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1. Introduction

The restricted three body problem is defined by the following time dependent Hamiltonian with two degrees of freedom

1

2

(
p2

x + p2
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) + V (x, y, t), V = −1 − μ

ρ1
− μ

ρ2
,

where ρ1(x, y, t) and ρ2(x, y, t) are the distances of the point A = (x, y) to the points J = ((1 − μ) cos t, (1 − μ) sin t) and
S = (−μ cos t,−μ sin t) respectively. Here J (Jupiter) and S (Sun) are interpreted as positions of two bodies rotating in
an invariant plane about their center of mass and A is a position of the third body (Asteroid) with mass so small that it
does not influence the motion of the S− J system. The parameter μ = mass( J )/(mass( J ) + mass(S)).

It turns out that the position of A at the third vertex of one of the equilateral triangles with base S J is a point of relative
equilibrium, so-called triangular libration point. After applying the rotation
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,

and moving the origin to the triangular libration point one arrives at a time independent system with the following Hamil-
tonian

H(q, p) = H2 + H3 + H4 + · · · (1.1)

where

H2 = 1

2
p2

1 + 1

2
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2 + p1q1 − p2q2 + 1

8
q2

1 − ζq1q2 − 5

8
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2, (1.2)
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H4 = 37

128
q4

1 + 25ζ

24
q3

1q2 − 123

64
q2

1q2
2 − 15ζ

8
q1q3
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128
q4

2 (1.4)

and

ζ = 3
√

3

4
(1 − 2μ). (1.5)

These formulas are obtained from the Taylor expansions of ρ−1
1 and ρ−1

2 , where ρ2
1,2 = 1 ± q1 + √

3q2 + q2
1 + q2

2 (compare
also [7,8]). In what follows the parameter ζ , which replaces μ, will be principal.

One checks that when

√
23

4
< ζ <

3
√

3

4
, (1.6)

i.e. 0 < μ < μ1 := 1
2 (1 − √

23/27), the linear part of the system, i.e. defined by H2, has purely imaginary eigenvalues
λ1,2 = ∓iω1, λ3,4 = ±iω2, where ω1,2 > 0 are defined by

ω2
1,2 = 1

2
(1 ± √

�), � = 4ζ 2 − 23

4
.

Therefore the corresponding linear system is Lyapunov stable.
In order to prove the genuine Lyapunov stability authors use the Kolmogorov–Arnold–Moser theory (see [1,2,9–11]). To

this aim one reduces the Hamiltonian H(q, p) to the following restricted Birkhoff normal form

H(q, p) = F (R, S) = ω1 I1 − ω2 I2 + 4
(

AI2
1 + B I1 I2 + C I2

2

) + · · · (1.7)

where

I1,2 = 1

2

(
R2

1,2 + S2
1,2

)
(1.8)

and F0 = ω1 I1 −ω2 I2 + 4(AI2
1 + B I1 I2 + C I2

2) is treated as an unperturbed Hamiltonian. This reduction holds in the absence
of order 3 and 4 resonances between the frequencies ω1 and ω2; there are only two values μ2 and μ3 values of the
parameter μ for which these resonances occur.

Finally, the condition

Γ (ζ ) := Aω2
2 + Bω1ω2 + Cω2

1 �= 0 (1.9)

is sufficient to conclude the existence of invariant tori on the energy hypersurfaces K = const (the KAM theorem), which
implies the Lyapunov stability.

The geometrical meaning of the condition (1.9) is following. In the angle-action variables (ϕ, I) we have ϕ̇1 =
ω1 + 8AI1 + 4B I2, ϕ̇2 = −ω2 + 4B I1 + 8C I2 for the unperturbed system. The derivative of the ratio ϕ̇1(I)

ϕ̇2(I) in the direction

of the vector ω2
∂

∂ I1
+ ω1

∂
∂ I2

, tangent to the hypersurface F = const, is proportional to Γ . Therefore the rotation number of
the return map on F = const varies with the change of the radius of invariant circle. This is sufficient to prove the existence
of invariant circles for the two-dimensional return map.

A.M. Leontovich in 1962 [7] proved that the algebraic function Γ (ζ ) is non-constant, which implies that the Lyapunov
stability takes place for all but discrete values of the parameter ζ satisfying (1.6).

