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1. Introduction and Main Results

Let f (z) be a transcendental entire function on C. The order and lower order of f (z) are defined, respectively, by

λ( f ) = lim sup
r→∞

log log M(r, f )

log r
and μ( f ) = lim inf

r→∞
log log M(r, f )

log r
,

where M(r, f ) = max{| f (z)|: |z| = r}. Two entire functions f and g are said to be permutable if they satisfy

f
(

g(z)
) = g

(
f (z)

)
for all z ∈ C. The study of permutability of two entire functions has attracted many researchers, see [1,4,5,7–10]. In this
paper, we consider permutability of two entire functions one of which is a solution of an algebraic differential equation.

For each multi-index λ = (i0, i1, . . . , in) with i j ∈ N ∪ {0}, set

Mλ[w](z) = wi0 (w ′)i1 · · · (w(n)
)in

,

and D(λ) = i0 + i1 + · · · + in . Then a differential polynomial P [w] is an expression of the following form

P [w](z) =
∑
λ∈ J

aλ(z)Mλ[w](z)

where J is a finite set of multi-indices, aλ(z) a polynomial and put D[P ] = max{D(λ): λ ∈ J }. An equation of the form
P [w](z) = 0 is called an algebraic differential equation.

In [9], Zheng and Yang established the following, which extends the results in [4] and [10].

Theorem A. Let f (z) and g(z) be permutable entire functions of finite order and f (z) of positive lower order. If f (z) satisfies an alge-
braic differential equation P [w](z) = 0, then g(z) also satisfies an algebraic differential equation Q [w](z) = 0 with D[Q ] � D[P ].
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Recently, Bergweiler [1] proved Theorem A excluding D[Q ] � D[P ] without the hypothesis about the growth of f (z)
and g(z) in terms of a result of Ostrowski about a composition of two analytic functions satisfying an algebraic differential
equation. It is obvious that in his result the inequality D[Q ] � D[P ] may not hold, for instance, if f (z) satisfies a linear
differential equation with polynomial coefficients, then f ( f (z)) can in no way satisfy such a linear differential equation, for
f ( f (z)) is of infinite growth order.

In light of Theorem A, we determine the relationship between two permutable entire functions satisfying certain differ-
ential equations and establish the following.

Theorem 1.1. Let f (z) and g(z) be permutable transcendental entire functions of finite order and of positive lower order. Assume that
f (z) satisfies the following algebraic differential equation

a0(z)w(n) +
∑
λ∈ J

aλ(z)Mλ[w](z) = 0 (1)

where J is a finite set consisting of multi-indices with the form: for n � 2, λ = (i0, i1, . . . , in−2); for n = 1, λ = (i0) with i0 �= 0 and
a0(z)(�≡ 0) and aλ(z) are polynomials. If f (z) cannot satisfy any algebraic differential equation of order less than n, then

g(z) = af (z) + b

for two complex numbers a(�= 0) and b.

There exists a special case, that is, w ′ = α(z)w + β(z) for a pair of rational functions α(z) and β(z)(�≡ 0), not contained
in Theorem 1.1. However for this case we can get a pair of rational functions A(z) and B(z) such that A( f (z)) = B(g(z)).
Actually, when one of α(z) and β(z) is a constant, we can still deduce g(z) = af (z) + b.

We have a consequence of Theorem 1.1.

Corollary 1.1. Let f (z) and g(z) be permutable transcendental entire functions and g(z) is of finite order. Assume that f (z) satisfies
the following linear differential equation with n > 1

an(z)w(n) + an−2(z)w(n−2) + · · · + a0(z)w = P (z) (2)

where each a j(z) is a polynomial and P (z) a polynomial but does not satisfy any linear differential equation of order less than n. Then

g(z) = af (z) + b

for two complex numbers a(�= 0) and b.

We make remarks on Corollary 1.1. In the corollary, actually f (z) is of finite order and of positive lower order, for f (z)
is assumed to satisfy Eq. (2) (see Laine [3]). In view of Theorem A, g(z) also satisfies such an equation and then g(z) is of
positive lower order. Thus, Corollary 1.1 follows from the Theorem 1.1.

