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The self-affine measure μM,D corresponding to an expanding integer matrix

M =
[

a b
c d

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}

is supported on the attractor (or invariant set) of the iterated function system {φd(x) =
M−1(x + d)}d∈D . In the present paper we show that if (a + d)2 = 4(ad − bc) and ad − bc is
not a multiple of 3, then there exist at most 3 mutually orthogonal exponential functions
in L2(μM,D ), and the number 3 is the best. This extends several known results on
the non-spectral self-affine measure problem. The proof of such result depends on the
characterization of the zero set of the Fourier transform μ̂M,D , and provides a way of
dealing with the non-spectral problem.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Invariant measures, such as self-similar measures, have recently found wide use in the theory of fractals, in dynamics,
in harmonic analysis and in quasi-crystals (see [12,24]). A measure μ is self-similar if it is a convex combination of a given
set S of transformations applied to the measure itself. In the literature, one usually restricts attention to the case where the
set S is finite. Then, an iterated function system (IFS) results, and varying S yields a rich family of measures μ. To get a
manageable problem, further restrictions are placed on the transformation from S . For example, that they are contractive,
and that they fall in a definite class, such as conformal maps (giving equilibrium measures on Julia sets), or affine mappings.
Here the affine case is considered.

Let M ∈ Mn(Z) be an expanding integer matrix, that is, one with all eigenvalues |λi(M)| > 1 and let D ⊆ Z
n be a finite

subset of cardinality |D|. Associated with iterated function system (IFS) {φd(x) = M−1(x + d)}d∈D , there exists a unique
probability measure μ := μM,D satisfying the self-affine identity (see [16])

μ = 1

|D|
∑
d∈D

μ ◦ φ−1
d . (1.1)

Such μ is supported on T (M, D) and is called self-affine measure.
The invariant set T (M, D) includes complicated geometries, and the invariant measure μM,D which is also called self-

affine measure includes restrictions of n-dimensional Lebesgue measure. So for n = 1, in the way of examples, there are
Cantor set and Cantor measure on the line; and for n = 2 there is a rich variety of geometries, of which the best known
example is the Sierpinski gasket. The problem considered below started with a discovery in an earlier paper of Jorgensen
and Pedersen [26] where it was proved that certain IFS fractals have Fourier bases. And furthermore that the question of
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counting orthogonal Fourier frequencies (or orthogonal exponentials in L2(μM,D)) for a fixed fractal involves an intrinsic
arithmetic of the finite set of functions making up the IFS {φd(x)}d∈D under consideration. For example if M = 3 and
D = {0,2} is the middle-third Cantor example on the line, there cannot be more than two orthogonal Fourier frequencies
[26, Theorem 6.1], while a similar Cantor example using instead a subdivision scale M = 4, turns out to have an ONB in
L2(μM,D) consisting of Fourier frequencies [26, Theorem 3.4].

Since this affine case includes restrictions of n-dimensional Lebesgue measure, Cantor measures, and IFS fractal measures,
say on Sierpinski gaskets, it is natural to ask for Fourier duality. Can one get some kind of Fourier representation for μM,D ?
We know from prior research on L2(μM,D) that a naive notion of orthogonal Fourier series is not feasible in general for
affine IFSs. For example, the familiar middle-third Cantor set T (M, D) corresponding to M = 3 and D = {0,2}. In the case
when M = p, p > 1, is odd and D = {0,1}, Dutkay and Jorgensen [11, Theorem 5.1(i)] proved that there are no 3 mutually
orthogonal exponential functions in L2(μM,D). In this paper we will explore plane affine IFS-examples when the obstruction
to getting a Fourier basis is extreme.