In 1967 A. Deprit and A. Deprit-Bartholomé [5] gave the following explicit ‘formula’ for the function Γ :

36 − 541ω2
1ω

2
2 + 644ω4

1ω
4
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(1 − 4ω2
1ω

2
2)(4 − 25ω2

1ω
2
2)

. (1.10)

(In [5] the authors use the notation D = − 1
8 Γ .) We shall denote the function (1.10) by Θ(ζ). Since the function (1.10)

vanishes for only one value of ζ , which corresponds to the value μ = μc ≈ 0.0109, the authors concluded that only three
values of the parameter are bad for the Lyapunov stability. Formula (1.10) and the value μc are cited (without proofs) in
many classical sources, like [3,10,11,8,6].

In fact, the additional bad value of the parameter can be computed explicitly, μc := 1
2 − 2

√
3

9

√
27
16 − 541

1288 +
√

199,945
1288 . This

follows from the formulas given below
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ω4
1,2 = ω2

1,2 + ζ 2 − 27

16
, (1.11)

ω2
1 + ω2

2 = 1, (1.12)

ω2
1ω

2
2 = 27

16
− ζ 2. (1.13)

It follows that the critical value for ζ equals ζc ≈ 1.2707.
Recently we looked closely into the restricted three body problem and tried to derive formula (1.10) independently. With

some surprise we discovered that we cannot understand the Deprit-Bartholomé’s argument. According to our calculations,
which we present below, this formula should be much more complicated.

Also the Leontovich’s analysis demonstrates that the formula (1.10) must be wrong. Leontovich analyzed the behavior of
Γ (ζ ) near the point where ω2 = 0. The paper [7] appeared much earlier than [5], but the contradiction is not discussed
in [5].

We were not able to compute the complete formula for the algebraic function Γ (ζ ). We study only its behavior near
three of its singular points: where ζ → ∞, near the resonance ω1 = 2ω2 and near the Leontovich’s point ω2 = 0.

We find that the behavior of Γ near these points is definitely different than predicted by formula (1.10) (see Section 5).
The main result is analogous to the Leontovich’s theorem (but with somewhat new proof).

Theorem 1.1. The function Γ �≡ 0. It means that there exists only finite set of bad values μ j , such that if μ �= μ j then the Lagrangian
points are Lyapunov stable.

2. Reduction of H2

The linear part of the Hamiltonian system takes the form ẋ = Lx, where x = (q1, p1,q2, p2)

 and

L =
⎛
⎜⎝

0 1 1 0
−1/4 0 ζ 1
−1 0 0 1
ζ −1 5/4 0

⎞
⎟⎠ . (2.1)

We apply a change of the form x = D y, where the complex vector y = (y1, ȳ1, y2, ȳ2)

 satisfies the equations

ẏ1 = −iω1 y1, ẏ2 = iω2 y2, (2.2)

i.e. ẏ = Λy where Λ = diag(λ1, λ2, λ3, λ4) is a suitable diagonal matrix. It follows that LD = DΛ, i.e. the columns D j of D
are eigenvectors of A with the eigenvalues λ j . These columns are defined modulo constant multipliers; these multipliers are
related with the normalization y1 = M1z1, y2 = M2z2, where the real constants M1,2 are determined from the condition
that the corresponding change is symplectic. Namely the new symplectic coordinates are (r1, s1, r2, s2) such that

z1,2 = r1,2 + is1,2

and dq1 ∧ dp1 + dq2 ∧ dp2 = dr1 ∧ ds1 + dr2 ∧ ds2.
Elementary calculations show that the following choice is admissible
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⎞
⎟⎟⎠ ,

D2 = D̄1, D4 = D̄3. (2.3)

Therefore
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4
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The condition of symplectomorphism, i.e. the compatibility of the following Poisson brackets relations {q1,2, p1,2} = 1,
{z1,2, z̄1,2} = −2i (and vanishing of other brackets), implies that

M2
1,2 = 1

4ω1,2(3/4 + ω2
1,2)

√
�

. (2.5)

Of course, the variables z1 and z2 satisfy the same Eqs. (2.2) as the variables y1 and y2. So we get

