., a closed nonempty subset of R) with sup T = ∞. Consider the second order dynamic equation

on time scale[
x�(t)

]� + p(t)xσ (t) = 0, (1.1)[
x�(t)

]� + q(t)xσ (t) = 0, (1.2)

where p, q are right-dense continuous functions on T and
∫ ∞

t0
p(s)�s and

∫ ∞
t0

q(s)�s are convergent.
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For T = R, suppose that limt→∞
∫ t

t0
p(s)ds and limt→∞

∫ t
t0

q(s)ds exist. Define P (t) = ∫ ∞
t p(s)ds, Q (t) = ∫ ∞

t q(s)ds.
Wong [15] proved the following

Wong’s Comparison Theorem. Suppose that the improper integral
∫ ∞

t0
P (t)dt converges, and in addition we have

P̄ (t) � Q̄ (t) and P (t) + P̄ (t) � Q (t) + Q̄ (t),

for large t, where

P̄ (t) =
∞∫

t

P 2(s)E P (s, t)ds, E P (s, t) = exp

(
2

s∫
t

P (τ )dτ

)
.

Q̄ (t) =
∞∫

t

Q 2(s)F Q (s, t)ds, F Q (s, t) = exp

(
2

s∫
t

Q (τ )dτ

)
.

Then if x′′ + p(t)x = 0 is nonoscillatory, x′′ + q(t)x = 0 is also nonoscillatory.

In [14], Willett considered the equation

x′′ + b sin λt

tc
x = 0 (1.3)

and proved that (1.3) is oscillatory when c < 1, λb �= 0 and showed that 1 is a critical value, i.e., (1.3) is nonoscillatory when
c > 1.

One can show that (1.3) is oscillatory when c < 1, λb �= 0, by using Wong’s comparison theorem and the following Erbe’s
comparison theorem [6]. Willett [14] used the Riccati integral equation and weighted averaging technique to establish
oscillation in this case.

Erbe’s Comparison Theorem. Assume that a(t) ∈ C1[t0,∞) satisfies

a(t) � 1 and a′′(t) � 0.

Then x′′ + p(t)x = 0 is oscillatory implies x′′ + a(t)p(t)x = 0 is oscillatory.

To see how Wong’s comparison theorem and Erbe’s comparison theorem can be used directly to obtain the oscillation
result in the case when c < 1, λb �= 0, let

x′′ + p(t)x = 0 (1.4)

where p(t) = b sinλt
tc , c < 1, λb �= 0,

x′′ + q(t)x = 0 (1.5)

where q(t) = a
t2 , 1

4 < a < 1
2 .

Assume first that 1
2 < c < 1. It is easy to see that

P (t) =
∞∫

t

p(s)ds = b cos λt

λtc
+ O

(
1

tc+1

)
, Q (t) = a

t
. (1.6)

So
∫ ∞

t P (t)dt converges. Therefore, given 0 < ε < 1, there exists T > 0 such that exp(2
∫ s

t P (τ )dτ ) � 1 − ε if T � t < s.
Hence,

P̄ (t) =
∞∫

t

P 2(s)exp

(
2

s∫
t

P (τ )dτ

)
ds � (1 − ε)

∞∫
t

[
b cosλs

λsc
+ O

(
1

sc+1

)]2

ds.

Since

∞∫
t

cos 2λs

s2c
ds = − sin 2λt

2λt2c
+ O

(
1

t2c+1

)
,

we have
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P̄ (t) � (1 − ε)

[
b2

2λ2(2c − 1)t2c−1
+ O

(
1

t2c

)]
, for large t � T > 0, (1.7)

and

Q̄ (t) =
∞∫

t

Q 2(s)exp

(
2

s∫
t

Q (τ )dτ

)
ds = a2

(1 − 2a)t
. (1.8)

Note that 0 < 2c − 1 < c < 1, so we have, for large t

1

t2c−1
>

1

tc
>

1

t
.

Therefore from (1.6)–(1.8), we get, for large t

P̄ (t) � Q̄ (t) and P (t) + P̄ (t) � Q (t) + Q̄ (t).