Recall that for a probability measure μ of compact support on R
n , we call μ a spectral measure if there exists a discrete

set Λ ⊆ R
n such that EΛ := {e2π i〈λ,x〉: λ ∈ Λ} forms an orthogonal basis for L2(μ). The set Λ is then called a spectrum

for μ. Spectral measure is a natural generalization of spectral set introduced by Fuglede [7] whose famous conjecture and
its related problems have received much attention in the recent years (see [12,15]). The spectral self-affine measure problem
at the present day consists in determining conditions under which μM,D is a spectral measure, and has been studied in the
papers [9,10,14,17,19,20,26,28] (see also [29,30] for the main goal). The non-spectral self-affine measure problem originated
from the Lebesgue measure case (see [3–5,7,8,18,23] and [1,2] where the conjecture that the disk has no more than three
orthogonal exponentials is still unsolved) usually consists of the following two classes:

(I) There is at most a finite number of orthogonal exponentials in L2(μM,D), that is, μM,D -orthogonal exponentials contains
at most finite elements. The main questions here are to estimate the number of orthogonal exponentials in L2(μM,D)

and to find them (see [10]).
(II) There are natural infinite families of orthogonal exponentials, but none of them forms an orthogonal basis in L2(μM,D).

The main question is whether some of these families can be combined to form larger collections of orthogonal expo-
nentials. The other questions concerning this class can be found in [25].

A fractal F is a set which admits a system of scale transformations; intuitively they have the property that F looks the
same as the scaling is varied. Typically a fractal comes equipped with an invariant measure. However as is illustrated by
such familiar cases as the Cantor set and its invariant measure, or one of the Sierpinski examples, one must pass to a limit,
and the limit typically allows intricate non-linearities. A popular representation of a class of fractals is realized with a finite
set of affine transformations in Euclidean space, and this is the setting for the present paper. Now classical Fourier series
relies on linearity, and so asking for Fourier series in the context of fractals is a new framework. The result below indicate
the limits one encounters in such an endeavor.

Except the case that there might be no more than two orthogonal exponentials, the problem on non-spectral mea-
sure μM,D in fact falls into one of the above two classes. Nevertheless, the first problem we meet is how to determine a
measure μM,D being non-spectral. There are some results in this direction, such as [11, Theorem 3.1], but we are still far
from settling this problem. Relating to the questions of the class (I), we first recall the following related conclusions.

(i) The plane Sierpinski gasket T (M, D) corresponds to

M =
[

2 0
0 2

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.2)

Dutkay and Jorgensen [11, Theorem 5.1(ii)] proved that μM,D -orthogonal exponentials contain at most 3 elements and found
such 3-elements orthogonal exponentials.

(ii) The generalized plane Sierpinski gasket T (M, D) corresponds to

M =
[

2 1
0 2

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.3)

see Fig. 3 and Example 3.1 in [11], by applying [11, Theorem 3.1], Dutkay and Jorgensen proved that any set of μM,D -
orthogonal exponentials contains at most 7 elements. In [33], Yuan obtained that any set of μM,D -orthogonal exponentials
contains at most 3 elements and find it.

(iii) The generalized plane Sierpinski gasket T (M, D) corresponds to

M =
[

2 b
0 2

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.4)

J.-L. Li [21] proved that any set of μM,D -orthogonal exponentials contains at most 3 elements, and the number 3 is the best.
More recently, J.-L. Li [22] proved that for the self-affine measure μM,D corresponding to

M =
[

a b
d c

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.5)
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where a,b, c ∈ Z, |a| > 1, |c| > 1 and ac ∈ Z \ 3Z, there exist at most 3 mutually orthogonal exponential functions in
L2(μM,D), and the number 3 is the best.

Conjecture. (See [22].) For an expanding integer matrix M ∈ Mn(Z) and a finite digit set D ⊆ Z
n, if |D| /∈ W (m), then μM,D is a

non-spectral measure and the non-spectral problem on this μM,D falls in the class (I).

