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1. Introduction

If (H,{-,-)) is a Hilbert space K € H a closed convex cone, K* the dual cone of K, and f: K — H a mapping, then
the nonlinear complementarity problem defined by K and f is the problem of finding an x* € K such that f(x*) € K* and
(x*, f(x*)) = 0. Complementarity problems are used to model several problems of economics, physics and engineering and
they occur in constraint qualifications for mathematical programming too. It is known that x* is a solution of the nonlinear
complementarity problem defined by K and f if and only if x* is a fixed point of the mapping K > x+— Pg (x — f(x)), where
Py is the projection mapping onto K. Therefore, it is natural to consider the recursion

X =Py (x" — £(x")), (1)

where n is a nonnegative integer and x° € K. If the sequence {X"} ¢y is convergent to x* € K and the mapping f is contin-
uous, then taking the limit in the recursion (1) as n approaches infinity, we obtain that x* is a fixed point of the mapping
K > x+ Pg(x — f(x)) and therefore a solution of the nonlinear complementarity problem defined by K and f. In this pa-
per we will always suppose that f is continuous. The central issue of the paper will be to find conditions under which
the sequence {X"},cn is convergent. In the section “Preliminaries” we will recall several definitions and fix the notations.
In particular, we will define classes of cones and mappings which will be used in the section “Main results” to generate
solutions of nonlinear complementarity problems. The main result of this paper complements the results of Section 6 of [1]
and is related to the results of [2] too. We will also consider recursion (1) with f replaced by a positive scaling of f. As
a particular case, we will consider the problem of finding the zeros of f. Recursions for complementarity problems, varia-
tional inequalities and optimization problems, similar to (1), were considered in several other works, for example [3-13].
However, neither of these works used the order induced by the cone for analyzing the convergence. Instead, they used the
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Banach fixed point theorem based approach, assuming Kachurovskii-Minty-Browder type monotonicity (see [14-17]) and
global Lipschitz properties for f.

2. Preliminaries

Let H be a Hilbert space and K C H. K is called a closed convex cone, if it is a closed convex set and for any A > 0 and
x € K, Ax € K. A closed convex cone K is called pointed if K N (—K) = {0}.
If K C H is a closed convex cone, then

K*={yeH: (x,y) >0 for all xe K}

is called the dual cone of K.

A relation p on H is called reflexive if xpx for all x € H. A relation p on H is called transitive if xpy and ypz imply xpz.
A relation p is called antisymmetric if Xxpy and ypx imply x =y. A relation p on H is called a preorder if it is reflexive and
transitive. A preorder is called order if it is antisymmetric. A relation p on H is called translation invariant if xpy implies
(x+2z)p(y+2z) for any z € H. A relation p on H is called scale invariant if xpy implies (Ax)p(Ay) for any A > 0. A relation p
on H is called continuous if for any two convergent sequences {X"}pen and {y"}nen with X" py” for all n € N we have x* py*,
where x* and y* are the limits of {X"},cn and {y"}nen, respectively.

The relation p on H is a continuous, translation and scale invariant preorder if and only if it is induced by a closed
convex cone K C H; that is, p = <k, where X <k y if and only if y — x € K. For simplicity we will denote “<g"” by “<”.
The closed convex cone K can be written as K = {x € H: 0 <X} and it is called the positive cone of the preorder “<”. The
triplet (H, (-,-), K) is called an ordered vector space. If the closed convex cone K is pointed, then the preorder “<” becomes
an order. A closed convex cone K is called regular if every decreasing sequence of elements in K is convergent.

The ordered vector space (H, (-,-), K) is called a vector lattice if for every X,y € H there exist x Ay := inf{x,y} and
X vy :=sup{x,y}. In this case we say that the cone K is latticial and for each x € H we denote Xx* =0V X, X" =0V (—X)
and [X| =xV (—X). Then, x=xT —x~ and |x| =x* +x".

Recall that the pointed closed convex cone K C H is called an isotone projection cone (see [1,2,18-20]) if fromy—x € K it
follows that Pk (y) — Px(x) € K, where P is the projection onto K. By using the order relation defined by K, this condition
can be written as X <y = Pk (x) < Pk (y) [20]. Every isotone projection cone is latticial and regular [2]. A closed generating
cone in R" is an isotone projection cone if and only if it is polyhedral and correct (this result and the corresponding
notions can be found in [20]). Such cones are used for abstract convex programming problems in [21] (without making
the connection with the ordering induced by the cone). Let K be a closed convex cone and f: K — H. The nonlinear
complementarity problem defined by K and f will be denoted NCP(f, K).