By Hille’s theorem [13], the Euler equation (1.5) is oscillatory, for 1
4 < a < 1

2 . So by Wong’s comparison theorem, (1.4) is
oscillatory, for 1

2 < c < 1, λb �= 0.
To show further that (1.4) is oscillatory for c < 1, we take a(t) = tα , 0 < α < 1, then we have a(t) � 1, a′′(t) � 0, for

large t . Using Erbe’s comparison theorem repeatedly and the fact that x′′ + b sin λt

t
3
4

x = 0 is oscillatory, we get that

x′′ + tβb
sin λt

t
3
4

x = 0

is oscillatory, for large t and all β > 0, λb �= 0. So the equation

x′′ + b
sin λt

t
3
4 −β

x = 0

is oscillatory, for large t and all β > 0, λb �= 0. This means that the equation

x′′ + b
sin λt

tc
x = 0

is oscillatory, for large t and all c < 3
4 , λb �= 0.

In addition to the above proof that (1.4) is oscillatory for 1
2 < c < 1, λb �= 0, we get that (1.4) is oscillatory for c < 1,

λb �= 0.
From the above example, we have the following

Remark 1. The importance of Wong’s comparison theorem is that by comparing Eq. (1.4) where p(t) is not nonnegative to
the oscillatory Euler equation (1.5) where q(t) is positive, we get that (1.4) is oscillatory, for 1

2 < c < 1, λb �= 0.

Remark 2. When we use Erbe’s comparison theorem, we need to look for an appropriate oscillatory equation as a good
criterion. Here Wong’s comparison theorem supplies such a criterion. In place of Willett’s weighted averaging technique,
here we use Erbe’s comparison theorem. In [1], we give some interesting applications of the time scale version [9] of Erbe’s
comparison theorem.

Willett [14] proved that x′′ + b sin λt
t x = 0, | b

λ
| > 1√

2
, is oscillatory. In [2], by using Wong’s oscillation theorem [15, The-

orem 2], we can also get Willett’s result. Here if we choose the oscillatory equation x′′ ± λ sinλt
t x = 0, as a criterion of

Erbe’s theorem and take a(t) = Atα , A > 0, 0 < α < 1, by repeatedly using Erbe’s theorem, it is easy to obtain that (1.4) is
oscillatory, for c < 1, λb �= 0.

Remark 3. Kwong [8] showed that Erbe’s comparison theorem is still true for a wider class of function a(t). See also [9] for
the time scales extension of these results.

In this paper, we obtain a ‘Wong-type’ comparison theorem for dynamic equations on time scales by means of a second-
level Riccati integral equation on time scales (see [1,2]). As a special application, we get that the difference equation

�2x(n) + b
(−1)n

nc
x(n + 1) = 0 (1.9)

where c < 1, b �= 0, is oscillatory. From [1], it follows that 1 is the critical value, i.e. (1.9) is nonoscillatory when c > 1.
For completeness (see [4] and [5] for elementary results for the time scale calculus), we recall some basic results for

dynamic equations and the calculus on time scales. The forward jump operator is defined by
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σ(t) = inf{s ∈ T: s > t},
and the backward jump operator is defined by

ρ(t) = sup{s ∈ T: s < t},
where inf ∅ = sup T, where ∅ denotes the empty set. If σ(t) > t , we say t is right-scattered, while if ρ(t) < t we say t is
left-scattered. If σ(t) = t we say t is right-dense, while if ρ(t) = t and t �= inf T we say t is left-dense. Given an interval
[c,d] := {t ∈ T: c � t � d} in T the notation [c,d]κ denotes the interval [c,d] in case ρ(d) = d and denotes the interval [c,d)

in case ρ(d) < d. The graininess function μ for a time scale T is defined by μ(t) = σ(t) − t , and for any function f : T → R

the notation f σ (t) denotes f (σ (t)).
A function f : T → R is said to be rd-continuous provided it is continuous at right-dense points in T and its left-sided

limits exist (finite) at left-dense points in T. The set of rd-continuous functions f : T → R will be denoted by Crd. The set of
functions f : T → R that are delta differentiable on [c,d]κ and whose delta derivative is rd-continuous on [c,d]κ is denoted
by C1

rd.
We recall that a solution of Eq. (1.1) is said to be oscillatory on [a,∞) in case it is neither eventually positive nor

eventually negative. Otherwise, the solution is said to be nonoscillatory. Eq. (1.1) is said to be oscillatory in case all of its
solutions are oscillatory.

We say that a function p : T → R is regressive provided that

1 + μ(t)p(t) �= 0, t ∈ T.