In the plane, the above set D (usually called the digit set) which consists of the canonical vectors in R
n is fun-

damental, many digit sets can be obtained from this set. From (1.2), (1.3), (1.4) and (1.5), we see that the condition
|D| /∈ W (m) is always satisfied or assumed, where |det(M)| = m = pb1

1 pb2
2 · · · pbr

r (p1 < p2 < · · · < pr are prime numbers,
b j > 0) is the standard prime factorization and W (m) denotes the non-negative integer combination of p1, p2, . . . , pr (see
[17, Section 4.2], [20, Section 3]).

Motivated by the previous research, especially the above conjecture, when |D| ∈ W (m), we study non-spectral self-affine
measure problem on the plane domain. Our main results are the following three theorems.

Theorem 1.1. Let a,b,d ∈ Z, |a| > 1, |d| > 1 and a ∈ Z \ 3Z. For the self-affine measure μM,D corresponding to

M =
[

a b
0 d

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.6)

there exist at most 3 mutually orthogonal exponential functions in L2(μM,D), and the number 3 is the best.

Theorem 1.2. Let a, c,d ∈ Z, |a| > 1, |d| > 1 and d ∈ Z \ 3Z. For the self-affine measure μM,D corresponding to

M =
[

a 0
c d

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.7)

there exist at most 3 mutually orthogonal exponential functions in L2(μM,D), and the number 3 is the best.

Theorem 1.3. For self-affine measure μM,D corresponding to the expanding integer matrix

M =
[

a b
c d

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (1.8)

if (a + d)2 = 4(ad − bc) and a + d is not a multiple of 3, then there exist at most 3 mutually orthogonal exponential functions in
L2(μM,D), and the number 3 is the best.

This extends the above mentioned some results on the non-spectral self-affine measure problem. We first prove Theo-
rem 1.1 and Theorem 1.2 in Section 2. The proof of Theorem 1.3 depends mainly on the characterization of the zero set
Z(μ̂M,D) of the Fourier transform μ̂M,D . We find more inclusion relations inside the zero set Z(μ̂M,D). Some facts concern-
ing this zero set are given in Section 3. Based on these established facts, we prove Theorem 1.3 in Section 4. It is worth
noting this is different from the method of [22,34]. But it is difficult to find any general principles for dealing with similar
non-spectral questions. Finally we give some examples and remarks on a related question.

2. Proofs of Theorem 1.1 and Theorem 1.2

We divided the proof of Theorem 1.1 into two parts:

(1) There exist at most 3 mutually orthogonal exponential functions in L2(μM,D).
(2) The number 3 is the best.

Proof of Theorem 1.1. (1) For the general expanding matrix M ∈ Mn(Z) and finite subset D ⊂ Z
n , the Fourier transform of

the self-affine measure μM,D is

μ̂M,D(ξ) =
∫

e2π i〈ξ,t〉 dμM,D(t)
(
ξ ∈ R

n). (2.1)

From (1.1), we have

μ̂M,D(ξ) = mD
(
M∗−1ξ

)
μ̂M,D

(
M∗−1ξ

) (
ξ ∈ R

n), (2.2)

which yields

μ̂M,D(ξ) =
∞∏

mD
(
M∗− jξ

)
, (2.3)
j=1
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by iteration, where

mD(t) := 1

|D|
∑
d∈D

e2π i〈d,t〉, (2.4)

and M∗ denotes the conjugated transpose of M , in fact M∗ = MT .
For any λ1, λ2 ∈ R

n , λ1 
= λ2, the orthogonality condition

〈
e2π i〈λ1,x〉, e2π i〈λ2,x〉〉

L2(μM,D )
=

∫
e2π i〈λ1−λ2,x〉 dμM,D

= μ̂M,D(λ1 − λ2) = 0 (2.5)

directly relates to the zero set Z(μ̂M,D) of μ̂M,D . From (2.3), we have

Z(μ̂M,D) = {
ξ ∈ R

n: ∃ j ∈ N such that mD
(
M∗− jξ

) = 0
}
. (2.6)

