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We consider normalizers of an infinite index irreducible inclusion N ⊆ M of II1 factors.
Unlike the finite index setting, an inclusion uNu∗ ⊆ N can be strict, forcing us to also
investigate the semigroup of one-sided normalizers. We relate these one-sided normalizers
of N in M to projections in the basic construction and show that every trace one projection
in the relative commutant N ′ ∩ 〈M, eN 〉 is of the form u∗eN u for some unitary u ∈ M with
uNu∗ ⊆ N generalizing the finite index situation considered by Pimsner and Popa. We use
this to show that each normalizer of a tensor product of irreducible subfactors is a tensor
product of normalizers modulo a unitary. We also examine normalizers of infinite index
irreducible subfactors arising from subgroup–group inclusions H ⊆ G . Here the one-sided
normalizers arise from appropriate group elements modulo a unitary from L(H). We are
also able to identify the finite trace L(H)-bimodules in �2(G) as double cosets which are
also finite unions of left cosets.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Dixmier [3] was the first to recognize the importance of the normalizer N (A) for a von Neumann subalgebra A of
a II1 factor M . In the case of maximal abelian self-adjoint subalgebras (masas), he classified the masas according to
whether N (A)′′ was M (regular), was a proper subfactor (semiregular), or was equal to A (singular). He also provided
examples of each type by considering inclusions H ⊆ G of suitably chosen group–subgroup pairs. Masas satisfy A = A′ ∩ M
and so their commutants are large. The opposite end of the spectrum is the condition N ′ ∩ M = C1, which defines an
irreducible subfactor. Such subfactors will be the focus of our study. The isolated examples of singular subfactors in [20]
were the starting point for a systematic examination of this phenomenon for inclusions of the form M �α H ⊆ M �α G
in [25,26]. The algebra generated by the normalizers of the fixed point subfactor of a finite group action was determined
in [8]. Singularity was connected to strong singularity of masas in [22,24], and one consequence of this was the formula

N (A1 ⊗ A2)
′′ = N (A1)

′′ ⊗ N (A2)
′′ (1.1)

of [24] for singular masas, which simply says that the tensor product of singular masas is again singular. Subsequently
Chifan [1] proved (1.1) for general masas (see also [16]). These papers collectively have provided strong motivation for the
work undertaken here. It also depends heavily on the recent theory of perturbations, developed primarily by Popa [5,16–19],
building on the work of Christensen [2] in which an important averaging technique is developed.
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A second crucial ingredient is the theory of subfactors [7,9,10,13,15]. The link between normalizers and subfactors was
made by Pimsner and Popa in [13]. Every normalizer u ∈ N (N) gives rise to a projection u∗eN u in the relative commutant
N ′ ∩〈M, eN 〉 for the basic construction 〈M, eN 〉 (see the next section for explanations of terminology). These projections have
canonical trace equal to one. In the finite index case, Proposition 1.7 of [13] shows that every such projection arises from a
normalizer in this way. In the infinite index situation, this breaks down and we are forced to work with the more general
one-sided normalizers, those unitaries u ∈ M satisfying uNu∗ ⊆ N . This containment can be strict, so normalizers and their
one-sided counterparts are distinct in general, as we show in Example 5.4. In the case of a finite index inclusion of factors
N ⊆ M , each one-sided normalizing unitary u induces an equivalence of containments N ⊆ M and uNu∗ ⊆ uMu∗ = M which
then have equal finite indices. This is incompatible with uNu∗ ⊆ N ⊆ M unless the first two algebras are equal, in which
case u is a normalizing unitary. A second case where equality occurs is for masas. For a masa A ⊆ M , any unitary u which
is a one-sided normalizer of A has the property that u Au∗ ⊆ uMu∗ = M is a masa in M contained inside the masa A. The
defining property of masas then implies that u Au∗ = A and u is also a normalizing unitary.

The contents of the paper are as follows. Section 2 establishes notation and reviews some well-known facts about the
basic construction. Section 3 examines the interplay between one-sided normalizers and projections in N ′ ∩ 〈M, eN 〉 when
N is irreducible. Here it is shown that every such projection f satisfies Tr( f ) � 1, and is of the form u∗eN u for a one-
sided normalizer u precisely when Tr( f ) = 1. This generalizes Lemma 1.9 of [13], which handles the finite index case,
and shows that the consideration of one-sided normalizers rather than just normalizers is essential. These results occur in
Theorem 3.5 which is the technical basis for Section 4, in which we characterize both one-sided normalizers and normalizers
for tensor products (Theorems 4.1 and 4.2). The last section is devoted to group–subgroup inclusions. When L(H) ⊆ L(G),
we characterize the normalizers and one-sided normalizers of L(H) in terms of their counterparts at the group level. The
ranges of projections in L(H)′ ∩ 〈L(G), eL(H)〉 are the L(H)-bimodules in �2(G). Those that correspond to projections of
finite trace are characterized algebraically in terms of left cosets and double cosets in Theorem 5.2, while the subsequent
examples show that the situation is much more complicated for projections of infinite trace.

The following useful analogy between masas and subfactors has been implicit in much of the last two sections. For a
masa A ⊆ M , the Pukánszky invariant is defined by using the algebra A′ = (A ∪ J A J )′ , and this can also be viewed as the
relative commutant A′ ∩ 〈M, e A〉. It is type I, and the integers (including ∞) which comprise the Pukánszky invariant come
from the various summands of type In in e⊥

A A′ . For irreducible inclusions of factors N ⊆ M , essentially the same algebra
N ′ ∩ 〈M, eN 〉 occurs, where eN is central just as e A is central in the masa case. When an abelian subgroup H ⊆ G generates
a masa L(H) in L(G), it is often the case that the Pukánszky invariant can be determined from the structure of the double
cosets H g H in G [4,23]. These may be identified with L(H)-bimodules in �2(G), and as such they play a significant part in
Section 5 where subfactors arising from subgroups are considered. The interplay between these various quantities has been
studied extensively in the theory of finite index inclusions of factors [9–11] but the methods developed there do not seem
helpful for the infinite index situation.