We denote the set of all f : T → R which are right-dense continuous and regressive by 
. If p ∈ 
, then we can define the
exponential function by

ep(ts) = exp

( t∫
s

ξμ(τ )

(
p(τ )

)
�τ

)

for t ∈ T, s ∈ T
k , where ξh(z) is the cylinder transformation, which is given by

ξh(z) =
{

log(1+hz)
h if h �= 0,

z if h = 0.

2. Notations and lemmas

Lemmas 2.1–2.4 and the definitions of Condition C and Condition D were introduced in [1] and [2].
Let T̂ := {t ∈ T: μ(t) > 0} and let χ denote the characteristic function of T̂. The following condition, which will be

needed later in Section 3, imposes a lower bound on the graininess function μ(t), for t ∈ T̂. More precisely, we introduce
the following (see [7]):

Condition C. We say that T satisfies Condition C if there exists an M > 0 such that

χ(t) � Mμ(t), t ∈ T.

Lemma 2.1. Assume that T satisfies Condition C and suppose that Eq. (1.1) is nonoscillatory. Let x(t) is a solution of (1.1) with x(t) > 0

on [t0,∞). Then z(t) = x�(t)
x(t) is a solution of the Riccati equation

z� + p(t) + z2

1 + μ(t)z
= 0

on [t0,∞). Moreover, if
∫ ∞

t0
p(t)�t is convergent, then

∫ ∞
t0

z2(s)
1+μ(s)z(s) �s is also convergent and limt→∞ z(t) = 0.

We will also need below conditions which guarantee that
∫ t

1
1
s �s does not grow faster than M ln t , for some M > 0.

For a time scale T, the following example shows that the inequality
∫ t

1
1
s �s � M ln t , for M > 1, does not hold in general

without some additional restrictions.

Example. Consider the time scale

T = {
22k

: k ∈ N0
}
.

It is easy to see from the definition of the integral that for tk = 22k
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lim
k→∞

∫ tk
t0

1
s �s

ln tk
= 1

ln 2
lim

k→∞
1

2k

k−1∑
j=0

(
22 j − 1

) = ∞.

So we shall impose an additional assumption on the time scale T to obtain Lemma 2.2. We note first that if T satisfies
Condition C, then the set

Ť = {t ∈ T: t > 0 is isolated or right scattered or left scattered}
is necessarily countable since a bounded real interval can contain only finitely many elements of Ť.

We introduce the following

Condition D. Suppose that T satisfies Condition C and let

Ť = {t0, t1, t2, . . . , tk, . . .},
where

0 < t0 < t1 < t2 < · · · < tk < · · · .
Then we say T satisfies Condition D. If there is a constant K > 1 such that

max
k∈N

{
tk+1 − tk

tk − tk−1

}
� K , for all k � 1. (2.1)

Lemma 2.2. Assume that (1.1) is nonoscillatory, x(t) > 0 is a solution of (1.1). T satisfies Condition D. Then we have, for t ∈ T, t > t1 ,

ln
x(t)

x(t1)
�

t∫
t1

x�(t)

x(t)
�t and

t∫
t1

1

s
�s � K ln

t

t0
.

Lemma 2.3. Assume that
∫ ∞

t0
p(t)�t is convergent, P (t) = ∫ ∞

t p(s)�s, μ(t) is bounded and satisfies Condition D. If (1.1) is nonoscil-
latory, then there is a T ∈ [t0,∞) such that

∞∫
T

P 2(t) × eP (t, T )

e−P (t, T )
�t < ∞.

Also, if x(t) > 0 is a positive solution of (1.1) on [T ,∞) and z(t) := x�(t)
x(t) , then z(t) is a solution of the Riccati equation

z� + p(t) + z2

1 + μ(t)z
= 0

on [T ,∞), with 1 + μ(t)z(t) > 0, on [T ,∞). Furthermore,

v(t) =
∞∫

t

z2(s)

1 + μ(t)z(s)
�s > 0

satisfies the integral equation

v(t) = e−P (t, T )

eP (t, T )

∞∫
t

eP (s, T )

e−P (σ (s), T )

[
P 2(s) + v(s)v

(
σ(s)

)]
�s (2.2)

for large t ∈ [T ,∞), where eP (t, T ) and e−P (t, T ) are the exponential functions.