For the given M and D in (1.6), we first have

mD
(
M∗− jt

) = 1

3

{
1 + e2π ia− jt1 + e

2π i(d− jt2− bt1(a j−1+d j−1+a j−2d+d j−2a+···)
2d ja j )}

, (2.7)

where t = (t1, t2)
T ∈ R

2. Relating to the zero set of the function mD , it is known that if 1+ w1 + w2 = 0 and |w1| = |w2| = 1,
then

{w1, w2} = {
e2π i· 1

3 , e2π i· 2
3
}
. (2.8)

If t = (t1, t2)
T ∈ R

2 is the zero point of (2.3), then there exists some j ∈ N such that (2.7) is equal to 0. It follows from (2.7)
and (2.8) that⎧⎪⎪⎨

⎪⎪⎩
a− jt1 = 1

3
+ k1,

d− jt2 − bt1(a j−1 + d j−1 + a j−2d + d j−2a + · · ·)
2d ja j

= 2

3
+ k2

or ⎧⎪⎪⎨
⎪⎪⎩

a− jt1 = 2

3
+ k̃1,

d− jt2 − bt1(a j−1 + d j−1 + a j−2d + d j−2a + · · ·)
2d ja j

= 1

3
+ k̃2,

(2.9)

hence we always have

t1 = a jk

3
/∈ Z (k ∈ Z). (2.10)

If there is a set of the self-affine measure μM,D that contains four elements, denoted by Λ, we always may assume that
(0,0)T ∈ Λ by taking some λ0 ∈ Λ and replacing Λ by Λ − λ0. Λ may be denoted as follows:

Λ =
{(

0
0

)
,

(
λ1
ξ1

)
,

(
λ2
ξ2

)
,

(
λ3
ξ3

)}
. (2.11)

Then for any λ,β ∈ Λ, λ 
= β , λ − β is the zero point of μ̂M,D . Further, from (2.10), we have

3λ1 = a j1k1, 3λ2 = a j2k2, 3λ3 = a j3k3, (2.12)

since a is not a multiple of 3, thus

a j1k1 
= 3l1, a j2k2 
= 3l2, a j3k3 
= 3l3 (l1, l2, l3 ∈ Z). (2.13)

Therefore, there are two of a j1k1,a j2k2 and a j3k3 in the same mod(3). Without loss of generality, we assume a j1k1 ≡
a j2k2 mod(3), then 3/(a j1k1 − a j2k2), namely

λ1 − λ2 = a j1k1 − a j2k2

3
∈ Z, (2.14)

which contradicts (2.10). Hence there exist at most 3 mutually orthogonal exponential functions in L2(μM,D).
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In order to complete our proof, we only need taking a = b = 2, m = 1, finding out all the orthogonal exponential func-
tions. It follows from (2.6) and (2.7) that

Z(μ̂M,D) = {Z j or Z̃ j: j ∈ N}, (2.15)

where

Z j =
{(

2 j+1

3
,

2 j(1 + j)

3

)T

+ (
2 jk2,2 jk1 + jk22 j−1)T

: k1,k2 ∈ Z

}
⊆ R

2 (2.16)

and

Z̃ j =
{(

2 j

3
,

2 j−1(4 + j)

3

)T

+ (
2 jk̃2,2 jk̃1 + jk̃22 j−1)T

: k̃1, k̃2 ∈ Z

}
⊆ R

2. (2.17)

Then, one can verify that

Z j ⊂ Z̃ j−3 and Z̃ j ⊂ Z j−3 ( j ∈ N and j � 4)

hold. Hence, we have the following.

Proposition 2.1. Let a = d = 2, b = 1. For the self-affine measure μM,D corresponding to (1.6), the zero set Z(μ̂M,D) is given by

Z(μ̂M,D) = Z1 ∪ Z2 ∪ Z3 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3

where

Z1, Z2, Z3, Z̃1, Z̃2, Z̃3 are mutually disjoint and
3⋃

j=1

(Z j ∪ Z̃ j) ∩ Z
2 = ∅,

where Z j and Z̃ j ( j = 1,2,3) are given by (2.16) and (2.17) respectively.