As a special case, we consider the second order linear differential equation

w ′′ + P (z)w = 0 (3)

with polynomial P (z). If f (z) satisfies (3) but not the equation w ′ + R(z)w = 0 with R(z) being a rational function, then
in view of Corollary 1.1 we have g(z) = af (z) + b. Assume now that f (z) satisfies such an equation w ′ + R(z)w = 0 and
therefore f ′(z)

f (z) is a rational function. This immediately implies that f (z) has only finitely many zeros and so we can write

f (z) = A(z)eB(z)

for a pair of polynomials A(z) and B(z) where B(z) is not a constant. From Theorem 3 of [10] (see Lemma 2.3 in the sequel),
we have g(z) = af (z) + b for two complex numbers a(�= 0) and b. Thus, we have proved the following result.

Corollary 1.2. Let f (z) and g(z) be as in Corollary 1.1. Assume that f (z) satisfies (3). Then g(z) = af (z)+b for two complex numbers
a(�= 0) and b.

What we should mention is that there are several classes of important functions satisfying Eq. (3), for examples, the Airy
function satisfying w ′′ − zw = 0 and s1/s√z J1/s(

2zs/2

s ) satisfying w ′′ + zs−2 w = 0 with s � 2 where J stands for the Bessel
function.

2. Proofs of our results

In order to prove Theorem 1.1, we first of all establish a result which is also of independent significance. To this end, we
need Theorem 1 of Yanagihara [6], which is stated as a lemma as follows.
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Lemma 2.1. Let P (z) and Q (z) be polynomials of degree greater than one. If the equation

P
(

f (z)
) = f

(
Q (z)

)
admits a meromorphic solution f (z), then deg P = deg Q and the solution f (z) is not transcendental.

Now we establish the desired result.

Lemma 2.2. Let f (z) and g(z) be permutable transcendental entire functions. If f (z) = R(g(z)) for a non-constant rational function
R(z), then g(z) = af (z) + b.

Proof. From the equality f (g(z)) = g( f (z)), we have

R(g) ◦ g(z) = f (g) = g( f ) = g ◦ R
(

g(z)
)

so that

R
(

g(z)
) = g

(
R(z)

)
.

Since R(g(z)), and hence g(R(z)) from the above equality, is meromorphic, R(z) must be a polynomial. Thus, by applying
Lemma 2.1 yields that R(z) is linear, that is, R(z) = az + b. Lemma 2.2 follows.

Lemma 2.2 leads us to consider a general case. Let P (u, v) be an irreducible non-constant complex polynomial in u
and v .

Question. Is g(z) a linear expression of f (z) or do there exist a pair of rational functions A(z) and B(z) with degree two such that
A( f (z)) = B(g(z)), if f (z) and g(z) are permutable and P ( f (z), g(z)) ≡ 0?

Possibility of the second case in the Question can be confirmed by Example 1 of Ng [5]. Actually, for a, c ∈ C with
e4a = −1 and c �= 0,

f (z) = 2ci cos

(
az2

2c2

)
and g(z) = 2ci sin

(
az2

2c2

)

are permutable and f 2 = −g2 − 2c2.

Assume, in addition, that f (z) is left-side prime, that is, if f (z) can be factorized into the form S(h(z)) for a meromorphic
function S(z) and a transcendental entire function h(z), then S(z) is a fractional linear transformation. We can confirm the
above question.

Actually, by employing the argument in the proof of Lemma 1 of Fuchs and Song [2] to P ( f (z), g(z)) ≡ 0, we have an
entire function h(z) and a pair of rational functions U (z) and V (z) with at most one (possibly multiple) pole such that

f (z) = U
(
h(z)

)
and g(z) = V

(
h(z)

)
.

Then U (z) is a fractional linear transformation and so

g(z) = V
(
h(z)

) = V
(
U−1) ◦ f (z)

where U−1 is the inverse of U (z) and it is also a fractional linear transformation, and V (U−1)(z) is a rational function. The
result that g = af + b follows from Lemma 2.2.

The following is Theorem 3 of [10]. �
Lemma 2.3. Let f (z) = Q + HeP , where Q and H(�≡ 0) are polynomials and P is a non-constant polynomial and let g(z) be a
non-linear entire function of finite order, permutable with f . Then g(z) = af (z) + b.