3. Main results

Let H be a Hilbert space, K C H a closed convex cone and f: K — H a continuous mapping. In this section we will
consider the recursion (1). Our main goal is to find conditions for K and f such that the sequence {X"},cn to be convergent.
If {xX"}pen is convergent, then its limit x* is a solution of the nonlinear complementarity problem NCP(f, K). First we state
two lemmas on which our main results are based.

Lemma 1. Let H be a Hilbert space, K C H a closed convex cone and f: K — H a continuous mapping. Consider the recursion (1). If
the sequence {X"},cn is convergent and x* is its limit, then X* is a solution of the nonlinear complementarity problem NCP(f, K).

Proof. Indeed, taking the limit in (1), it follows that x* is a fixed point of the operator K > x > Pg (x — f(x)). It is known
that in this case x* is a solution of the nonlinear complementarity problem NCP(f, K). O

Lemma 2. Let H be a Hilbert space, K C H a closed convex regular cone and f: K — H a continuous mapping. Consider the re-
cursion (1). If the sequence {X"},cn is monotone decreasing, then it is convergent and its limit X* is a solution of the nonlinear
complementarity problem NCP(f, K).

Proof. Since K is regular, the sequence {X"},cy is convergent. Hence, the remaining assertion follows from Lemma 1. O

The following notion is inspired by the notion of pseudomonotonicity defined by Karamardian and Schaible in [22]. If
H =R, then the notion of pseudomonotonicity defined for f coincides with the notion of pseudomonotone decreasing
for —f defined here.

Definition 1. Let H be a Hilbert space, K € H a closed convex cone and < the preorder generated by K. The mapping
f: K — H is called pseudomonotone decreasing if for every x,y € K

x<y and 0<f(y) implies 0<f(x).
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Remark 1.

(1) If f is monotone decreasing, then it is pseudomonotone decreasing.
(2) If f(K) C K, then f is pseudomonotone decreasing.
(3) If f(K) € H\ K, then f is pseudomonotone decreasing.

Definition 2. Let H be a Hilbert space, K € H a closed convex cone and < the preorder generated by K. The function
f:K — R is called pseudomonotone decreasing if for every X,y € K
x<y and 0< f(y) implies 0< f(x).

Remark 2. Let H =R™, K =R% and f=(f1,..., fo) :R} — R™. Then, f is a pseudomonotone decreasing mapping if and
only if f; are pseudomonotone decreasing functions for all i € {1, ..., m}.

Theorem 1. Let H be a Hilbert space, K C H an isotone projection cone and f: K — H a continuous mapping such that
K Nf~1(K) s @. Consider the recursion (1) starting from an x° € K N f~1(K). If f is pseudomonotone decreasing, then the sequence
{Xn}nen is convergent and its limit X* is a solution of the nonlinear complementarity problem NCP(f, K).

Proof. Since every isotone projection cone is regular, by Lemma 2, it is enough to prove that the sequence {X"},en is
monotone decreasing. Moreover, it is enough to prove that f(x") € K for all n € N. Indeed, since x" — f(x") < x", we have
X" =Py (x" — £(x")) < Pg(x") =x". (2)
Hence, the sequence {X"},cn is monotone decreasing. We will prove the proposition
(M) f(x")eK VneN
by induction. (ITp) is obviously true. We suppose that (ITj) is true and prove that (I1,41) is also true. Since f(x") € K, by

relation (2) we have that X"*! < x". Since f is pseudomonotone decreasing we have f(x™t1) € K; that is, (IT,41) is true. O

Example 1. Let H =R™ and K = RT where m is a positive integer. Then, K is an isotone projection cone [18]. Let
P1,..., Py be polynomial functions of X = (x1,...,xn) € R with positive coefficients such that P1(0) =--. = Py (0) =0
and ag, ..., an € Ry nonnegative constants. Then, the mapping f: R} — R™ defined by

fx) = (a1 — P1(X), ..., am — Pn(X))

is monotone decreasing. Moreover, if x € R} is sufficiently close to the origin, then 0 < f(x). Hence, K N f-1(K) # ¢ and we
can define the recursion given in Theorem 1 which is convergent to a solution of the nonlinear complementarity problem
NCP(f, RT).