2. Notation and preliminaries

The basic object of study in this paper is an inclusion N ⊆ M of II1 factors, where the unique normalized faithful normal
trace on M is denoted by τ . We will always assume that these factors are separable although this is just for notational
convenience; the results are valid in general. We always assume that M is in standard form, so that it is represented as left
multiplication operators on the Hilbert space L2(M, τ ), or simply L2(M). We reserve the letter ξ to denote the image of
1 ∈ M in this Hilbert space, and J will denote the isometric conjugate linear operator on L2(M) defined by

J (xξ) = x∗ξ, x ∈ M, (2.1)

and extended by continuity to L2(M) from the dense subspace Mξ . Then L2(N) is a closed subspace of L2(M), and eN
denotes the projection of L2(M) onto L2(N). The basic construction is the von Neumann algebra generated by M and eN ,
and is denoted 〈M, eN 〉. Since M ′ ∩ B(L2(M)) = J M J , we also have 〈M, eN 〉′ ∩ B(L2(M)) = J N J . This shows that 〈M, eN 〉
is either type II1 or II∞ , and in both cases there is a unique semifinite normal trace Tr with the property that Tr(eN) = 1.
The Jones index can be described as Tr(1), although this is not the original definition. These are standard facts in subfactor
theory, and can be found in [9,10,13]. These sources also contain the following properties of the Jones projection eN which
we now list. We will use them subsequently without comment. The unique trace preserving conditional expectation of M
onto N is denoted EN .

(i) eN(xξ) = EN (x)ξ , x ∈ M .
(ii) eN xeN = EN (x)eN = eNEN(x), x ∈ M .

(iii) x 
→ eN x and x 
→ xeN are injective maps for x ∈ M .
(iv) {xeN y: x, y ∈ M} generates a strongly dense subalgebra of 〈M, eN 〉.
(v) Tr(xeN y) = τ (xy) for x, y ∈ M .

(vi) MeN is ∗-strongly dense in 〈M, eN 〉eN .
(vii) eN 〈M, eN 〉eN = NeN = eN N .

(viii) M ∩ {eN}′ = N .
(ix) Let Ni ⊆ Mi , i = 1,2, be inclusions of II1 factors and let Tri be the canonical trace on 〈Mi, eNi 〉, i = 1,2. Then
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〈M1, eN1〉 ⊗ 〈M2, eN2〉 ∼= 〈M1 ⊗ M2, eN1⊗N2
〉, (2.2)

and Tr1 ⊗ Tr2 is the canonical trace on the tensor product.

The last two sections are concerned with inclusions H ⊆ G of groups. The canonical basis for �2(G) is denoted
{δg : g ∈ G}, and we assume that G is represented on this Hilbert space by the left regular representation λ, so that
λsδt = δst for s, t ∈ G . The right regular representation ρ satisfies ρ(s) = Jλs J . As is standard, L(G) is used for the von
Neumann algebra generated by the left regular representation.

We will require the following lemma in Theorem 5.2. A similar result can be found in [25], but this is not quite in the
form that we need, so we offer a slightly more general version here.

Lemma 2.1. Let N ⊆ M be an inclusion of II1 factors on L2(M) such that N ′ ∩ M = C1. Let {φ1, . . . , φn} be a set of automorphisms
of M with the property that the restriction of each φ−1

j φi to N is not implemented by a unitary in M whenever i �= j. Let X ⊆ N and
Y ⊆ J M J be self-adjoint subsets which generate their respective containing factors and assume that 1 ∈ X. Then the von Neumann
subalgebra of Mn(B(L2(M))) generated by⎧⎪⎨

⎪⎩
⎛
⎜⎝

φ1(x)y
. . .

φn(x)y

⎞
⎟⎠ : x ∈ X, y ∈ Y

⎫⎪⎬
⎪⎭

is ⎧⎨
⎩

⎛
⎝ t1

. . .

tn

⎞
⎠ : ti ∈ B

(
L2(M)

)⎫⎬⎭ .

Proof. By the double commutant theorem, it suffices to show that the commutant of the first set of operators is the set of
diagonal scalar matrices. Commutation with⎧⎪⎨

⎪⎩
⎛
⎜⎝

y
. . .

y

⎞
⎟⎠ : y ∈ Y

⎫⎪⎬
⎪⎭

allows us to consider a matrix (mij) ∈ Mn(M). The conditions for this to commute with⎧⎪⎨
⎪⎩

⎛
⎜⎝

φ1(x)
. . .

φn(x)

⎞
⎟⎠ : x ∈ X

⎫⎪⎬
⎪⎭

are

φi(x)mij = mijφ j(x), x ∈ X, 1 � i, j � n, (2.3)

which then must hold for all x ∈ N . Since φi(N) has trivial relative commutant in M , while (2.3) shows that mijm∗
i j ∈

φi(N)′ ∩ M , we conclude that each mij is a scalar multiple of a unitary. The case i = j in (2.3) places mii ∈ φi(N)′ ∩ M = C1
so the diagonal entries are scalars.

Suppose that some mij �= 0 for a pair of integers i �= j. By scaling we may replace mij in (2.3) by a unitary u ∈ M . If we
apply φ−1

j , then we obtain

φ−1
j

(
φi(x)

)
φ−1

j (u) = φ−1
j (u)x, x ∈ N, (2.4)

which is contrary to the hypothesis that φ−1
j φi is not unitarily implemented on N . This shows that mij = 0 for i �= j,

completing the proof. �
3. One-sided normalizers and the basic construction

Suppose that N ⊂ M is an inclusion of II1 factors. When [M : N] < ∞, [13] shows that eN〈M, eN 〉 = eN M and there is a
bijective correspondence between U (M)/U (N) and projections with trace 1 in 〈M, eN 〉. In the infinite index situation these
properties no longer hold. An example in [6] shows that the first of these conditions can fail in the infinite index situation.

Proposition 3.1. Let N ⊂ M be an inclusion of II1 factors. Then the following conditions are equivalent:
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1. [M : N] < ∞.
2. eN〈M, eN 〉 = eN M.
3. Every projection in 〈M, eN 〉 with trace 1 is of the form u∗eN u for some unitary u ∈ M.