ṙ1 = ω1s1, ṡ1 = −ω1r1, ṙ2 = −ω2s2, ṡ2 = ω2r2,

which is a Hamiltonian system with the Hamiltonian

K2(r, s) = 1

2
ω1z1 z̄1 − 1

2
ω2z2 z̄2. (2.6)

We finish this section by a discussion about the dependence of the introduced quantities on the parameter ζ . Of course,√
�, ω1, ω2, M1,2 are algebraic functions of ζ. Also the entries of the matrix C are algebraic functions of ζ . So they can be

treated as multivalued functions of the complex parameter ζ . We shall be interested in the behavior of these functions as
ζ → ∞, as well as when ω1 ≈ 2ω2. Of course, a suitable branch of a given algebraic function must be chosen. Below the
symbol ∼ denotes the leading term in asymptotic expansion of a function and the symbol . . . denotes further terms in this
expansion.

Lemma 2.1. As ζ → ∞ we have
√

� ∼ 2ζ, ω2
1,2 ∼ ±ζ,

ω1 ∼ ζ 1/2, ω2 ∼ iζ 1/2,

M1 ∼ 2−3/2ζ−5/4, M2 ∼ √
i2−3/2ζ−5/4,

Θ ∼ 161

25
.

Moreover,

q1 = −ζ−1/4

23/2

{
z1 + z̄1 + √

i(z2 + z̄2)
} + · · · ,

q2 = ζ−1/4

23/2

{
z1 + z̄1 − √

i(z2 + z̄2)
} + · · · .

Here i = eiπ/2 ,
√

i = eiπ/4 = (1 + i)/
√

2 and Θ is defined by (1.10).

Lemma 2.2. The resonance ω1 : ω2 = 2 : 1 of order 3 occurs for

ζ = ζ2 =
√

611

20
.

In this case we have
√

� = 3

5
+ 10

3

(
ζ 2 − ζ 2

2

) + · · · ,

ω2
1 = 4

5
+ 5

3

(
ζ 2 − ζ 2

2

) + · · · , ω2
2 = 1

5
− 5

3

(
ζ 2 − ζ 2

2

) + · · · ,

ω1 ∼ 2√
5
, ω2 ∼ 1√

5
,

M1 ∼ 5 4
√

5√
6 · 31

, M2 ∼ 5 4
√

5√
3 · 19

,

Θ = − 21 296

5625 · (ζ 2 − ζ 2
2 )

+ · · · ,

q1 ∼
{(

−ζ2 + 4i√
5

)
M1z1 + conj

}
+

{(
−ζ2 − 2i√

5

)
M2z2 + conj

}
,

q2 ∼ 31

20
M1(z1 + z̄1) + 19

20
M2(z2 + z̄2).

Here conj means the conjugated term.
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Lemma 2.3. Near the point ζ = ζ0 := 3
√

3
4 , i.e. where ω2 = 0, we have

√
� = 1 − 2ν + · · · ,

ω1 = 1 + O (ν), ω2 ∼ ν1/2 + O
(
ν3/2),

M1 = 1√
7

+ O (ν), M2 = 1√
3
ν−1/4 + O

(
ν3/4),

Θ ∼ 9,

where

ν := 3
√

3

2
(ζ0 − ζ ) → 0.

Moreover,

q1 = −3

4
ν−1/4(z2 + z̄2) + 1√

7

[
(−ζ0 + 2i)z1 − (ζ0 + 2i)z̄1

] − 2i√
3
ν1/4(z2 − z̄2) + O

(
ν3/4),

q2 =
√

3

4
ν−1/4(z2 + z̄2) + 1

4
√

7
(z1 + z̄1) + O

(
ν3/4).

3. Cubic and quartic terms

Let us rewrite the parts H3 and H4 in the variables z1,2. The complete formulas are highly complicated. So we begin
with some simplifications.

Note that the quadratic part H2 = K2 is invariant with respect to the following action of the torus S
1 × S

1 = {(eiα, eiβ)}:

(z1, z2) → (
eiαz1, eiβ z2

)
. (3.1)

These changes are symplectic and represent the only non-uniqueness in the reduction of the linear Hamiltonian system to
its normal form.