We remark that the projection onto K =R} can be easily obtained: Px(X) =y, where X = (X1, ..., Xn), Y= (¥1,--., Y¥m)
and
)X if x; >0,

yl—{o if x; <0 )
for all i € {1, ..., m}. Relations (3) can simply written as

yi = max{x;, 0} (4)
forallie{l,...,m}.
Proposition 1. Let H = R™ and K = R} where m is a positive integer. Let f = (f1,..., fm) : R} — R™ be a pseudomonotone

decreasing mapping and g; : R} — 10, 4-oo[ arbitrary continuous functions. Then, the mapping h = (f1g1,..., fmgm) : R} — R™
defined by

hx) = (f1iX)g1(X), ..., fmn(X)gm (X))
is pseudomonotone decreasing.

Proof. Suppose that 0 < h(x) and x <y. Then, 0 < f;j(x)g;(x) for all i € {1,...,m}. Hence, 0 < fj(x) for all i € {1,...,m}, or
equivalently 0 < f(x). Since f is pseudomonotone decreasing, 0 < f(y), or equivalently

0< fi(y) (5)

for all i € {1,...,m}. Multiplying relations (5) by gij(y) > 0, we get 0 < f;(y)gi(y) for all i € {1,...,m}. Hence, 0 < h(y).
Therefore, h is pseudomonotone decreasing. O
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By slightly modifying Example 1, we get

Example 2. Let H =R™ and K = R7T where m is a positive integer. Let Pi,..., Py be polynomial functions of x =

(X1,...,Xm) € RT with positive coefficients such that P1(0) =--- = P;n(0) =0, ay, ...,an € R} nonnegative constants; and

g1....,&n: R — 10, +o0[ arbitrary continuous functions. Then, by Proposition 1, the mapping f: R} — R™ defined by
fx) = ((a1 — P1(%))g1(X), ..., (am — Pm(X))gm (X)) (6)

is pseudomonotone decreasing. Moreover, if x € R} is sufficiently close to the origin, then 0 < f(x). Hence, K N f1K)#£0
and we can define the recursion given in Theorem 1 which is convergent to a solution of the nonlinear complementarity
problem NCP(f, RT).
We remark that it is easy to construct continuous functions
g:RY — 10, +o0l.

For example, let P:RT — R be a polynomial function of nonnegative coefficients and ¢, ¥, x : Rl — R arbitrary continuous
functions. Then, the function P|¢|e¥ + eX ;R — R, defined by

(Plgle” +eX)(x) = P(R)|¢ (x)[e” X + X
takes only positive values. Moreover, any linear combination with positive coefficients of functions of the above type has
the same property. Based on these remarks we can construct the following numerical example.
Example 3. Let f= (f1, f2, f3):R3 — R defined by

f1(X) = (9 — x1x2x3)e"1 T2+,

f2(X) = (6 — x2x3)(1 + " (x2 4 X3)),
f350 = (5—x2 — x3) (1 + &3 + X3 + X5 — 3x1%2%3).

Since
3 3 3 1 2 2 2
XX 405 = 3K = S (14X +X3)|(x1 — %2)* 4+ (X1 — x3)* + (x2 — X3)°|

it can be seen that f is of the type (6). If 0 < f(x°), then the recursion given in Theorem 1 is convergent to a solution of the
nonlinear complementarity problem NCP(f, Ri). By using relation (4), we can write the recursion explicitly as

X1 = max[x? — (9 — XTxxE)eXi T2 o),

X1 = max[x} — (6 — X3x3) (1 +€¥1 (X3 +3)), 0},

51 = max(x — (5 = — ) (1+ ()" + ()" + ()" ~ 3{:3x5). 0}.
where f1, f, and f3 are defined above. It can be easily checked that any

x* e {(0, 0,0),(0,2,3),(0,3,2),(1.5,2,3),(1.5,3, 2)}

is a solution of the complementarity NCP(f, ]Ri). We have written a Scilab script for this recursion. The stopping criterion
we used is [x]T" — x| <107° for all i € {1,2, 3}.

If we start the algorithm from x0 = (1.4998747291, 2, 3), then it stops at the third step with the solution x* = (0, 2, 3).
If we start the algorithm from x° = (1.4998747291, 3, 2), then it stops at the third step with the solution x* = (0, 3, 2).
If we start the algorithm from x?=(1,2,3), then it stops at the second step with the solution x* = (0, 2, 3).

If we start the algorithm from x° = (1, 2, 2.9999999), then it stops at the fifth step with the solution x* = (0, 0, 0).

From the above starting points it can be seen that very slight alterations of the starting points of the algorithm can lead to
very different solutions.