Proof. The equivalence between the first two conditions can be found in the remarks preceding [21, Corollary 4.2.5]
and 1 ⇒ 3 is the first part of Proposition 1.7 of [13]. It remains to show that 3 ⇒ 2. This follows as given any unitary
V ∈ 〈M, eN 〉, the projection V ∗eN V has trace one and so by hypothesis is of the form u∗eN u, for some unitary u ∈ M . Then
eN V = eN V u∗eN u ∈ eN M , as eN MeN = eN N . Condition 2 follows as the unitaries V span 〈M, eN 〉. �

Throughout the remainder of this section N ⊆ M will denote an irreducible inclusion of II1 factors. The unitary group of
M is written as U (M) and we use the notation

N (N) = {
u ∈ U (M): uNu∗ = N

}
, O N (N) = {

u ∈ U (M): uNu∗ ⊆ N
}

to denote respectively the group of unitary normalizers and the semigroup of one-sided unitary normalizers of N . Unlike
the first half of Proposition 1.7 of [13], the second half, characterizing projections of trace one in the relative commutant
N ′ ∩ 〈M, eN 〉, does generalize to the infinite index situation. In Theorem 3.5, we show that the trace of a projection in the
relative commutant N ′ ∩ 〈M, eN 〉 must be greater than or equal to one, and those projections of trace one are central and
of the form u∗eN u for some u ∈ O N (N). The techniques of [13] are intrinsically finite index in nature, so we are forced to
take a more circuitous approach. We begin by showing that such projections are central.

Lemma 3.2. Let u ∈ O N (N), and let φ : N → N be the ∗-homomorphism defined by φ(x) = uxu∗ , x ∈ N. Then eN is a central
projection in φ(N)′ ∩ 〈M, eN 〉. In particular, this projection is central in N ′ ∩ 〈M, eN 〉.

Proof. Let v be a fixed but arbitrary unitary in φ(N)′ ∩ 〈M, eN 〉. We begin by establishing that vξ = λξ for some λ ∈ C,
|λ| = 1.

Let η = vξ ∈ L2(M). By ‖ · ‖2-density of Mξ in L2(M), we may find a sequence {xn}∞n=1 in M such that

lim
n→∞‖η − xnξ‖2 = 0. (3.1)

Noting that v commutes with φ(N) and with J N J , we obtain

Jφ(w) Jφ(w)η = Jφ(w) Jφ(w)vξ = v Jφ(w) Jφ(w)ξ = vξ = η, w ∈ U (N), (3.2)

so η is an invariant vector for Jφ(w) Jφ(w). Then∥∥ Jφ(w) Jφ(w)xnξ − η
∥∥

2 = ∥∥ Jφ(w) Jφ(w)(xnξ − η)
∥∥

2 � ‖xnξ − η‖2. (3.3)

For each n ∈ N, let yn ∈ M be such that ynξ is the unique element of minimal ‖ · ‖2-norm in

convw{
φ(w)xnφ(w)∗ξ : w ∈ U (N)

}
,

by [21, Section 8.2]. Taking convex combinations and norm limits in (3.3) shows that

‖ynξ − η‖2 � ‖xnξ − η‖2, (3.4)

so (3.1) implies that

lim
n→∞‖ynξ − η‖2 = 0. (3.5)

Moreover, uniqueness of ynξ shows that

φ(w)ynφ(w)∗ = yn, w ∈ U (N), (3.6)

and so

φ(w)yn = ynφ(w), w ∈ U (N). (3.7)

Thus yn ∈ φ(N)′ ∩ M = C1 since N is irreducible. From (3.1) and (3.5), we conclude that η = λξ for some λ ∈ C. Since
‖η‖2 = ‖vξ‖2 = 1, it follows that |λ| = 1.

For an arbitrary x ∈ M ,

veN xξ = vEN (x)ξ = v JEN (x∗) Jξ. (3.8)

Since v commutes with J N J = 〈M, eN 〉′ , (3.8) shows that



688 R. Smith et al. / J. Math. Anal. Appl. 352 (2009) 684–695
veN xξ = JEN (x∗) J vξ = JEN (x∗) Jλξ = λEN (x)ξ = λeN xξ, x ∈ M. (3.9)

Thus veN = λeN , so

veN v∗ = (veN)(eN v∗) = λeN λ̄eN = eN , (3.10)

since |λ|2 = 1, showing that v commutes with eN . Since v ∈ φ(N)′ ∩ 〈M, eN 〉 was an arbitrary unitary, we conclude that eN

is central in this algebra.
The second statement of the lemma is an immediate consequence of taking u to be 1, whereupon φ(N) = N . �

Lemma 3.3. Let u ∈ O N (N) be a fixed but arbitrary unitary. Then u∗eN u is a minimal projection in N ′ ∩ 〈M, eN 〉 and is also central
in this algebra.

Proof. As in the proof of Lemma 3.2, let φ : N → N be the ∗-homomorphism defined by φ(x) = uxu∗ for x ∈ N . If y ∈
N ′ ∩ 〈M, eN 〉 and x ∈ N ,

(u∗ yu)x = u∗ yφ(x)u = u∗φ(x)yu = x(u∗ yu). (3.11)

Then (3.11) shows that u∗ yu ∈ N ′ ∩ 〈M, eN〉 whenever y ∈ N ′ ∩ 〈M, eN 〉. In particular, u∗eN u ∈ N ′ ∩ 〈M, eN 〉 by letting y
be eN .

To establish minimality of u∗eN u, consider a projection q ∈ N ′ ∩ 〈M, eN 〉 satisfying q � u∗eN u. Then uqu∗ � eN , so there
is a projection p ∈ N such that uqu∗ = peN , as implied by the relation eN 〈M, eN 〉eN = NeN from Section 2. For each x ∈ N ,

φ(x)peN = uxu∗uqu∗ = uxqu∗ = uqxu∗ = uqu∗φ(x) = peNφ(x) = pφ(x)eN , (3.12)

and so φ(x)p = pφ(x) for x ∈ N . Thus p ∈ φ(N)′ ∩ N ⊆ φ(N)′ ∩ M = C1, showing that p = 0 or p = 1. It follows that q = 0
or q = u∗eN u, proving minimality of u∗eN u in N ′ ∩ 〈M, eN 〉.