Lemma 2.4. Assume that
∫ ∞

t0
p(t)�t is convergent, P (t) = ∫ ∞

t p(s)�s, 1 ± μ(t)P (t) > 0, for large t. If
∫ ∞

T P 2(t) × eP (t,T )
e−P (t,T )

�t

converges and there exists a function v(t) > 0, for large t, satisfying

v(t) � e−P (t, T )

eP (t, T )

∞∫
t

eP (s, T )

e−P (σ (s), T )

[
P 2(s) + v(s)v

(
σ(s)

)]
�s (2.3)

for large t, then (1.1) is nonoscillatory.
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The following lemma appears in [9].

Lemma 2.5 (Riccati technique). Eq. (1) is nonoscillatory if and only if there exist T ∈ [τ ,∞) and a function u satisfying the Riccati
dynamic inequality

u�(t) + p(t) + u2(t)

1 + μ(t)u(t)
� 0

with 1 + μ(t)u(t) > 0 for t ∈ [T ,∞).

3. Main theorem

Theorem 3.1. Assume that
∫ ∞ p(t)�t and

∫ ∞ q(t)�t are convergent. Let

P (t) =
∞∫

t

p(s)�s, Q (t) =
∞∫

t

q(s)�s.

Assume that
∞∫

P (t)�t and

∞∫
P 2(t)�t (3.1)

are convergent, μ(t) is bounded and satisfies Condition D. Let

P̄ (t) := e−P (t, T )

eP (t, T )

∞∫
t

eP (s, T )

e−P (σ (s), T )
P 2(s)�s, (3.2)

Q̄ (t) := e−Q (t, T )

eQ (t, T )

∞∫
t

eQ (s, T )

e−Q (σ (s), T )
Q 2(s)�s. (3.3)

If

2P (t) + P̄ (t) + P̄ (σ (t))

1 − μ(t)P (t) − μ(t) P̄ (σ (t))
� 2Q (t) + Q̄ (t) + Q̄ (σ (t))

1 − μ(t)Q (t) − μ(t)Q̄ (σ (t))
, (3.4)

P̄ (t) P̄ (σ (t))

1 − μ(t)P (t) − μ(t) P̄ (σ (t))
� Q̄ (t)Q̄ (σ (t))

1 − μ(t)Q (t) − μ(t)Q̄ (σ (t))
, (3.5)

P (t) + P̄
(
σ(t)

)
� Q (t) + Q̄

(
σ(t)

)
, (3.6)

then if (1.1) is nonoscillatory, (1.2) is also nonoscillatory.

Remark. For T = R, the assumptions of Wong’s comparison theorem stated earlier in Section 1 imply that
∫ ∞ P 2(t)dt is

convergent. Therefore, Theorem 3.1 may be considered as an extension of Wong’s comparison theorem.

Proof. In the first place, we will prove that

lim
t→∞ P̄ (t) = 0 and lim

t→∞ Q̄
(
σ(t)

) = 0.

By the definition of eP (t, T ) [5, p. 57], we have

eP (t, T ) = exp

( t∫
T

ξμ(τ )

(
P (τ )

)
�τ

)
,

where

ξh
(

P (τ )
) =

{
1
h Log(1 + hP (τ )), h > 0,

0, h = 0

and where Log is the principal logarithm function.
Note that 1 ± μ(t)P (t) > 0. So for μ(τ) > 0, by Taylor’s formula, we get that

ξμ(τ )

(
P (τ )

) = 1
ln

(
1 + μ(τ)P (τ )

) = P (τ ) − μ(τ)P 2(τ ) + μ(τ)o
(

P 2(τ )
)
.

μ(τ) 2
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This same formula holds when μ(τ) = 0, since we have in this case that ξμ(τ )(P (τ )) = P (τ ).
So in any case, we have for all μ(τ) the formula

ξμ(τ )

(
P (τ )

) = P (τ ) − μ(τ)P 2(τ )

2
+ μ(τ)o

(
P 2(τ )

)
.

Since
∫ ∞ P (t)�t and

∫ ∞ P 2(t)�t are both convergent, we get that

∞∫
T

ξμ(τ )

(
P (τ )

)
�τ

is convergent. Similarly we have
∫ ∞

T ξμ(τ )(−P (τ ))�τ is also convergent. Therefore by the definitions of e−P (t, T ) and
eP (t, T ), we get that there exist constants c1 > 0, c2 > 0 such that

c1 � e−P (t, T )

eP (t, T )
� c2. (3.7)

Note that e−P (σ (s), T ) = [1 − μ(s)P (s)]e−P (s, T ) and using (3.1), (3.7) and the definition (3.2) of P̄ (t), we get
limt→∞ P̄ (t) = 0.