In the proof of Theorem 1.1, we need the Nevanlinna theory, which the reader is assumed to be familiar with. By T (r, f )
and m(r, f ) we mean in the standard way the characteristic and proximity functions of a meromorphic function f and
by N(r, f = a) and N(r, f = a) for a ∈ C ∪ {∞} the integrated counting functions for the roots counting multiplicities and
distinct roots of f (z) = a in {|z| < r}, respectively.

When f (z) is entire, then T (r, f ) = m(r, f ). Furthermore, m(r, f ′/ f ) = O (log r), provided that f (z) is of finite order;
and T (r, f ) = O (log r) if and only if f is rational. The reader is referred to [3] for more details.

Now we are in position to prove Theorem 1.1.

Proof of Theorem 1.1. Let us begin our proof with the case n > 1. Differentiating both sides of f (g(z)) = g( f (z)) step by
step, we obtain

f ′(g) = f ′
′ g′( f )
g
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and

f ′′(g)g′ =
(

f ′

g′

)
f ′ g′′( f ) +

(
f ′

g′

)′
g′( f )

or equivalently

f ′′(g) =
(

f ′

g′

)2

g′′( f ) + 1

g′

(
f ′

g′

)′
g′( f ).

Assume by induction that for k � 1 we have

f (k)(g) =
(

f ′

g′

)k

g(k)( f ) + k(k − 1)

2

1

g′

(
f ′

g′

)k−2( f ′

g′

)′
g(k−1)( f ) + Rk, (4)

where

Rk =
k−2∑
j=0

φk, j g( j)( f )

with coefficients φk, j being rational functions in f ′, . . . , f (k) and g′, . . . , g(k) . We differentiate both sides of (4) to obtain

f (k+1)(g)g′ =
(

f ′

g′

)k

f ′ g(k+1)( f ) + k

(
f ′

g′

)k−1( f ′

g′

)′
g(k)( f ) + k(k − 1)

2

(
f ′

g′

)k−1( f ′

g′

)′
g(k)( f )

+ k(k − 1)

2

[
1

g′

(
f ′

g′

)k−2( f ′

g′

)′]′
g(k−1)( f ) + R ′

k

=
(

f ′

g′

)k

f ′ g(k+1)( f ) + k(k + 1)

2

(
f ′

g′

)k−1( f ′

g′

)′
g(k)( f )

+ k(k − 1)

2

[
1

g′

(
f ′

g′

)k−2( f ′

g′

)′]′
g(k−1)( f ) + R ′

k.

It follows that

f (k+1)(g) =
(

f ′

g′

)k+1

g(k+1)( f ) + k(k + 1)

2

1

g′

(
f ′

g′

)k−1( f ′

g′

)′
g(k)( f ) + Rk+1

where

Rk+1 =
k−1∑
j=0

φk+1, j g( j)( f )

with

φk+1,k−1 = k(k − 1)

2

1

g′

[
1

g′

(
f ′

g′

)k−2( f ′

g′

)′]′
+ φk,k−2 f ′/g′

and φk+1, j = (φ′
k, j + φk, j−1 f ′)/g′ (0 � j � k − 2),φk,−1 ≡ 0, φ′

k,k−1 ≡ 0. Then the coefficients φk+1, j (0 � j � k − 1) in the

expression of Rk+1 are rational functions in f ′, . . . , f (k+1) and g′, . . . , g(k+1) . Thus, in view of the induction principle, the
equality (4) holds for any natural number k.

From the assumptions of Theorem 1.1, we have

a0(z) f (n)(z) +
∑
λ∈ J

aλ(z)Mλ[ f ](z) = 0. (5)

From (5), with g(z) in place of z, we get

a0
(

g(z)
)

f (n)
(

g(z)
) +

∑
λ∈ J

aλ

(
g(z)

)
Mλ[ f ](g(z)

) = 0. (6)

Substituting (4) into (6) yields

a0(g)

[(
f ′

g′

)n

g(n)( f ) + n(n − 1)

2

1

g′

(
f ′

g′

)n−2( f ′

g′

)′
g(n−1)( f )