We now show centrality of u∗eN u. For z ∈ N and y ∈ N ′ ∩ 〈M, eN 〉,

uyu∗φ(z) = φ(z)uyu∗ (3.13)

by taking x = φ(z) in (3.11). So uyu∗ ∈ φ(N)′ ∩ 〈M, eN 〉. By Lemma 3.2, eN is central in the latter algebra from which we
obtain

eN uyu∗ = uyu∗eN . (3.14)

In (3.14), multiply on the left by u∗ and on the right by u. The result is that u∗eN u commutes with y for y ∈ N ′ ∩ 〈M, eN 〉,
showing centrality of u∗eN u. �

Recall the following proposition from [13, Proposition 1.7]. No adjustments are needed for the infinite index case.

Proposition 3.4. Let u, v ∈ U (M). Then u∗eN u = v∗eN v if, and only if, there exists w ∈ U (N) such that v = wu.

The following theorem is the main technical result which links one-sided normalizers to certain projections in
N ′ ∩ 〈M, eN 〉. The construction of the ∗-homomorphism φ in the proof comes from [16].

Theorem 3.5.

(i) Each non-zero projection f ∈ N ′ ∩ 〈M, eN 〉 satisfying Tr( f ) � 1 has the form u∗eN u for some u ∈ O N (N).
(ii) Each non-zero projection f ∈ N ′ ∩ 〈M, eN 〉 satisfies Tr( f ) � 1.

Proof. By Lemma 3.3, each projection u∗eN u, where u ∈ O N (N), lies in N ′ ∩ 〈M, eN 〉. Conversely, let f be a non-zero
projection in N ′ ∩ 〈M, eN 〉 satisfying Tr( f ) � 1, and choose a projection p ∈ N such that τ (p) = Tr( f ). Then Tr(peN) = τ (p),
so f and peN are equivalent projections in the factor 〈M, eN 〉. Let V ∈ 〈M, eN 〉 be a partial isometry with V V ∗ = peN and
V ∗V = f . For x, y ∈ N ,

V xV ∗V yV ∗ = V xf yV ∗ = V f xyV ∗ = V xyV ∗, (3.15)

and this shows that x 
→ V xV ∗ defines a ∗-homomorphism ψ : N → 〈M, eN 〉. Since eN V = V , the range of ψ is contained
in eN 〈M, eN 〉eN = NeN , and so there is a ∗-homomorphism φ : N → N such that

V xV ∗ = φ(x)eN = eNφ(x), x ∈ N. (3.16)

If we multiply (3.16) on the left by V ∗ and use f ∈ N ′ ∩ 〈M, eN 〉, f V ∗ = V ∗ and V ∗eN = V ∗ , we obtain
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xV ∗ = V ∗φ(x), x ∈ N. (3.17)

As in [16] (see also the discussion in [21, Section 9.4]) there exists a non-zero partial isometry w ∈ M such that

xw∗ = w∗φ(x), x ∈ N. (3.18)

Multiplication by w on the right in (3.18) shows that w∗w ∈ N ′ ∩ M = C1, and so w is a unitary. Since φ(1)eN = V V ∗ = peN

from (3.16), while φ(1) = 1 from (3.18), it follows that p = 1 and Tr( f ) = 1. Thus Tr( f ) < 1 is impossible, establishing (ii).
From (3.18), wN w∗ = φ(N) ⊆ N , and so w ∈ O N (N). Now consider W = eN w ∈ 〈M, eN 〉. This is a partial isometry

because W W ∗ = eN . Moreover, W ∗W = w∗eN w ∈ N ′ ∩ 〈M, eN 〉 and is central by Lemma 3.3. For x ∈ N ,

W ∗V x = W ∗φ(x)V = w∗eNφ(x)V = w∗φ(x)eN V = xw∗eN V = xW ∗V , (3.19)

using (3.17) and (3.18). Thus the operator W ∗V lies in N ′ ∩ 〈M, eN 〉. Now

(W ∗V )(W ∗V )∗ = W ∗V V ∗W = w∗eN w, (3.20)

so W ∗V is a partial isometry. Also

(W ∗V )∗(W ∗V ) = V ∗W W ∗V = f V ∗W W ∗V f (3.21)

and so is a projection q in N ′ ∩〈M, eN 〉 below f . From (3.20), q is equivalent in N ′ ∩〈M, eN 〉 to the central projection w∗eN w ,
so equality must hold. Thus w∗eN w = q � f , and faithfulness of the trace Tr gives w∗eN w = f since both projections have
unit trace. This completes the proof of (i), and (ii) has already been proved. �
4. Tensor products

Throughout this section, we will consider two irreducible inclusions Ni ⊆ Mi , i = 1,2, of II1 factors. Our objective is to
relate the normalizer of the tensor product to the normalizers of the individual algebras. In the context of masas Ai ⊆ Mi ,
i = 1,2, Chifan [1] has shown that N (A1 ⊗ A2)

′′ = N (A1)
′′ ⊗ N (A2)

′′ , and we will obtain a similar relationship for the Ni ’s
below. We will also be able to identify explicitly the normalizing unitaries for the tensor product.

We let M = M1 ⊗ M2 and N = N1 ⊗ N2. Tomita’s commutant theorem ensures that N ⊆ M is an irreducible inclusion.
The basic construction behaves well with respect to tensor products, and there is a natural isomorphism

〈M, eN 〉 ∼= 〈M1, eN1 〉 ⊗ 〈M2, eN2 〉, (4.1)

where eN = eN1 ⊗ eN2 . Let Tri , i = 1,2, denote the canonical traces on 〈Mi, eNi 〉 so that the canonical trace Tr on 〈M, eN 〉 is
given by Tr = Tr1 ⊗Tr2.

We begin by using the results of Section 3 to determine the one-sided normalizers of the tensor product.

Theorem 4.1. Each unitary v ∈ O N (N) has the form w(u1 ⊗ u2) where w ∈ U (N1 ⊗ N2) and ui ∈ O N (Ni), i = 1,2.