From (3.6) and P (t) → 0, Q (t) → 0 as t → ∞, we obtain limt→∞ Q̄ (σ (t)) = 0. So we have

1 − μ(t)P (t) − μ(t) P̄
(
σ(t)

)
> 0, 1 − μ(t)Q (t) − μ(t)Q̄

(
σ(t)

)
> 0 (3.8)

for large t .

Assume (1.1) is nonoscillatory, x(t) > 0 is a solution of (1.1), and z(t) = x�(t)
x(t) is a solution of the Riccati equation

z� + p(t) + z2

1 + μ(t)z
= 0

on [T ,∞). By Lemma 2.1, integrating the Riccati equation from t to ∞, we get that

z(t) =
∞∫

t

p(s)�s +
∞∫

t

R(s)�s,

where R(s) = z2

1+μ(t)z .

Define v(t) = ∫ ∞
t R(s)�s > 0. We have z(t) = P (t) + v(t). From Lemma 2.3, we have

v(t) = e−P (t, T )

eP (t, T )

∞∫
t

eP (s, T )

e−P (σ (s), T )

[
P 2(s) + v(s)v

(
σ(s)

)]
�s (3.9)

for large t , where eP (t, T ) and e−P (t, T ) are the exponential functions.
Let

ρ(t) = e−P (t, T )

eP (t, T )

∞∫
t

eP (s, T )

e−P (σ (s), T )
v(s)v

(
σ(s)

)
�s. (3.10)

So

v(t) = P̄ (t) + ρ(t).

Using the product rule and ρ(t) = ρ(σ (t)) − μ(t)ρ�(t), we get that

ρ�(t) = −2P (t)ρ(σ (t))

1 − μ(t)P (t)
− v(t)v(σ (t))

1 − μ(t)P (t)

= −2P (t)ρ(σ (t))

1 − μ(t)P (t)
− [ P̄ (t) + ρ(t)][ P̄ (σ (t)) + ρ(σ (t))]

1 − μ(t)P (t)
(3.11)

= −2P (t)ρ(σ (t))

1 − μ(t)P (t)
− [ P̄ (t) P̄ (σ (t)) + ρ(t)ρ(σ (t))]

1 − μ(t)P (t)
(3.12)

− P̄ (t)ρ(σ (t))

1 − μ(t)P (t)
− P̄ (σ (t))[ρ(σ (t)) − μ(t)ρ�(t)]

1 − μ(t)P (t)
. (3.13)

By solving ρ�(t) and noticing that (3.8) and P̄ � 0, ρ � 0, we get that
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ρ�(t) = −[2P (t) + P̄ (t) + P̄ (σ (t))]ρ(σ (t))

1 − μ(t)P (t) − μ(t) P̄ (σ (t))
(3.14)

− P̄ (t) P̄ (σ (t)) + ρ(t)ρ(σ (t))

1 − μ(t)P (t) − μ(t) P̄ (σ (t))
. (3.15)

By (3.4)–(3.6), (3.14) and (3.15), we get

ρ�(t) � −[2Q (t) + Q̄ (t) + Q̄ (σ (t))]ρ(σ (t))

1 − μ(t)Q (t) − μ(t)Q̄ (σ (t))
(3.16)

− Q̄ (t)Q̄ (σ (t)) + ρ(t)ρ(σ (t))

1 − μ(t)Q (t) − μ(t)Q̄ (σ (t))
. (3.17)

So

ρ�(t)
[
1 − μ(t)Q (t)

]
� −[

2Q (t) + Q̄ (t) + Q̄
(
σ(t)

)]
ρ
(
σ(t)

) − Q̄ (t)Q̄
(
σ(t)

) − ρ(t)ρ
(
σ(t)

) + ρ�(t)μ(t)Q̄
(
σ(t)

)
.

Dividing by 1 − μ(t)Q (t) and rearranging, we get that

ρ�(t) � −2Q (t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (t)Q̄ (σ (t)) + ρ(t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (σ (t))[ρ(σ (t)) − μ(t)ρ�(t)]

1 − μ(t)Q (t)

= −2Q (t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (t)Q̄ (σ (t)) + ρ(t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (t)ρ(σ (t))

1 − μ(t)Q (t)
− Q̄ (σ (t))ρ(t)

1 − μ(t)Q (t)

= −2Q (t)ρ(σ (t))

1 − μ(t)Q (t)
− [Q̄ (t) + ρ(t)][Q̄ (σ (t)) + ρ(σ (t))]

1 − μ(t)Q (t)
. (3.18)

Let w(t) = Q̄ (t) + ρ(t). Note that

Q̄ �(t) = −2Q (t)Q̄ (σ (t))

1 − μ(t)Q (t)
− Q 2(t)

1 − μ(t)Q (t)
.