We divide the terms in H3(q, p) = K3(z, z̄) into semi-invariants with respect to this action. The weights are of the
form (m,n), where m,n = −3,−2,−1,0,1,2,3 but not all pairs are admissible.

Thus

K3 = k3,0z3
1 + k1,0z1 + k−1,0 z̄1 + k−3,0 z̄3 + k0,3z3

2 + k0,1z2 + k0,−1 z̄2 + k0,−3 z̄3 + k2,1z2
1z2

+ k2,−1z2
1 z̄2 + k−2,1 z̄2

1z2 + k−2,−1 z̄2
1 z̄2 + k1,2z1z2

2 + k1,−2z1 z̄2
2 + k−1,2 z̄1z2

2 + k−1,−2 z̄1 z̄2
2, (3.2)

where the coefficients k1,0,k−1,0,k0,1,k0,−1 are homogeneous quadratic polynomials of the form a|z1|2 + b|z2|2; we write

k1,0 = k′
1,0|z1|2 + k′′

1,0|z2|2,
etc. Of course, the reality of H3 implies that

k−m,−n = k̄m,n.

Like in the end of the previous section we treat the coefficients km,n as algebraic functions of ζ .

Remark 3.1. The above reality condition holds true in the domain (1.6), where ω1 and ω2 are positive. When ζ moves from
this interval into the complex domain the coefficients km,n(ζ ) must be treated as multivalued algebraic functions and there
is no reason for such reality conditions.

In the next section we shall use notations, like |k3,0|2. In the real domain it equals k3,0k−3,0. In the complex domain we
should use rather the second notation. For the sake of simplicity of notations we shall still use |k3,0|2, with the agreement
that it is k3,0 · k−3,0, when continued for complex values of ζ . This agreement applies also to other coefficients k−m,−n .

Lemma 3.1. As ζ → ∞ we have km,n ∼ −ζ 1/4

211/233/2 · k̃m,n, where

k̃3,0 = k̃−3,0 = 13, k̃′
1,0 = k̃′−1,0 = 39,

k̃′′
1,0 = k̃′′−1,0 = −54i, k̃0,3 = k̃0,−3 = 13

1 − i√ ,

2
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k̃′
0,1 = k̃′

0,−1 = −54
1 + i√

2
, k̃′′

0,1 = k̃′′
0,−1 = 39

1 − i√
2

,

k̃2,1 = k̃2,−1 = k̃−2,1 = k̃−2,−1 = −27
1 + i√

2
,

k̃1,2 = k̃1,−2 = k̃−1,2 = k̃−1,−2 = −27i.

Proof. From Eq. (1.3) and Lemma 2.1 we get

K3 =
√

3ζ 1/4

36 · 29/2
×

{
7

(
z1 + z̄1 + 1 + i√

2
(z2 + z̄2)

)3

− 33

(
z1 + z̄1 + 1 + i√

2
(z2 + z̄2)

)(
z1 + z̄1 − 1 + i√

2
(z2 + z̄2)

)2}
.

From this the lemma follows. �
Lemma 3.2. At ζ = ζ2 we have

k1,2 = 53+3/4

228 · √62

(
3371

3750
+ i

17

375

√
611

5

)

and

|k1,2|2 = 1331

51 840

√
5.

Proof. Using formula (1.3) and Lemma 2.2 we find

k1,2 = 53+3/4

3 · 4 · √2 · 31 · 19

{
7ζ2

9
· 3 ·

(
ζ2 − 4i√

5

)(
ζ2 + 2i√

5

)2

+ 3

4
·
[

2 ·
(

−ζ2 + 4i√
5

)
·
(

−ζ2 − 2i√
5

)
· 19

20
+

(
ζ2 + 2i√

5

)2

· 31

20

]

+ 11ζ2

3

[(
−ζ2 + 4i√

5

)
· 192

202
+ 2 ·

(
−ζ2 − 2i√

5

)
· 19

20
· 31

20

]
+ 3

4
· 3 · 31

20
· 192

202

}
.