]
+

∑
ψλMλ[g]( f ) = 0 (7)
λ∈I
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where I is a finite set of multi-indices with the form λ = (i0, i1, . . . , in−2) and ψλ is a rational function in f ′, . . . , f (n) and
g′, . . . , g(n) . In view of the argument in the proof of Theorem A, there exist polynomials b0(z), b1(z) and bλ(z) for each
λ ∈ I , not all zero, such that

b0(z)g(n) + b1(z)g(n−1) +
∑
λ∈I

bλ(z)Mλ[g](z) = 0. (8)

It is easy to see that b0(z) �≡ 0, otherwise g(z) shall satisfy an algebraic differential equation with order less than n and
then in view of Theorem A, f (z) also has to satisfy such an equation, which contradicts our hypothesis.

With f (z) in place of z in (8), we have

b0( f )g(n)( f ) + b1( f )g(n−1)( f ) +
∑
λ∈I

bλ( f )Mλ[g]( f ) = 0. (9)

Comparing (7) with (9) yields

n(n − 1)

2

1

g′ (
f ′

g′ )
n−2

(
f ′

g′

)′
b0( f ) =

(
f ′

g′

)n

b1( f )

so that

n(n − 1)

2

(
f ′

g′

)−1( f ′

g′

)′
= b1( f )

b0( f )
f ′. (10)

Otherwise, we have

g(n−1)( f ) +
∑
λ∈I

ΓλMλ[g]( f ) = 0,

where every Γλ is a rational function in f ′, . . . , f (n) and g′, . . . , g(n) , for a0(z),b0(z),b1(z) and bλ(z) are polynomials. Thus
g(z), and hence f (z) from Theorem A, shall satisfy an algebraic differential equation with order less than n and then this
contradicts our hypothesis.

If b1(z) ≡ 0, then from (10), f ′/g′ is a constant and so f (z) = ag(z) + b for two complex numbers a and b. Now
assume that b1(z) �≡ 0 so that f ′/g′ is not a constant and we shall complete our proof by deriving a contradiction. Set
R(z) = 2

n(n−1)
b1(z)
b0(z) . It is well known that we can write

R(z) = P (z) +
p∑

j=1

A j

(z − c j)
n j

+
q∑

i=1

Bi

z − di

where P (z) is a polynomial and n j > 1 and A j, Bi, c j,di are complex numbers (in fact this is a basic property of a rational
function). From (10) we easily know that R( f ) f ′ has only simple poles at which the residues are integers. In view of
Lemma 2.3, we can assume without any loss of generality that f (z) has no Picard exceptional values at all and from the
following equation

R( f ) f ′ = P ( f ) f ′ +
p∑

j=1

A j
f ′

( f − c j)
n j

+
q∑

i=1

Bi
f ′

f − di
,

we have that all A j vanish and all Bi are rational numbers, for the residues of f ′/( f − di) at roots of f = di are also
integers. In view of (10), in any simply connected domain which does not contain the zeros of f − di (i = 1,2, . . . ,q), we
have

f ′

g′ =
q∏

i=1

( f − di)
Bi eQ ( f )

where Q (z) = ∫
P (z)dz is a polynomial. Noting that (

f ′
g′ )exp(−Q ( f )) is a meromorphic function, we have therefore that∏q

i=1( f − di)
Bi is meromorphic on C. Since (

f ′
g′ )

∏q
i=1( f − di)

−Bi is of finite order, this implies Q (z) must be a constant.
We can write

g′ = H( f ) f ′, H(z) = c
q∏

i=1

(z − di)
−Bi . (11)

Assume that all Bi �= 0. Now we want to prove that each Bi is a negative integer. First of all we claim that if Bi is an
integer, then it is negative. Suppose the claim fails, that is, there exists a positive integer Bi0 . It is easy to see that the
zeros of f (z) − di0 will be the poles of f ′( f − di0 )

−Bi0 and so of H( f ) f ′ = g′ . It follows from this and (11) that f (z) − di0

has no zeros at all and so has the form f (z) = di0 + e A(z) for a non-constant polynomial A(z). In view of Lemma 2.3,



182 J.-H. Zheng et al. / J. Math. Anal. Appl. 354 (2009) 177–183
g(z) = af (z) + b and so f ′/g′ is a constant, a contradiction is derived. Thus we have shown our claim. Below we need to
treat two cases.