By (3.18), we get that

w�(t) � −2Q (t)w(σ (t))

1 − μ(t)Q (t)
− w(t)w(σ (t)) + Q 2(t)

1 − μ(t)Q (t)
. (3.19)

Note that

w�(t)
[
1 − μ(t)Q (t)

] + 2Q (t)w
(
σ(t)

) = w�(t) + [
w

(
σ(t)

) − w�(t)μ(t)
]

Q (t) + Q (t)w
(
σ(t)

)
= w�(t) + Q (t)w(t) + Q (t)w

(
σ(t)

)
,

and using (3.19), we get

w�(t) + Q (t)
[

w
(
σ(t)

) + w(t)
] + w(t)w

(
σ(t)

) + Q 2(t) � 0. (3.20)

Let

S(t) = eQ (t, T )

e−Q (t, T )
w(t). (3.21)

We have

S�(t) = 2Q (t)eQ (t, T )w(t)

[1 − μ(t)Q (t)]e−Q (t, T )
+ w�(t)

eQ (σ (t), T )

e−Q (σ (t), t)
.

Using (3.20), (3.21), we get that

S�(t) � Q (t)S(t) − Q (t)S
(
σ(t)

) − e−Q (t, T )

eQ (t, T )
S(t)S

(
σ(t)

) − Q 2(t)eQ (σ (t), T )

e−Q (σ (t), T )
. (3.22)

Since S(t) − S(σ (t)) = −μ(t)S�(t), after rearranging, we get that

S�(t) � − e−Q (t, T )S(t)S(σ (t))

[1 + μ(t)Q (t)]eQ (t, T )
− Q 2(t)eQ (σ (t), T )

[1 + μ(t)Q (t)]e−Q (σ (t), T )
. (3.23)

Note that 1 ± μ(t)P (t) > 0, for large t . So w(t) > 0, S(t) > 0. From (3.23), we have S�(t) � 0. Suppose that limt→∞ S(t) =
A � 0. Integrating from τ � T to t and rearranging, we get
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S(t) +
t∫

τ

e−Q (s, T )S(s)S(σ (s))

[1 + μ(s)Q (s)]eQ (s, T )
�s +

t∫
τ

Q 2(s)eQ (σ (s), T )

[1 + μ(s)P (s)]e−Q (σ (s), T )
�s � S(τ ). (3.24)

Let t → ∞. Note that the integrands of the left integrals are positive. We get that
∞∫

τ

e−Q (s, T )S(s)S(σ (s))

[1 + μ(s)Q (s)]eQ (s, T )
�s +

∞∫
τ

Q 2(s)eQ (σ (s), T )

[1 + μ(s)P (s)]e−Q (σ (s), T )
�s � S(τ ). (3.25)

Noting S(t) = eQ (t,T )

e−Q (t,T )
w(t), we obtain that

e−Q (τ , T )

eQ (τ , T )

∞∫
τ

eQ (s, T )

e−Q (σ (s), T )

[
Q 2(s) + w(s)w

(
σ(s)

)]
�s � w(τ ). (3.26)

Note that e±Q (σ (s), T ) = [1 ± μ(s)Q (s)]e± Q (s, T ) and P (s) → 0, Q (s) → 0 as s → ∞. So by (3.25), we have

∞∫
τ

Q 2(s)
eQ (s, T )

e−Q (s, T )
�s < ∞.