After collection of similar terms we arrive to the above formula. �
Lemma 3.3. Near ζ = ζ0 we have

K3 = 9

25
√

7
ν−1/2 · [(√3 − 4i)z1 + (

√
3 + 4i)z̄1

] · (z2 + z̄2)
2 + 3

√
3i

8
· ν−1/4 · (z2

2 − z̄2
2

) · (z2 + z̄2)

+ ν−1/4(z2 + z̄2)P (z1, z̄1) + O (1),

where P is a quadratic polynomial and ν = 3
√

3
2 (ζ0 − ζ ) → 0.

Proof. Using (1.3) and Lemma 2.3 we find that K3 is of the form

a1(z2 + z̄2)
3ν−3/4 + (a2z1 + ā2 z̄1)(z2 + z̄2)

2ν−1/2 + ia3(z2 − z̄2)(z2 + z̄2)
2ν−1/4 + O (1).

Calculations show that a1 = 0 and a2, a3 are like in the thesis of the lemma. �
We can expand K4(z, z̄) = H4(q, p) in a form similar to (3.2). But for us only one term turns out interesting, namely

k0,0 · 1 = k′
0,0|z1|4 + k′′

0,0|z1|2|z2|2 + k′′′
0,0|z2|4.

Lemma 3.4. As ζ → ∞ we have

k0,0 ∼ − 5

26

(|z1|4 + |z2|4
)
.
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Proof. By Eq. (1.4) and Lemma 2.1 we have

K4 = 5

3 · 29

{
5
(
z1 + z̄1 + √

i(z2 + z̄2)
)2 − 9

(
z1 + z̄1 − √

i(z2 + z̄2)
)2}

× (
z1 + z̄1 + √

i(z2 + z̄2)
)(

z1 + z̄1 − √
i(z2 + z̄2)

) + · · · .
Further calculations show that the term with ζ 0 is like above. �
Lemma 3.5. As ζ → ζ2 the quantity k0,0 in K4 remains finite.

Proof. This is obvious. �
Lemma 3.6. As ζ → ζ0 we have

k0,0 = −81

64
ν−1|z2|4 + · · · .

Proof. Here calculations are similar as in the proof of Lemma 3.3. �
4. Nonlinear Birkhoff transformation

The standard canonical transformation (r, s) → (R, S) which should reduce the cubic terms in the Hamiltonian is defined
by the formulas

r = R − ∂Φ

∂ S
(r, S), s = S + ∂Φ

∂r
(r, S), (4.1)

i.e. s dr + R dS = d(r S + Φ(r, S)). Here the generating function (see [2,4]) Φ(r, S) is a cubic homogeneous polynomial which
soon will be determined. In order to eliminate the dependence of the right-hand sides of (4.1) on r we perform one more
iteration:

r = R − ∂Φ

∂ S
(R, S) + ∂2Φ

∂r∂ S
(R, S)

∂Φ

∂ S
(R, S) + · · · ,

s = S + ∂Φ

∂r
(R, S) − ∂2Φ

∂r2
(R, S)

∂Φ

∂ S
(R, S) + · · · (4.2)

where the dots mean terms of order � 4. In terms of the complex variables z = r + is and Z = R + i S , with Ψ (Z , Z̄) =
Φ(R, S), we have

z1,2 = Z1,2 + 2i
∂Ψ

∂ Z̄1,2
+ 2

(
∂

∂ Z
+ ∂

∂ Z̄

)
∂Ψ

∂ Z̄1,2
·
(

∂

∂ Z
− ∂

∂ Z̄

)
Ψ + · · · . (4.3)

Substituting this into the Hamiltonian and comparison of the homogeneous cubic terms gives

ψm,n = −i

mω1 − nω2
km,n

in the expansion

Ψ = ψ3,0 Z 3
1 + · · · + ψ−1,−2 Z̄1 Z̄ 2

2,

analogous to (3.2).
Having determined the form Ψ we should now look at the resonant terms of order four in the Hamiltonian, i.e. |Z1|4,

|Z1|2|Z2|2 and |Z2|4. There are four sources of such terms:

1. remaining from K4(z, z̄),
2. arising from application of the quadratic part of (4.3) to K3(z, z̄),
3. arising from application of the cubic part of (4.3) to K2,
4. arising from application of the quadratic part of (4.3) to K2.