(2) By the above Proposition 2.1, one can obtain many such orthogonal systems which contain three elements, for exam-
ple, Λ given by

Λ =
{(

0
0

)
,

( 8
3
0

)
,

( 4
3

−4

)}
, (2.18)

is a three-elements orthogonal system in L2(μM,D). This shows that the number 3 is the best. The proof of Theorem 1.1 is
complete. Proof of Theorem 1.2 is similar to Theorem 1.1. �
Remark 2.1. Note that b may be a multiple of 3 in Theorem 1.1. If |D| ∈ W (m), then we still get that μM,D -orthogonal
exponentials contain at most 3 elements, where M and D are given by (1.6).

3. Characterization of the zero set Z(μ̂M,D)

The self-affine measure μM,D and its Fourier transform μ̂M,D given by (2.3) play an important role in analysis and
geometry. Previous research on such measure and its Fourier transform revealed some surprising connections with a number
of areas in mathematics, such as harmonic analysis, dynamical systems, number theory, and others, see [6,13,27,31,32] and
references cited there in. Here we are interested in the zero set Z(μ̂M,D) of μ̂M,D which is highly important to the spectral
and non-spectral problems on the self-affine measures.

In the following, we will restrict our discussion on the special M and D given by (1.8), and find out some characteristic
properties on the set Z(μ̂M,D), where bc 
= 0.

Lemma 3.1. For the given M in (1.8), then there exists a non-singular matrix P such that

M = P

(
�1 m
0 �2

)
P−1

where

�1 = a + d + √
(a − d)2 + 4bc

2
,

�2 = a + d − √
(a − d)2 + 4bc

2
and m ∈ {0,1}.
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From the condition (a + d)2 = 4(ad − bc) and Lemma 3.1, we first have

M− j =
(

(1 + mj)�− j − amj�− j−1 −bmj�− j−1

−cmj�− j−1 (1 − mj)�− j + amj�− j−1

)
( j = 1,2, . . .)

and

mD
(
M∗− jξ

) = 1

3

{
1 + e2π i·p j + e2π i·q j

}
, (3.1)

where

ξ = (ξ1, ξ2)
T ∈ R

2, p j = (1 + mj)�− jξ1 − amj�− j−1ξ1 − cmj�− j−1ξ2

and

q j = −bmj�− j−1ξ1 + (1 − mj)�− jξ2 + amj�− j−1ξ2

(
bc ∈ Z \ {0}, � = a + d

2

)
.

Then, we get from (2.6) and (3.1) that

Z(μ̂M,D) =
∞⋃
j=1

(Z j ∪ Z̃ j), (3.2)

where

Z j =
{(

� j+(−�+a+2c)mj� j−1

3
2� j+(2�+b−2a)mj� j−1

3

)
+

(
(1 − mj)�k1 + amjk1 + cmjk2

(1 + mj)�k2 − amjk2 + bmjk1

)
: k1,k2 ∈ Z

}
(3.3)

and

Z̃ j =
{(

2� j+(−2�+2a+c)mj� j−1

3
� j+(�+2b−a)mj� j−1

3

)
+

(
(1 − mj)�k̃2 + amjk̃2 + cmjk̃1

(1 + mj)�k̃1 − amjk̃1 + bmjk̃2

)
: k̃1, k̃2 ∈ Z

}
. (3.4)

From (3.3) and (3.4), we first have the following facts.

Proposition 3.2. The sets Z j and Z̃ j given by (3.3) and (3.4) satisfy the following properties:

(1) (x, y)T ∈ Z j ⇔ (−x,−y)T ∈ Z̃ j , that is, Z j = Z̃ j or Z̃ j = −Z j ( j = 1,2, . . .);
(2) Z j − Z j ⊆ Z

2 and Z̃ j − Z̃ j ⊆ Z
2 ( j = 1,2, . . .);

(3) Z j + Z j ⊆ Z̃ j and Z̃ j + Z̃ j ⊆ Z j ( j = 1,2, . . .).