Note that (3.26) means that (2.3) holds. So from Lemma 2.4, we get that Eq. (1.2) is nonoscillatory. This completes the
proof. �

For T = R, by Theorem 3.1, we get the following

Corollary 3.2. Suppose that
∑

p j and
∑

q j are convergent. Let

Pn =
∞∑
j=n

p j, Q n =
∞∑
j=n

q j . (3.27)

Assume that∑
P j and

∑
P 2

j

are convergent.
Let N � 0 be so large that

|Pn| < 1, 1 − Pn − P̄n+1 > 0, |Q n| < 1, 1 − Q n − Q̄ n+1 > 0,

for n � N. Define

rn =
n−1∏
j=N

1 − P j

1 + P j
, f ( j;n) = rnr−1

j+1(1 + P j)
−1, (3.28)

P̄n =
∞∑
j=n

f ( j;n)P 2
j , for j � n � N. (3.29)

Define

sn =
n−1∏
j=N

1 − Q j

1 + Q j
, g( j;n) = sns−1

j+1(1 + Q j)
−1, (3.30)

Q̄ n =
∞∑
j=n

g( j;n)Q 2
j , for j � n � N. (3.31)

If for large n

2Pn + P̄n + P̄n+1

1 − Pn − P̄n+1
� 2Q n + Q̄ n + Q̄ n+1

1 − Q n − Q̄ n+1
, (3.32)

P̄n P̄n+1

1 − Pn − P̄n+1
� Q̄ n Q̄ n+1

1 − Q n − Q̄ n+1
, (3.33)

Pn + P̄n+1 � Q n + Q̄ n+1, (3.34)

then if �2x(n) + pnx(n + 1) = 0 is nonoscillatory, �2x(n) + qnx(n + 1) = 0 is also nonoscillatory.
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4. Example

Consider the difference equation

�2x(n) + pnx(n + 1) = 0, (4.1)

where pn = b (−1)n

nc , c < 1, b �= 0 and

�2x(n) + qnx(n + 1) = 0, (4.2)

where qn = a
n2 , 1

4 < a < 1
2 .

In the first place, we will prove that (4.1) is oscillatory, when 1
2 < c < 1.

Define that P j = P ( j). Then

P (2k) = b

(2k)c
− b

(2k + 1)c
+ b

(2k + 2)c
− b

(2k + 3)c
+ · · · .

By an appropriate Taylor expansion, we get that

1

(2k)c
− 1

(2k + 1)c
= (1 + 1

2k )c − 1

(2k + 1)c
=

c
2k [1 + o(1)]
(2k + 1)c

.

So

P (2k) =
bc
2k [1 + o(1)]
(2k + 1)c

+
bc

2k+2 [1 + o(1)]
(2k + 3)c

∼ bc

(2k)(2k + 1)c
+ bc

(2k + 2)(2k + 3)c
+ · · · ∼ b

2(2k)c
.

Similarly, we have

P (2k + 1) ∼ − b

2(2k + 1)c
.

So

P (n) ∼ (−1)n b

2nc
. (4.3)

Therefore the series
∑∞

k=n Pk converges. Since 1
2 < c < 1, we have

∑∞
k=n P 2

k converges. Using ln(1 + x) = x − 1
2 x2 + o(x2) as

x → ∞, we have for large j

ln

(
1 − 2P j

1 + P j

)
= − 2P j

1 + P j
− 1

2

(
2P j

1 + P j

)2

+ o

((
2P j

1 + P j

)2)
(4.4)

as → ∞. Also, we have

P j

1 + P j
= P j

[
1 − P j + O

(
P 2

j

)]
. (4.5)

So from (4.3)–(4.5), we have

∞∑
j=N

ln

(
1 − P j

1 + P j

)
=

∞∑
j=N

ln

(
1 − 2P j

1 + P j

)

is convergent. So given 0 < ε < 1 (see (3.28))

rn =
n−1∏

N

1 − P j

1 + P j
= exp

(
n−1∑
j=N

ln

(
1 − 2P j

1 + P j

))
> 1 − ε, for large N.

We also have given 0 < ε1 < 1

f ( j,n) = rn

r j+1(1 + P j)
� 1 − ε1, j � n � N,

where we used P j → 0, r j → 1.
By (4.3), we get that given 0 < ε2, ε3 < 1 (see (3.29))
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P̄n =
∞∑
j=n

f ( j,n)P 2
j � (1 − ε1)

∞∑
j=n

P 2
j

� (1 − ε1)(1 − ε2)

(
b2

4

)(
1

n2c
+ 1

(n + 1)2c
+ · · ·

)

� (1 − ε1)(1 − ε2)(1 − ε3)
b2

4(2c − 1)n2c−1
. (4.6)

In the following, we will estimate Q̄ n . Note that

∞∫
n

1

t2
dt �

∞∑
j=n

1

j2
�

∞∫
n−1

1

t2
dt.