Analyzing Theorem 1, it can be seen that for any f satisfying the conditions of this theorem the nonlinear complemen-
tarity problem NCP(f, K) has the trivial solution x* = 0. Indeed, since 0 < x°, 0 < f(xo) and f is pseudomonotone decreasing,
it follows that 0 < £(0), or equivalently f(0) € K. But every isotone projection cone is subdual; that is, K € K* [1]. Therefore,
f(0) € K*; that is, x* =0 is a solution of NCP(f, K).

Hence, depending on the starting point, the recursion may be convergent to the trivial solution x* = 0. In practical
problems it is important to find nonzero solutions for a complementarity problem. For the mappings similar to those of the
type given in Example 2 we have the following result:
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Proposition 2. Let H = R™ and K = R} where m is a positive integer. Let Pq,..., Py be polynomial functions of x =
(X1, ..., xm) € R with positive coefficients such that P1(0) = --- = P(0) =0 and for all i € {1,...,m}. Let ay,...,am € Ry
lI;e nonnegative constants and g1, ..., gn : R} — ]0, 4-oo[ arbitrary continuous functions. Then, the mapping f: R} — R™ defined
y

fx) = ((a1 — P1(X))g1(X), ... (am — Pm(X)) gm (X)) (7)

is pseudomonotone decreasing. Moreover, if X € R} is sufficiently close to the origin, then 0 < f(x). Hence, K N f1(K) # ¢ and we can
define the recursion given in Theorem 1 which is convergent to a solution of X* of the nonlinear complementarity problem NCP(f, R'}).
Let

I={ie{l,....m}: 0<x}},

and x° be the starting point of the recursion. Then, we have x? =xj foralli e I with 9P;/dx; a nonzero polynomial.

Proof. Without loss of generality we can assume that I # @ and there is an i € I such that dP;/dx; is a nonzero polynomial.
Fix such an i. Suppose that x? < x{. Then, from the proof of Theorem 1 we get x}' < x? < xi for all n € N. Tending with n
to infinity it follows that xj < x? < x{ which is absurd. Hence, x < x?. Suppose that x; < x?. Since x* is a solution of the
nonlinear complementarity problem NCP(f, R!) and 0 < x{ we have f;(x*) =0. By using again the proof of Theorem 1, we
obtain x" < x° for all n € N, and taking the limit as n tends to infinity we obtain x* < x%. Since X< x? and dP;/0x; is

a nonzero polynomial,
fie) _
gi(x")

It follows that f;(x%) = (a; — P;(x°))g'(x°) < 0, which is a contradiction. Thus, x? =x}. O

a; — P,‘(XO) <aj — Pj(x*) =

The next proposition gives another class of pseudomonotone decreasing mappings.

Proposition 3. Let P1, ..., Py : Ry — R be polynomial functions of one variable and f: R — R™ be a mapping defined by
fx) = (P1(x1), ..., Pm(xm)).

Then, there are constants ; € {—1, 1} and a; € R, such that the mapping g: R} — R™ defined by
g(Xx) = (£1P1(X1) +ai, ..., emPm(xm) +am)

is pseudomonotone decreasing.

Proof. If lim;_, o, Pi(t) <O, then put &; = —1, otherwise put ¢ =1 for all i € {1,...,m}. For all i € {1,...,m} we can
choose a; € R, sufficiently large such that the equation ¢;P;(t) + a; =0 has at most one solution. Hence, it follows that if
0 <é&Pi(xi) +a; and x; < y;, then 0 < &;P;(y;) +a; for all i € {1, ..., m}. It follows that g is pseudomonotone decreasing. O

By using Proposition 1, it follows that if we multiply each component of the mapping g from Proposition 3 by a positive
function, then we get another pseudomonotone decreasing mapping. In this way we can generate several other pseu-
domonotone mappings. This is similar to how Example 2 was obtained from Example 1.

The next theorem gives a sufficient condition for the recursion (1) to be convergent to a nonzero solution.