In order to find more relations inside the zero set Z(μ̂M,D), we will reduce the fractional expressions in (3.3) and (3.4)
to their lowest terms. The denominator of all such fractional expressions is the number 3. So we consider the integers a,b, c
and � according to the residue class modulo 3 where these integers belong.

Firstly, we discuss the case m = 1. From (3.3) and (3.4), we have

Z j =
{(

� j+(−�+a+2c) j� j−1

3
2� j+(2�+b−2a) j� j−1

3

)
+

(
(1 − j)�k1 + ajk1 + cjk2

(1 + j)�k2 − ajk2 + bjk1

)
: k1,k2 ∈ Z

}
(3.5)

and

Z̃ j =
{(

2� j+(−2�+2a+c) j� j−1

3
� j+(�+2b−a) j� j−1

3

)
+

(
(1 − j)�k̃2 + ajk̃2 + cjk̃1

(1 + j)�k̃1 − ajk̃1 + bjk̃2

)
: k̃1, k̃2 ∈ Z

}
. (3.6)

The condition � = a+d
2 ∈ Z \ 3Z can be divided into the following two cases:

� = 3g + 1
(

g ∈ Z \ {0}); � = 3g + 2 (g ∈ Z). (3.7)

The assumption that a,b, c ∈ Z and bc ∈ Z \ {0} implies that a,b and c satisfy one of the following twelve cases:

(A) a = 3l (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z);
(B) a = 3l (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z);
(C) a = 3l + 1 (l ∈ Z), b = 3l1 (l1 ∈ Z \ {0}) and c = 3l2 + 1 or c = 3l2 + 2 (l2 ∈ Z);
(D) a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0});
(E) a = 3l + 1 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0});
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(F) a = 3l + 2 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z);
(G) a = 3l + 2 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z);
(H) a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z);
(I) a = 3l + 1 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z);
(J) a = 3l + 2 (l ∈ Z), b = 3l1 (l1 ∈ Z \ {0}) and c = 3l2 + 1 or c = 3l2 + 2 (l2 ∈ Z);

(K) a = 3l + 2 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0});
(L) a = 3l + 2 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0}).

We therefore divide our discussion into the following two sections according to (3.7). Section 3.1 is the case � = 3g + 1
(g ∈ Z \ {0}) and Section 3.2 is the case � = 3g + 2 (g ∈ Z). In each section, we will discuss Z j and Z̃ j according to the
above twelve cases. The main goal of each section is to simplify the expression of the zero set Z(μ̂M,D) in (2.6). The detailed
process is given in Sections 3.1.1, 3.1.2, 3.2.1 and 3.2.2, the other subsections are presented briefly.

3.1. The case � = 3g + 1 (g ∈ Z \ {0})

In the case when � = 3g + 1 (g ∈ Z \ {0}), a,b and c satisfy one of the seven conditions (A), (B), (C), (D), (E), (F) and (G),
we will find some interesting inclusion relations between Z j and Z̃ j . Therefore, we further divide our discussion into the
following seven subsections according to (A), (B), (C), (D), (E), (F) and (G).

3.1.1. The case � = 3g + 1 (g ∈ Z \ {0}) and (A)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (A), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z),

we can rewrite Z j in (3.5) as

Z j =
{( 1

3
2
3

)
+

(
x(l, l2, g, j;k1,k2)

y(l, l1, g, j;k1,k2)

)
: k1,k2 ∈ Z

}
⊆ R

2 (3.8)

where

x(l, l2, g, j;k1,k2) = (3g + 1) j − 1

3
+ (l + 2l2 − g + 1) j(3g + 1) j−1

+ (1 − j)k1�
j + ajk1�

j−1 + cjk2�
j−1 ∈ Z (3.9)

and

y(l, l1, g, j;k1,k2) = 2(3g + 1) j − 2

3
+ (2g − 2l + l1 + 1) j(3g + 1) j−1

+ (1 + j)k2�
j − ajk2�

j−1 + bjk1�
j−1 ∈ Z. (3.10)