Proof. It is clear that any unitary of the stated form is a one-sided normalizer of N1 ⊗ N2. Conversely, consider a one-sided
unitary normalizer v of N1 ⊗ N2. Then v∗eN v is both a minimal and central projection in N ′ ∩ 〈M, eN 〉, by Lemma 3.3. Two
applications of Tomita’s commutant theorem show that

N ′ ∩ 〈M, eN 〉 = (
N ′

1 ∩ 〈M1, eN1 〉
) ⊗ (

N ′
2 ∩ 〈M2, eN2〉

)
(4.2)

and

Z
(
N ′ ∩ 〈M, eN 〉) = Z

(
N ′

1 ∩ 〈M1, eN1〉
) ⊗ Z

(
N ′

2 ∩ 〈M2, eN2 〉
)
, (4.3)

where Z(·) denotes the center of an algebra. If these centers are decomposed as direct sums of their atomic and diffuse
parts, then minimality for v∗eN v implies that v∗eN v = p1 ⊗ p2 for minimal projections pi ∈ Z(N ′

i ∩ 〈Mi, eNi 〉), i = 1,2. By
Theorem 3.5, Tri(pi) � 1, forcing equality since Tr(v∗eN v) = 1. A second application of Theorem 3.5 gives the existence of
unitaries ui ∈ O N (Ni) such that pi = u∗

i eNi ui for i = 1,2. Thus

v∗eN v = u∗
1eN1 u1 ⊗ u∗

2eN2 u2 = (u1 ⊗ u2)
∗eN(u1 ⊗ u2). (4.4)

By Lemma 3.4, there exists a unitary w ∈ U (N1 ⊗ N2) such that v = w(u1 ⊗ u2). �
The case of one-sided normalizers above easily leads to a similar result for unitary normalizers.

Theorem 4.2. Each unitary v ∈ N (N) has the form w(u1 ⊗ u2) where w ∈ U (N1 ⊗ N2) and ui ∈ N (Ni), i = 1,2.
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Proof. Clearly each unitary of the stated form is a unitary normalizer of N . Conversely, let v ∈ N (N). Viewing v as a
one-sided normalizer, Theorem 4.1 implies that v has the form v = w(u1 ⊗ u2) where w ∈ U (N1 ⊗ N2) and ui ∈ O N (Ni)

for i = 1,2. Then w∗v ∈ N (N1 ⊗ N2), showing that ui ∈ N (Ni), otherwise (u1 ⊗ u2)
∗(N1 ⊗ N2)(u1 ⊗ u2) would be strictly

contained in N1 ⊗ N2. �
Corollary 4.3. Let Ni ⊆ Mi, i = 1,2, be irreducible inclusions of II1 factors. Then

O N (N1 ⊗ N2)
′′ = O N (N1)

′′ ⊗ O N (N2)
′′ (4.5)

and

N (N1 ⊗ N2)
′′ = N (N1)

′′ ⊗ N (N2)
′′. (4.6)

Proof. This is immediate from the characterizations of one-sided and two-sided normalizers in Theorems 4.1 and 4.2. �
Corollary 4.4. Let Ni ⊆ Mi, i = 1,2 be inclusions of II1 factors with Ni singular in Mi . Then N1 ⊗ N2 is singular in M1 ⊗ M2 .

Proof. This is immediate from Corollary 4.3 as a singular subfactor is automatically irreducible. �
Remark 4.5. The result of Theorem 4.2 can be false in more general situations. Consider two regular masas Ai ⊆ Mi , i = 1,2.
Then A1 ⊗ A2 is a regular masa in M1 ⊗ M2 since

{
u1 ⊗ u2: ui ∈ N (Ai)

} ⊆ N (A1 ⊗ A2).

Choose projections pi ∈ Ai of equal trace 1/2, so that p1 ⊗ 1 and 1 ⊗ p2 have equal trace in A1 ⊗ A2. From [14], there exists
a unitary u ∈ N (A1 ⊗ A2) such that u(p1 ⊗ 1)u∗ = 1 ⊗ p2. Then u cannot have the form (u1 ⊗ u2)w for w ∈ U (A1 ⊗ A2)

and ui ∈ N (Ai), since this would imply that

1 ⊗ p2 = u(p1 ⊗ 1)u∗ = (u1 ⊗ u2)(p1 ⊗ 1)(u1 ⊗ u2)
∗ = (

u1 p1u∗
1 ⊗ 1

)
, (4.7)

which is impossible.

5. Group factors

This section is concerned with irreducible inclusions of II1 factors which arise from infinite index inclusions of countable
discrete groups. We examine the normalizers of L(H) ⊆ L(G) when H ⊆ G , and relate these to the algebraic normalizers
of H as a subgroup of G . One-sided normalizers will again play a role, so apart from the standard notation

NG(H) = {
g ∈ G: g H g−1 = H

}
for the normalizer, we also introduce the semigroup of one-sided normalizers

O N G(H) = {
g ∈ G: g H g−1 ⊆ H

}
.

Subsequently we will exhibit situations where these two normalizers are distinct. To examine these normalizers, we look
at the L(H)-bimodules in �2(G). Each projection f ∈ L(H)′ ∩ 〈L(G), eL(H)〉 has a range which is invariant under left and
right multiplications by elements of L(H). Conversely, any norm closed L(H)-bimodule in �2(G) is the range of such a
projection f . The connection between bimodules and one-sided normalizers is then given by Theorem 3.5.

In the case of finite index inclusions of factors, bimodules have been extensively studied [9,11,13] but new phenomena
occur in the infinite index situation. In this section we investigate the structure of L(H)′ ∩ 〈L(G), eL(H)〉. In Theorem 5.2 we
characterize the bimodules for projections of finite trace, although the structure can be much more complicated when pro-
jections of infinite trace are considered. We recall from Theorem 3.5(ii) that any non-zero projection f ∈ L(H)′ ∩〈L(G), eL(H)〉
satisfies Tr( f ) � 1.

We will need the simple lemma below, which characterizes algebraically group–subgroup inclusions which give rise to an
irreducible inclusion of subfactors. The proof is standard and can be constructed by following the argument that a countable
discrete group G gives rise to a factor L(G) if, and only if, G is I.C.C. from [12].