We have

Q n =
∞∑
j=n

a

j2
= a

n
+ O

(
1

n2

)
. (4.7)

Using appropriate Taylor expansions, we have

ln

(
1 − 2Q j

1 + Q j

)
= − 2Q j

1 + Q j
− 1

2

(
2Q j

1 + Q j

)2

+ o

((
2Q j

1 + Q j

)2)
(4.8)

as → ∞. Also, we have

Q j

1 + Q j
= Q j

[
1 − Q j + O

(
Q 2

j

)]
. (4.9)

From (4.7)–(4.9), we have

∞∑
j=n

ln

(
1 − Q j

1 + Q j

)
=

∞∑
j=n

ln

(
1 − 2Q j

1 + Q j

)
= −

∞∑
j=n

(
2a

j
+ O

(
1

j2

))
. (4.10)

Note that the series (4.10) is not convergent. From (4.10) and the inequality
∑ j

i=n
1
i �

∫ j
n−1

1
t dt = ln j

n−1 , we get that given
0 < ε4 < 1 (see (3.30))

sn

s j+1
= exp

( j∑
i=n

(−1) ln

(
1 − 2Q i

1 + Q i

))
(4.11)

= exp
j∑

i=n

(
2a

i
+ O

(
1

i2

))
� (1 + ε4)

(
j

n − 1

)2a

, (4.12)

for large n. Using (1 + Q j)
−1 = 1 + O ( 1

n ), we get that given 0 < ε5 < 1 (see (3.30))

g( j,n) = sn

s j+1(1 + Q j)
� (1 + ε4)(1 + ε5)

(
j

n − 1

)2a

,

for large n. Note that Q n ∼ a
n and

∑∞
j=n

1
j2−2a ∼ 1

(1−2a)n1−2a , we get that given 0 < ε6, ε7, ε8 < 1

Q̄ n =
∞∑
j=n

g( j,n)Q 2
j

� (1 + ε4)(1 + ε5)(1 + ε6)
a2

(n − 1)2a

∞∑
j=n

j2a

j2

� (1 + ε4)(1 + ε5)(1 + ε6)(1 + ε7)
a2

(1 − 2a)(n − 1)2an1−2a

� (1 + ε4)(1 + ε5)(1 + ε6)(1 + ε7)(1 + ε8)
a2

(1 − 2a)n
, (4.13)

where we use ( n )2a < 1 + ε8, for large n.
n−1
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Since 0 < 2c − 1 < c < 1, for 1
2 < c < 1, so we have for large n

1

n2c−1
>

1

nc
>

1

n
.

Therefore from (4.3), (4.6), (4.7), (4.13), we obtain that (3.32)–(3.34) are satisfied, for large n. By Hille’s theorem [10, p. 60],
(4.2) is oscillatory for 1

4 < a < 1
2 . So by Corollary 3.2 (4.1) is oscillatory, for 1

2 < c < 1, b �= 0.
To show that (4.1) is oscillatory, for all c < 1, we need the following useful comparison theorem [9] which is the time

scales version of Erbe’s comparison theorem stated earlier.

Theorem 4.1. Assume a(t) ∈ C1
rd and

(i) a(t) � 1,
(ii) μ(t)a�(t) � 0,

(iii) a��(t) � 0.

Then x�� + p(t)xσ = 0 is oscillatory on [t0,∞) implies x�� + a(t)p(t)xσ = 0 is oscillatory on [t0,∞).

By the above proof, the equation (note that 1
2 < 3

4 < 1)

�2x(n) + b
(−1)n

n
3
4

x(n + 1) = 0

is oscillatory, for b �= 0.
Let a(n) = nα , 0 < α < 1. We have �a(n) � 0, �2a(n) � 0 for large n. Using Theorem 4.1 repeatedly, we get that

�2x(n) + bnβ (−1)n

n
3
4

x(n + 1) = 0

is oscillatory, for b �= 0, β > 0. So the equation

�2x(n) + b
(−1)n

n
3
4 −β

x(n + 1) = 0

is oscillatory, for b �= 0, β > 0. This means that the equation

�2x(n) + b
(−1)n

nc
x(n + 1) = 0

is oscillatory, for b �= 0, c < 3
4 . In addition to the above proof that (4.1) is oscillatory, for 1

2 < c < 1, b �= 0, we obtain that (4.1)
is oscillatory, for c < 1, b �= 0.

The value 1 is a critical value, since in [1] we prove (4.1) is nonoscillatory for c > 1.
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