The case j = 1 plays an important role in (3.9) and (3.10). In fact, we find, from (3.9) and (3.10), that there exist k′
1 ∈ Z,

k′
2 ∈ Z such that

x(l, l2, g, j;k1,k2) = x
(
l, l2, g,1;k′

1,k′
2

)
,

y(l, l1, g, j;k1,k2) = y
(
l, l1, g,1;k′

1,k′
2

)
. (3.11)

This shows that

Z j ⊆ Z1 for j � 1. (3.12)

In the same way, we can rewrite Z̃ j in (3.6) as

Z̃ j =
{( 2

3
1
3

)
+

(
x̃(l, l2, g, j; k̃1, k̃2)

ỹ(l, l1, g, j; k̃1, k̃2)

)
: k̃1, k̃2 ∈ Z

}
⊆ R

2 (3.13)

where

x̃(l, l2, g, j; k̃1, k̃2) = 2(3g + 1) j − 2

3
+ (2l + l2 − 2g) j(3g + 1) j−1

+ (1 − j)k̃2�
j + ajk̃2�

j−1 + cjk̃1�
j−1 ∈ Z (3.14)

and
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ỹ(l, l1, g, j;k1,k2) = (3g + 1) j − 1

3
+ (g + l + 2l1 + 1) j(3g + 1) j−1

+ (1 + j)k̃1�
j − ajk̃1�

j−1 + bjk̃2�
j−1 ∈ Z. (3.15)

Then, one can verify that there exist k̃′
1 ∈ Z, k̃′

2 ∈ Z such that

x̃(l, l2, g, j; k̃1, k̃2) = x̃
(
l, l2, g,1; k̃′

1, k̃′
2

)
,

ỹ(l, l1, g, j; k̃1, k̃2) = ỹ
(
l, l1, g,1; k̃′

1, k̃′
2

)
. (3.16)

This also shows that

Z̃ j ⊆ Z̃1 for j � 1. (3.17)

Hence, from (3.2), (3.12) and (3.17), we have the following.

Proposition 3.3. Let � = 3g +1 (g ∈ Z\{0}), a = 3l (l ∈ Z), b = 3l1 +1 (l1 ∈ Z) and c = 3l2 +2 (l2 ∈ Z). For the self-affine measure
μM,D corresponding to (1.8), the zero set Z(μ̂M,D) is given by

Z(μ̂M,D) = Z1 ∪ Z̃1 (3.18)

with

Z1 ∩ Z̃1 = (Z1 ∪ Z̃1) ∩ Z
2 = ∅, (3.19)

where Z1 and Z̃1 are given by (3.8) and (3.13) respectively.

3.1.2. The case � = 3g + 1 (g ∈ Z \ {0}) and (B)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (B), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z),

we can rewrite Z j in (3.5) as

Z j =
{( 1+ j

3
2+4 j

3

)
+

(
x(l, l2, g, j;k1,k2)

y(l, l1, g, j;k1,k2)

)
: k1,k2 ∈ Z

}
⊆ R

2 (3.20)

where

x(l, l2, g, j;k1,k2) = (3g + 1) j − 1

3
+ j(3g + 1) j−1 − j

3
+ (l + 2l2 − g) j(3g + 1) j−1

+ (1 − j)k1�
j + ajk1�

j−1 + cjk2�
j−1 ∈ Z (3.21)

and

y(l, l1, g, j;k1,k2) = 2(3g + 1) j − 2

3
+ 4 j(3g + 1) j−1 − 4 j

3
+ (2g − 2l + l1) j(3g + 1) j−1

+ (1 + j)k2�
j − ajk2�

j−1 + bjk1�
j−1 ∈ Z. (3.22)

A little difference from the above case, we find, from (3.21) and (3.22), that there exist k′
1 ∈ Z, k′