Lemma 5.1. Let K ⊆ H ⊆ G be an inclusion of countable discrete groups.

(i) L(H) is irreducible in L(G) if and only if each g ∈ G\{e} has infinitely many H-conjugates;
(ii) If G is I.C.C., L(H) is irreducible in L(G) and K has finite index in H, then L(K ) is irreducible in L(G).
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In order to motivate the next theorem, consider an inclusion H ⊆ G of countable discrete groups such that
L(H)′ ∩ L(G) = C1. Then, for g ∈ G , the operator λgeL(H)λ

∗
g has unit trace and is the projection onto λg�

2(H), the closed
subspace generated by a left coset g H of H . If we have a closed subspace generated by a double coset H g H with associated
projection f , then f ∈ L(H)′ . Moreover, if H g H is written as the disjoint union of left cosets {gi H}i∈I , then

f =
∑
i∈I

λgi eL(H)λ
∗
gi

∈ L(H)′ ∩ 〈
L(G), eL(H)

〉
,

and so Tr( f ) is the cardinality of the set I , which is either ∞ or a finite integer. These remarks also apply to finite unions
of double cosets. The following result gives the converse of this discussion.

Theorem 5.2. Let H ⊆ G be an inclusion of countable discrete groups such that L(H)′ ∩ L(G) = C1, and let f ∈ L(H)′ ∩ 〈L(G), eL(H)〉
be a non-zero projection such that Tr( f ) < ∞. Then Tr( f ) is an integer, and there exist g1, . . . , gn ∈ G such that the range of f is the
direct sum

⊕n
i=1 λgi �

2(H). In particular, the range of f is a finite sum of L(H)-bimodules generated by double cosets H g H each of
which is a finite sum of right L(H)-modules generated by left cosets g H.

Proof. We consider a non-zero projection f ∈ L(H)′ ∩ 〈L(G), eL(H)〉 with Tr( f ) < ∞, and we write Tr( f ) = (n −1)+μ where
n ∈ N and μ ∈ (0,1]. In the course of the proof it will be shown that μ = 1.

Choose a projection p ∈ L(H) with τ (p) = μ. Following the approach of [13], the diagonal projections

P1 =

⎛
⎜⎜⎜⎜⎝

f
0

. . .

0
0

⎞
⎟⎟⎟⎟⎠ and P2 =

⎛
⎜⎜⎜⎜⎝

eL(H)

eL(H)

. . .

eL(H)

peL(H)

⎞
⎟⎟⎟⎟⎠ (5.1)

in Mn(〈L(G), eL(H)〉) have equal finite traces and so are equivalent in this factor. Thus there exists a column matrix V =
(v1, . . . , vn)T with entries vi ∈ 〈L(G), eL(H)〉 such that V ∗V = f and V V ∗ = P2. In particular, v∗

i eL(H) = v∗
i , 1 � i � n. As in

[16] (see also [21, Section 8.4]), the map x 
→ V xV ∗ defines a homomorphism ψ : L(H) → Mn〈L(G), eL(H)〉 whose range lies
under P2, and so there is a homomorphism φ : L(H) → Mn(L(H)) such that

ψ(x) = φ(x)P2, φ(1) =

⎛
⎜⎜⎝

1
. . .

1
p

⎞
⎟⎟⎠ , (5.2)

for x ∈ L(H). Then

V x = V f x = V xf = V xV ∗V = φ(x)P2 V = φ(x)V , x ∈ L(H), (5.3)

so

xV ∗ = V ∗φ(x), x ∈ L(H), (5.4)

by taking adjoints in (5.3). Note that (5.4) is an equality of 1 × n row operators with entries from 〈L(G), eL(H)〉. Let η j =
v∗

j ξ ∈ �2(G), 1 � j � n. For a fixed j, the Kaplansky density theorem allows us to choose a uniformly bounded net (wαeL(H))

converging ∗-strongly to v∗
j eL(H) , where wα ∈ L(G). For each y ∈ L(H),

v∗
j yξ = lim

α
wα yξ = lim

α
J y∗ J wαξ = η j y, (5.5)

and this equality then holds for each j, 1 � j � n. Now apply (5.4) to column vectors whose only non-zero entries are ξ in
the jth component, 1 � j � n, and use (5.5) to conclude that

x(η1, η2, . . . , ηn) = (η1, η2, . . . , ηn)φ(x), x ∈ L(H), (5.6)

where the right action of L(H) on �2(G) is used to define the multiplication on the right-hand side of this equation. By
putting x = 1 in (5.6), we see that ηn = ηn p, so (5.6) can also be written as

u(η1, . . . , ηn)φ(u∗) = (η1, . . . , ηn), u ∈ U
(
L(H)

)
. (5.7)

Choose a sequence (y1,mξ, . . . , yn,mξ), m � 1, converging to (η1, . . . , ηn) in ‖ · ‖2-norm where yi,m ∈ L(G). The convex sets

Km = convw{
u(y1,m, . . . , yn,m)φ(u∗): u ∈ U

(
L(H)

)}
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are weakly compact in L(G) × · · · × L(G), so the image in �2(G) ⊕ · · · ⊕ �2(G) is also weakly compact and weakly closed.
Since Km is invariant for the action u · φ(u∗), the unique element (w1,mξ, . . . , wn,mξ) ∈ Km of minimal ‖ · ‖2-norm, with
wi,m ∈ L(G), satisfies

x(w1,m, . . . , wn,m) = (w1,m, . . . , wn,m)φ(x), x ∈ L(H). (5.8)