Theorem 2. Let H be a Hilbert space, K C H an isotone projection cone and f: K — H a pseudomonotone decreasing, continuous
mapping such that K N f~1(K) # ¢. Let J: K — H be the inclusion mapping defined by J(x) = x and Px : H — K the projection
mapping onto K. If there are X € K Nf~1(K) and u € X + K such that

(Pko(J—D)(G+K)N@m-K)NE(K)SX+K,
then X is a solution of the nonlinear complementarity problem NCP(f, K) and for any x° € (X +K) N (u— K) Nf~1(K) the recursion (1)
starting from X is convergent and its limit X* is a solution of the nonlinear complementarity problem NCP(f, K) such that & < x* < u.
In particular, if X # 0, then the recursion (1) is convergent to a nonzero solution.
Proof. Since X — f(X) <X, Xe€ X+ K) N (u—K)Nf1(K) and

(Pko(J—D)(G+K)Nm—K)NE(K) SX+K,

we have X < (Pk o (J—£))(X) = Pg (X — f(X)) < Pk (X) = X. Hence, X = Px (X — f(X)); that is, X is a solution of the nonlinear
complementarity problem NCP(f, K). In the proof of Theorem 1 we have seen by induction that

X" e KN 1K), (8)
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for all n € N. We prove by induction the proposition
(My) X<x'<u, 9)

for all n € N. Obviously, (ITg) is true. Suppose that (1) is true. Hence, by using relation (8), we have x" € (X + K) N (u —
K) N f=1(K). Thus,

X =(Pro(J—0)(x") e (Pk o (J—D)(&®+K)NF(K) SX+K. (10)
On the other hand, by using relation (8), we have x" — f(x") < X" < u which implies
X" =Py (x" — f(x")) < Py (u) =u. (11)

Relations (10) and (11) imply that (IT,y1) is also true. Taking the limit in relation (9), as n tends to infinity, we get X <
x*<u. 0O

Definition 3. Let H be a Hilbert space, K C H a closed convex cone, f: K — H a mapping and L > 0. The mapping f is
called order weekly L-Lipschitz if f(x) — f(y) < L(x —y), for all X,y € K with y<x. If L =1, then f is called order weekly
nonexpansive.

The following proposition is an immediate consequence of Definition 3.

Proposition 4. Let H be a Hilbert space, K C H a closed convex cone, f: K — H a mapping and L > 0. Then, the mapping f is order
weekly L-Lipschitz if and only if the mapping K > X — Lx — f(X) is monotone increasing.

Definition 4. Let H be a Hilbert space, K C H a closed convex cone, f: K — H a mapping and L > 0. Then, the mapping f
is called projection order weekly L-Lipschitz if the mapping K > x — Pk (Lx — f(x)) is monotone increasing where Py is the
projection mapping onto K. If L =1 the mapping f is called projection order weekly nonexpansive.

It is easy to see that in case of isotone projection cones every order weekly L-Lipschitz mapping is projection order
weekly L-Lipschitz and every order weekly nonexpansive mapping is projection order weekly nonexpansive.

Theorem 3. Let H be a Hilbert space, K C H an isotone projection cone, L > 0 and f: K — H a pseudomonotone decreasing, projection
order weekly L-Lipschitz, continuous mapping such that K Nf~1(K) # . Let X be a solution of the nonlinear complementarity problem
NCP(f, K). Then, for any x° € (X + K) N f~1(K) the recursion

X =Py <x" _fx )) (12)

L

starting from x° is convergent and its limit x* is a solution of the nonlinear complementarity problem NCP(f, K) such that X < x*. In

particular, if X # 0, then the recursion (12) is convergent to a nonzero solution.

Proof. We will use the following well-known property of the projection mapping P, onto a closed convex cone «:
P, (AX) = AP, (x) for all x € H and A > 0. We remark that the nonlinear complementarity problem NCP(f, K) is equiva-
lent to the nonlinear complementarity problem NCP(f/L, K). Denote g = f/L. Then, the recursion (12) can be written in the
form

xn+1 =Py (X" _ g(xn)).

We will use Theorem 2 for the mapping g. Let J: K — H be the inclusion mapping defined by J(x) =x and u € X + K
arbitrary. Since any solution of the nonlinear complementarity problem NCP(g, K) is a solution of the nonlinear comple-
mentarity problem NCP(f, K) too, it is enough to check the relation

(Pxo(J—2)(&+K)Nu—K)Ng ' (K) CR+K. (13)
We have
1 1
Py (x —g(x)) =Pk (Z (Lx — f(x))) = ZPK (Ix — (%)), (14)

for all x € K. Since the mapping f is projection order weekly L-Lipschitz, from relation (14) and the scale invariance of the
ordering induced by K, it follows that the mapping g is projection order weekly nonexpansive. Hence, since X is a solution
of the nonlinear complementarity problem NCP(g, K), for each x € (X + K) N (u — K) Ng~1(K) we have X =Py (X — g(X)) <
Py (X — g(x)). The previous relation can be rewritten as (Px o (J — g))(X) € X+ K. Therefore, relation (13) holds. O

The following result is a corollary of Theorem 2.
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Corollary 1. Let H be a Hilbert space, K C H an isotone projection cone and f: K — H a pseudomonotone decreasing, continuous
mapping such that K N f~1(K) # @. Let J: K — H be the inclusion mapping defined by J(x) = X. If there are X € K N f~1(K) and
u € X + K such that

J-DH(E+KN@-K)NE(K)SX+K,
then f(X) = 0 and for any xX° € X + K) N (u — K) N £~1(K) the recursion x™1 = x* — f(x") starting from x° is convergent and its
limit x* satisfies the relations f(x*) = 0 and X < x* < w. In particular, if X # 0, then X* # 0.