We shall deal with all these contributions separately. We denote by Ai (respectively by Bi and Ci ) the coefficient before
|Z1|4 (respectively before |Z1|2|Z2|2 and |Z2|4) from the ith part.

1. This part gives A1 = k′ , B1 = k′′ , C1 = k′′′ .
0,0 0,0 0,0
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2. This part arises from the expression 2i ∂ K3
∂z

∂Ψ

∂ Z̄
− 2i ∂ K3

∂ z̄
∂Ψ
∂ Z .

3. Denote by A′
3 and B ′

3 the coefficients before Z 2
1 Z̄1 and Z1|Z 2

2 |, respectively, in the third order part of the change
z1 = Z1 + · · · , i.e. in 2( ∂

∂ Z1
+ ∂

∂ Z̄1
) ∂Ψ

∂ Z̄1
· ( ∂

∂ Z1
− ∂

∂ Z̄1
)Ψ + 2( ∂

∂ Z2
+ ∂

∂ Z̄2
) ∂Ψ

∂ Z̄1
· ( ∂

∂ Z2
+ ∂

∂ Z̄2
)Ψ (see (4.3)). Also denote by B ′′

3

and C ′′
3 the corresponding coefficients before |Z1|2 Z2 and Z 2

2 Z̄2 in z2 = Z2 + · · · . Then we have

A3 = 1

2
ω1

(
A′

3 + Ā′
3

)
, C3 = −1

2
ω2

(
C ′′

3 + C̄ ′′
3

)
,

B3 = 1

2
ω1

(
B ′

3 + B̄ ′
3

) − 1

2
ω2

(
B ′′

3 + B̄ ′′
3

)
.

The computation of A′
3, B ′

3, B ′′
3 and C ′′

3 is standard, but rather tedious.
4. Here we get the resonant terms in 1

2 ω1|2i ∂Ψ

∂ Z̄1
|2 − 1

2 ω2|2i ∂Ψ

∂ Z̄2
|2.

Summing up results of the above computations we get the following result, proved firstly by Leontovich (in [7] one finds
K2 = λ1z1 z̄1 + λ2z2 z̄2, so the coefficients are slightly changed).

Proposition 4.1. The coefficients before the resonant terms in F4 are the following

A = k′
0,0 − 6

|k′
1,0|2
ω1

− 6
|k3,0|2
ω1

+ 2
|k′

0,1|2
ω2

− 2
|k2,1|2

2ω1 − ω2
+ 2

|k2,−1|2
2ω1 + ω2

,

B = k′′
0,0 − 4

k′
1,0k̄′′

1,0 + k̄′
1,0k′′

1,0

ω1
+ 4

k′′
0,1k̄′

0,1 + k̄′′
0,1k′

0,1

ω2
− 8

|k2,1|2
2ω1 − ω2

− 8
|k2,−1|2

2ω1 + ω2
− 8

|k1,2|2
ω1 − 2ω2

+ 8
|k1,−2|2

ω1 + 2ω2
,

C = k′′′
0,0 + 6

|k′′
0,1|2
ω2

+ 6
|k0,3|2
ω2

− 2
|k′′

1,0|2
ω1

− 2
|k1,2|2

ω1 − 2ω2
− 2

|k1,−2|2
ω1 + 2ω2

.

Remark 4.1. The Birkhoff normalization of the quadratic, cubic and quartic terms of the Hamiltonian is unique modulo the
changes (3.1), i.e. the torus action. It follows that the coefficients A, B and C are defined uniquely; they are invariant with
respect to the torus action. Therefore also the function Γ (ζ ) is unique.

Remark 4.2. In [5] the authors refer to a 1966 thesis of J. Henrard, who: ‘has shown how to carry on in a straightforward
manner Birkhoff’s normalization without introducing generating functions and without inverting power series’. In fact, these
changes are of the form x = f (ϕ, I), y = g(ϕ, I), where f and g are functions of the angle-action variables which should
satisfy corresponding Poisson brackets relations. The authors say that: ‘In this way, a Birkhoff normalizing transformation
can be constructed entirely by the method of undetermined coefficients’.

Unfortunately, the calculations of [5] do not include checking the Poisson relations, which are essential for the canonical
form of the change.