Moreover, limm→∞ ‖ηi − wi,mξ‖2 = 0 for 1 � i � n. It follows from (5.8) that
∑n

i=1 wi,m w∗
i,m ∈ L(H)′ ∩ L(G) = C1 for each

m � 1. Thus the ‖ · ‖2-norm and operator norm agree for (w1,m, . . . , wn,m), m � 1. Since these converge to (η1, . . . , ηn),
they are bounded in ‖ · ‖2-norm and hence in operator norm. By dropping to a subnet, we may further assume that they
converge weakly to a row operator (w1, . . . , wn) ∈ L(G) × · · · × L(G), whereupon ηi = wiξ for 1 � i � n. From (5.5), we
conclude that

v∗
j yξ = η j y = w jξ y = w j yξ, y ∈ L(H), (5.9)

and so v∗
j eL(H) = w jeL(H) for 1 � j � n. Moreover, (5.6) becomes

x(w1, . . . , wn) = (w1, . . . , wn)φ(x), x ∈ L(H), (5.10)

and wn p = wn , by putting x = 1.
Let {gi H: i � 1} be a listing of the left H-cosets in G . Then there exist row operators (z1, j, . . . , zn, j), j � 1, with

zi, j ∈ L(H) such that

(w1, . . . , wn) =
∞∑
j=1

λg j (z1, j, . . . , zn, j), (5.11)

where the sum, which could be finite, converges in ‖ · ‖2-norm, and zn, j p = zn, j . For each h ∈ H , (5.10) gives

λh

∞∑
j=1

λg j (z1, j, . . . , zn, j) =
∞∑
j=1

λg j (z1, j, . . . , zn, j)φ(λh). (5.12)

For convenience, write Z j = (z1, j, . . . , zn, j) and suppose that the numbering has been chosen so that ‖Z j‖2 � ‖Z j+1‖2,
for j � 1, possible because ‖Z j‖2 → 0 as j → ∞. If ‖Z j‖2 �= 0, then S j = {i: ‖Zi‖2 = ‖Z j‖2} is a finite set. Each h ∈
H defines a permutation of the left H-cosets by gi H 
→ hgi H , and so there is a permutation πh of {1,2, . . .} such that
hgi H = gπh(i)H . The map h 
→ πh is then a homomorphism of H into the group of permutations of N. Moreover, there are
maps αi : H → H such that hgi = gπh(i)αi(h), h ∈ H , and (5.12) becomes

∞∑
j=1

λgπh ( j)λαi(h)(z1, j, . . . , zn, j) =
∞∑
j=1

λg j (z1, j, . . . , zn, j)φ(λh). (5.13)

It follows that

λgπh ( j)λαi(h) Z j = λgπh ( j) Zπh( j)φ(λh) (5.14)

for each j. Taking 2-norms, we obtain ‖Z j‖2 = ‖Zπh( j)‖2, so each h ∈ H permutes the cosets {gi H : i ∈ S j}. We will now
show that the number of non-zero Z j ’s must be at least n.

The range of f is the range of V ∗ = V ∗eL(H) and this operator is (w1eL(H), . . . , wneL(H)). Thus the range of f is contained
in the closure of{

n∑
i=1

wiζi: ζi ∈ �2(H)

}
.

Indeed, equality must hold since the projection onto this subspace is

n∑
i=1

wieL(H)w∗
i = V ∗V = f .

If Z j , 1 � j � r < n, are the only non-zero Z j ’s, then (5.11) shows that the range of f is contained in{
r∑

i=1

λgi ζi: ζi ∈ �2(H)

}

and the projection onto this space is
∑r

i=1 λgi eL(H)λ
∗
gi

which has trace r � n − 1, contradicting Tr( f ) > n − 1.
Thus we may pick an integer N � n such that ‖ZN‖2 > ‖ZN+1‖2. Each h ∈ H permutes the left cosets {gi H: 1 � i � N},

so the restriction of πh to {gi H: 1 � i � N} gives a homomorphism of H into the finite group of permutations of
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{gi H: 1 � i � N}, and so the kernel K has finite index in H . For each 1 � i � N , kgi H = gi H for k ∈ K , so g−1
i · gi induces a

homomorphism φi : K → H for 1 � i � N . Since each Z j �= 0 for 1 � j � N , from (5.11) we can find vectors (ζ1, j, . . . , ζn, j),
1 � j � N , ζi, j ∈ �2(H), such that

∑n
i=1 wiζi, j has a non-zero λg j -coefficient. A suitable linear combination then gives a

vector
∑∞

j=1 λg j ζ j ∈ Ran f , where ζ j ∈ �2(H), j � 1, and are non-zero for 1 � j � N . Pre-multiplication by K and post-
multiplication by H allow us to find vectors in the range of f whose first N components are

N∑
i=1

λgi φi(λk) Jλ∗
h Jζi,

which we write in matrix form as

(λg1 , . . . , λgN )

⎛
⎜⎝

φ1(λk) Jλ∗
h J

. . .

φN (λk) Jλ∗
h J

⎞
⎟⎠

⎛
⎜⎝

ζ1
.
.
.

ζN

⎞
⎟⎠ . (5.15)

For i �= j, φiφ
−1
j (x) = λg−1

i g j
xλg−1

j gi
for x ∈ L(G). If there is a unitary u ∈ L(H) with φiφ

−1
j (y) = uyu∗ for all y ∈ L(K ),

then u∗λg−1
i g j

∈ L(K )′ ∩ L(G) = C1 by Lemma 5.1. Hence g−1
i g j ∈ H , which is a contradiction as gi H �= g j H . We can now

apply Lemma 2.1 to deduce that the diagonal matrices in (5.15) generate the von Neumann algebra⎧⎨
⎩

⎛
⎝ t1

. . .

tN

⎞
⎠ : ti ∈ B

(
�2(H)

)⎫⎬⎭ .

Since ζi �= 0 for 1 � i � N , we see that

span

⎧⎪⎨
⎪⎩

⎛
⎜⎝

φ1(λk) Jλ∗
h J

. . .

φN (λk) Jλ∗
h J

⎞
⎟⎠

⎛
⎜⎝

ζ1
.
.
.

ζN

⎞
⎟⎠ : k ∈ K , h ∈ H

⎫⎪⎬
⎪⎭

is dense in the direct sum of N copies of �2(H). If f̃ = ∑N
i=1 λgi eL(H)λ

∗
gi

, then f̃ is a projection of trace N . The range projec-

tion of f̃ f is f̃ while the range projection of f f̃ lies under f . Since these range projections are equivalent in 〈L(G), eL(H)〉,
we conclude that Tr( f̃ ) � Tr( f ). Thus

n � N = Tr( f̃ ) � Tr( f ) = n − 1 + μ, (5.16)

forcing μ = 1, and N = n. In particular, no choice of N > n was possible. Thus only λg j terms for j � n appear in (5.11) and

so f � f̃ . Equality of the traces then gives f = f̃ , and the result follows. �
We can now deduce that, modulo a unitary from the smaller algebra, normalizers of irreducible subfactors coming from

group–subgroup inclusions are given by normalizing elements of the group.