It is easy to see that the result of Corollary 1 is true for an arbitrary closed convex cone K too.

Example 4. Let H = R?, K =R% and f: R — R? defined by
f(x1,x2) = (1 = x1)%e 7172, x(1 — x2)? (2 — xp)e ™' 71).

It can be seen that if x; > 1, then f1(x1,%2) <x1 —1 and if x €11, 2[, then fa(x1,x2) <xp — 1.

(1) Let X=(1,1) and wu € ]1, +o00[ x {2} arbitrary. By using Corollary 1, for every starting point x° € 11, +o0[ x 11, 2[ the
recursion

A= — (1)

G = (1= )" (2 - e M

is convergent to the solution x* =X = (1, 1) of the system of equations

(1—x1)%e 1% =0,
x2(1 —x2)2(2 — xp)e~17%1 = 0.

(2) Let x=(0,1) and u = (1, 2). By using Theorem 2, for every starting point x% €10, 1[ x 11, 2[ the recursion
X = max{x — (1—x)%e 8%, 0},

xgﬂ = max{xj — x3(1 - xg)z(z - xg)e_l_"q, 0}

is convergent to the solution X* =X = (0, 1) of the nonlinear complementarity problem NCP(f, Ri).

The details are left to the reader.

We remark that similar results can be obtained if we replace the recursion (1) by the recursion x"*1 = Py (x* — Af(x")),
where A > 0 is an arbitrary positive constant, because the nonlinear complementarity problems NCP(f, K) and NCP(\f, K)
are equivalent. A similar idea was exploited in Theorem 3.

4. Conclusions

In this paper we analyzed the convergence of the recursion
xn+1 = Py (xn _ f(xn)),

where K is a closed convex cone in a Hilbert space H and f: K — H is a continuous mapping. If the sequence {X"};cn is
convergent to x* € K, then x* is a solution of the nonlinear complementarity problem defined by K and f. In [1] a set of
sufficient conditions is given for the convergence of {X"},en. In general, it is not clear what are the necessary and/or suffi-
cient conditions for {X"},cn to be convergent. This paper presented another set of sufficient conditions for the convergence
of {X"}nen. As a particular case, we considered the problem of finding the zeros of f. We also considered the above recursion
with f replaced by a positive scaling of f.

The presented examples suggest that, for H=R™ and K =R}, there is a large number of mappings for which the
recursion (1) is convergent to nonzero solutions of the corresponding nonlinear complementarity problem. Therefore, we
can conclude that Theorem 1 and Theorem 2 are new and seemingly rather general results.

We remark that for L =1 the recursion of Theorem 3 seems very similar to the one given in Theorem 6.3 of [1]. However,
our extra condition of pseudomonotonicity implies that the recursion in Theorem 6.3 of [1] never leaves 0 if the mapping
defining the complementarity problem is also pseudomonotone decreasing. Moreover, the recursion in Theorem 6.3 of [1]
can find only one solution of the complementarity problem, because it always starts from 0, and if 0 is a solution, then the
recursion in Theorem 6.3 of [1] never leaves the trivial solution 0.

We also remark that as far as we know the notions of pseudomonotone decreasing mappings, order weekly L-Lipschitz,
projection order weekly L-Lipschitz, order weekly nonexpansive and projection order weekly nonexpansive were first con-
sidered in this paper. In the future we plan to find classes of projection order weekly L-Lipschitz mappings that are not
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order weekly L-Lipschitz, to extend the notion of pseudomonotone decreasing mappings to the notion of projection pseu-
domonotone decreasing mappings and to give classes of projection pseudomonotone decreasing mappings that are not
pseudomonotone decreasing mappings. Accomplishing these goals would lead to more general results on more general
cones. We also plan to analyze the extragradient iteration of the type x"*! = Pg(x" — Af(Px (x" — Af(x")))) considered
in [6-9].
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