(I) B1 = s
t is not an integer with t > 1 and Bi (2 � i � q) are negative integers (the following argument is also valid for

q = 1). From (11), ( f − d1)
B1 must be meromorphic on C and thus we can write

f (z) = d1 + ht(z)

for an entire function h(z) and we can assume that h(z) has at least one zero from Lemma 2.3. Substituting the expression
of f (z) into (11) yields

g′ = ctht−s−1
q∏

i=2

(
d1 − di + ht)−Bi h′.

It is easily seen that t > s, otherwise the zeros of h(z) must be the poles of g′(z), and further we have g = B(h), where
B(z) = ∫ [ctzt−s−1 ∏q

i=2(d1 − di + zt)−Bi ]dz is a polynomial with the degree deg(B) = t − s + ∑q
i=2(−t Bi). It follows from

f (g(z)) = g( f (z)) that

ht ◦ B = (B − d1) ◦ h ◦ (
d1 + zt).

Let the order of h(z) be λ and clearly λ = λ( f ) > 0. From the above equality we have

(deg B)λ = λ
(
ht ◦ B

) = λ
(
(B − d1) ◦ h ◦ (

d1 + zt)) = tλ

or equivalently t = deg B = t − s + ∑q
i=2(−t Bi), that is, s = t

∑q
i=2(−Bi) � t , a contradiction is derived.

(II) Bi = si
ti

(i = 1,2) with ti > 1 are not integers and Bi (3 � i � q) are negative integers (the following argument is also
valid for q = 2). Then all zeros of f − di (i = 1,2) have multiplicities at least ti and in view of the second fundamental
theorem of Nevanlinna, we have

T (r, f ) � N(r, f = d1) + N(r, f = d2) + O (log r)

� 1

t1
N(r, f = d1) + 1

t2
N(r, f = d2) + O (log r)

�
(

1

t1
+ 1

t2

)
T (r, f ) + O (log r).

Since f (z) is transcendental, the above inequality implies that 1
t1

+ 1
t2

� 1 and so ti = 2 (i = 1,2). We can write

f (z) = d1 + h2
1(z) = d2 + h2

2(z)

for two entire functions hi(z) (i = 1,2). To solve the equation, write (h2 − h1)(h2 + h1) = α2 for a complex number α with
α2 = d1 − d2 �= 0 and further, h2 + h1 has no zeros at all, so h2 + h1 = αeiW for some polynomial W and h2 − h1 = αe−iW .
Thus we get h1(z) = α sin W (z) for a non-zero complex number α and a polynomial W (z), and a simple calculation implies
that f (z) satisfies

( f ′)2 =
(
α4 − 4

(
f − d1 − α2

2

)2)
(W ′)2.

This is a first order algebraic differential equation. A contradiction is derived, because f (z) is assumed not to solve such an
equation.

In view of the second fundamental theorem of Nevanlinna, there exist at most two Bi among {Bi}q
1 which are not

integers. Therefore, we have proved that all Bi are negative integers and H(z) is a polynomial. In view of (11), we have
g(z) = E( f (z)) for the polynomial E(z) = ∫

H(z)dz. It follows from Lemma 2.2 that g(z) = af (z) + b, a contradiction is
derived. Thus we have proved Theorem 1.1 for n > 1.

Now we consider the case n = 1. In this case, we have

f ′(z) = αp(z) f p(z) + · · · + α1(z) f (z)

where all α j(z) are rational functions. We denote the function on the right side by Γ ( f ). In view of a basic theorem in
Nevanlinna theory (cf. Theorem 2.2.5 of [3]), we have

T
(
r,Γ ( f )

) = p
(
1 + o(1)

)
T (r, f ).

On the other hand, we have

T (r, f ′) = m(r, f ′) � m(r, f ) + m(r, f ′/ f ) = (
1 + o(1)

)
T (r, f ).

Thus

p
(
1 + o(1)

)
T (r, f ) �

(
1 + o(1)

)
T (r, f )

and this implies p = 1 or equivalently f ′(z) = α1(z) f (z). As in the implication before Corollary 1.2, we have g(z) = af (z)+b.
Thus we complete the proof of Theorem 1.1. �
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