Corollary 5.3. Let H ⊆ G be an inclusion of countable discrete groups, where G is I.C.C. and L(H) is irreducible in L(G).

(i) Each u ∈ O N (L(H)) has the form wλg for w ∈ U (L(H)) and g ∈ O N G(H);
(ii) each u ∈ N (L(H)) has the form wλg for w ∈ U (L(H)) and g ∈ NG(H).

Proof. Given a one-sided normalizer u of L(H) in L(G), the projection u∗eL(H)u lies in L(H)′ ∩ 〈L(G), eL(H)〉 so by Theo-
rem 5.2, there exists g ∈ G with u∗eL(H)u = λ∗

geL(H)λg . Proposition 3.4 gives a unitary w ∈ L(H) with u = wλg . Since w∗u
is a one-sided normalizer of L(H), it follows that λg ∈ O N (L(H)) and so g ∈ O N G(H). For (ii), suppose additionally that u
is a normalizer of L(H). Then λg = w∗u normalizes L(H) so that g ∈ NG(H). �
Example 5.4. An immediate consequence of Corollary 5.3(ii) is that L(H) is singular in L(G) precisely when NG(H) = H .
Here we give examples of singular inclusions L(H) ⊆ L(G) which nevertheless have non-trivial one-sided normalizers.

Consider the free group F∞ , where the generators are written {gi: i ∈ Z}, and for each n ∈ Z, let Hn be the subgroup
generated by {gi: i � n}. The shift i 
→ i + 1 on Z induces an automorphism φ of F∞ defined on generators by φ(gi) =
gi+1, i ∈ Z, and φ maps Hn into Hn+1 ⊆ Hn . Then n 
→ φn gives a homomorphism α : Z → Aut(F∞), and we let G be
the semidirect product F∞ �α Z. We abuse notation and write the elements of this group as wφn where w ∈ F∞ . The
multiplication is(

vφn)(
wφm) = (

vφn(w)
)
φn+m, v, w ∈ F∞, m,n ∈ Z. (5.17)
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We then consider the inclusion Hn ⊆ F∞ �α Z. By construction φHnφ−1 = Hn+1 so φ is a one-sided normalizer of Hn for
each n ∈ Z. We now show that the only normalizers of Hn lie in Hn .

Suppose that vφk has the property that vφk Hnφ−k v−1 = Hn . If v ∈ Hn then Hn+k = Hn , forcing k = 0, and we see that
vφk ∈ Hn . Thus we may assume that v /∈ Hn . Let j be the minimal integer such that g j appears in v . Then j < n otherwise
v ∈ Hn . Then Hn+k = v−1 Hn v ⊆ H j , so n + k � j. Take r > n such that the letter gr does not appear in the reduced word v .
Then there is no cancellation in v−1 gr v . In particular, the letter g j cannot cancel from v−1 gr v ∈ v−1 Hn v = Hn+k , and
so n + k � j, showing that v−1 Hn v = H j . There is also no cancellation in vgr v−1, so vgr v−1 ∈ v H j v−1 is not contained
in Hn , a contradiction. Thus there are no non-trivial normalizers of Hn , so L(Hn) is singular in L(G) although it does have
non-trivial one-sided normalizers. Further algebraic calculations along the same lines show that

O N G(Hn) = {
vφr: v ∈ Hn, r � 0

}
, n ∈ Z. (5.18)

We omit the easy details.
It is worth noting that the disparity between normalizers and one-sided normalizers in this example is extreme; the

former generate L(Hn) while the latter generate L(G).

Remark 5.5. Just as in Remark 4.5, the analogous statement to Corollary 5.3 is false in the abelian situation. Let H be an
abelian subgroup of an I.C.C. group G such that every element of G \ H has infinitely many H-conjugates—this is Dixmier’s
condition [3], which is equivalent to L(H) being a masa in L(G). Normalizers of L(H) are not necessarily of the form uλg
for some g ∈ NG(H) and a unitary u ∈ L(H). This leads to a question to which we do not know the answer. Suppose that
NG(H) = H . Must L(H) be singular in L(G)? The methods used to prove singularity of masas coming from subgroups ([22],
[20, Lemma 2.1]) require additional algebraic conditions on H ⊆ G .

Example 3.5 of [6] demonstrates (for the inclusion of free groups F2 ⊆ F3) that L(H)′ ∩ 〈L(G), eH 〉 can contain a II∞
factor. Our final example shows that, even in the singular infinite index case, this algebra can also be atomic, abelian and
generated by its minimal projections of finite trace. Furthermore, the traces of these minimal projections can be uniformly
bounded. We note that any countable discrete group G can act on F|G| by outer automorphisms. Index the generators of
F|G| by {gt : t ∈ G} and let βs ∈ Aut(F|G|) be defined on generators by gt 
→ gst , s, t ∈ G . The semidirect product F|G| �β G is
a countable I.C.C. group.

Example 5.6. Let Z2 act on Z by

αm(n) = (−1)mn, n ∈ Z, m ∈ Z2, (5.19)

and then let Z �α Z2 act on F∞ by an action β as described above. Set G = F∞ �β (Z �α Z2) and let H be the subgroup
generated by F∞ and Z2. Each g ∈ G has infinitely many H-conjugates and so L(H) is irreducible in L(G). Any g ∈ G\H
contains a non-zero group element n ∈ Z, and then properties of the semidirect product show that the double coset H g H
is a union of two left cosets generated by ±n ∈ Z. By Theorem 5.2, we see that each of these double cosets corresponds to
a minimal projection in L(H)′ ∩ 〈L(G), eL(H)〉 of trace 2, so this algebra is abelian and any projection in it under 1 − eL(H) is
an orthogonal sum of projections of trace 2.

Many variations on this theme are possible. Replace Z2 by a group of order n and replace Z by an infinite group on
which it acts. The minimal projections will then all have integer trace bounded by n.
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