We note also investigations by E. Grebenikov and his students [6] of the restricted problem of many bodies (> 3).

5. The algebraic function Γ

The function Γ (ζ ) from Introduction can be represented as the sum of four terms,

Γ = Γ ′ + Γ ′′,
where

Γ ′ = k′
0,0ω

2
2 + k′′

0,0ω1ω2 + k′′′
0,0ω

2
1

and Γ ′′ = Γ − Γ ′ is calculated using A′′ = A − k′
0,0, B ′′ = B − k′′

0,0 and C ′′ = C − k′′′
0,0. Our aim is to compute behavior of

Γ (ζ ) as ζ → ∞, as ζ → ζ2 and as ζ → ζ0.

1. ζ → ∞. By Lemma 2.1 and Lemma 3.4 we have

Γ ′ = o(ζ ) as ζ → ∞.

In calculations of Γ ′′ we use formulas from the previous section, which are given for the case of real ζ and real posi-
tive ω1,2. According to Remark 3.1 we continue these formulas to other values of ζ with the agreement that |km,n|2 means
km,nk−m,−n .
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The calculation of Γ ′′ is following:

27 · 211 · ζ−1 · ω2
2 A′′ ∼ 18 624

5
,

27 · 211 · ζ−1 · ω1ω2 B ′′ ∼ −33 696,

27 · 211 · ζ−1 · ω2
1C ′′ ∼ −18 624

5
.

Summing the above we get the following

Proposition 5.1. As ζ → ∞ the function Γ grows linearly,

Γ (ζ ) ∼ −39

64
· ζ.

Of course, this behavior differs from the behavior of the function Θ(ζ), see Lemma 2.1.

2. ζ → ζ2. Since the coefficients B ′′ and C ′′ contain terms proportional to |k1,2|2/(ω1 − 2ω2) (see Proposition 4.1) also Γ

contains such term. It equals

(
−8 · 2√

5
· 1√

5
− 2 ·

(
2√
5

)2)
· |k1,2|2
ω1 − 2ω2

.

Using ω1 − 2ω2 = (ω2
1 − 4ω2

2)/(ω1 + 2ω2) ∼ 25
√

5
12 (ζ 2 − ζ 2

2 ) and Lemma 3.2 we arrive to the following

Proposition 5.2. The function Γ (ζ ) has simple order pole at the point ζ2 , corresponding to 2 : 1 resonance, of the form

Γ (ζ ) = − 1331

22 500 · (ζ 2 − ζ 2
2 )

+ O (1).

On the other hand, the expression Θ(ζ) given in (1.10) has also first order pole at ζ2, but with different residuum (see
Lemma 2.2).

3. ζ → ζ0. By Lemma 3.6 we get

Γ ′ ∼ −81

64
ν−1,

where ν = 3
√

3
2 (ζ0 − ζ ) → 0. Next, using Lemma 2.3 and formulas for km,n in Lemma 3.3 we find that: ω2

2 A′′ is of order
O (ν1/4), the term ω1ω2 B ′′ is of order O (ν−1/2) and the last term ω2

1C ′′ is of order O (ν−1). Thus the leading term in Γ ′′
arises from

6
(∣∣k′′

0,1

∣∣2 + |k0,3|2
)
ν−1/2 − 2

(∣∣k′′
1,0

∣∣2 + |k1,2|2 + 2|k1,−2|2
)
.

Taking suitable values from Lemma 3.3 we get

Γ ′′ ∼ 4455

1792
· ν−1.

Together we get the following result which contradicts the finiteness of the function Θ (see Lemma 2.3).

Proposition 5.3. As ζ → ζ0 the function Γ (ζ ) tends to infinity,

Γ ∼ 2187

1792
· ν−1.

Remark 5.1. Theoretically it is possible to find an explicit expression for the function Γ (ζ ). One should determine its
behavior at its singular points corresponding to: � = 0, ω1 = 0, ω2 = 0, ω1 = 2ω1, ω1 = −2ω2, 2ω1 = ω2, 2ω1 = −ω2,
ω2

1 = − 3
4 , ω2

2 = − 3
4 and ζ = ∞.
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