2 ∈ Z such that

1 + x(l, l2, g, j + 3;k1,k2) = x
(
l, l2, g, j;k′

1,k′
2

)
,

4 + y(l, l1, g, j + 3;k1,k2) = y
(
l, l1, g, j;k′

1,k′
2

)
. (3.23)

This shows that

Z j+3 ⊆ Z j for j � 1. (3.24)

In the same way, we can rewrite Z̃ j in (3.6) as

Z̃ j =
{( 2+ j

3
1+5 j

3

)
+

(
x̃(l, l2, g, j; k̃1, k̃2)

ỹ(l, l1, g, j; k̃1, k̃2)

)
: k̃1, k̃2 ∈ Z

}
⊆ R

2 (3.25)

where

x̃(l, l2, g, j; k̃1, k̃2) = 2(3g + 1) j − 2

3
− j(3g + 1) j + j

3
+ (l + l2 − 2g) j(3g + 1) j−1

+ (1 − j)k̃2�
j + ajk̃2�

j−1 + cjk̃1�
j−1 ∈ Z (3.26)
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and

ỹ(l, l1, g, j;k1,k2) = (3g + 1) j − 1

3
+ 5 j(3g + 1) j − 5 j

3
+ (g − l + 2l1) j(3g + 1) j−1

+ (1 + j)k̃1�
j − ajk̃1�

j−1 + bjk̃2�
j−1 ∈ Z. (3.27)

Then, one can verify that there exist k̃′
1 ∈ Z, k̃′

2 ∈ Z such that

1 + x̃(l, l2, g, j; k̃1, k̃2) = x̃
(
l, l2, g,1; k̃′

1, k̃′
2

)
,

5 + ỹ(l, l1, g, j; k̃1, k̃2) = ỹ
(
l, l1, g,1; k̃′

1, k̃′
2

)
. (3.28)

This also shows that

Z̃ j+3 ⊆ Z̃ j for j � 1. (3.29)

Hence, from (3.2), (3.24) and (3.29), we have the following.

Proposition 3.4. Let � = 3g +1 (g ∈ Z\{0}), a = 3l (l ∈ Z), b = 3l1 +2 (l1 ∈ Z) and c = 3l2 +1 (l2 ∈ Z). For the self-affine measure
μM,D corresponding to (1.8), the zero set Z(μ̂M,D) is given by

Z(μ̂M,D) = Z1 ∪ Z2 ∪ Z3 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3 (3.30)

where

Z1, Z2, Z3, Z̃1, Z̃2, Z̃3 are mutually disjoint and
3⋃

j=1

Z j ∩ Z̃ j ∩ Z
2 = ∅, (3.31)

where Z1 , Z2 and Z3 are given by (3.20), Z̃1 , Z̃2 and Z̃3 are given by (3.25).

3.1.3. The case � = 3g + 1 (g ∈ Z \ {0}) and (C)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (C), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1
(
l1 ∈ Z \ {0}) and

c = 3l2 + 1 or c = 3l2 + 2 (l2 ∈ Z), (3.32)

we find that the following inclusion relations

Z j+3 ⊆ Z j and Z̃ j+3 ⊆ Z̃ j ( j = 1,2, . . .) (3.33)

hold. Hence, from (3.2) and (3.33), we have the following.

Proposition 3.5. Let � = 3g + 1 (g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1 (l1 ∈ Z \ {0}) and c = 3l2 + 1 or c = 3l2 + 2 (l2 ∈ Z). For
the self-affine measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z j and Z̃ j ( j = 1,2,3)

are given by (3.5) and (3.6) respectively with �,a,b and c given by (3.32).

3.1.4. The case � = 3g + 1 (g ∈ Z \ {0}) and (D)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (D), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and

c = 3l2
(
l2 ∈ Z \ {0}), (3.34)

we find that the following inclusion relations

Z j+3 ⊆ Z j and Z̃ j+3 ⊆ Z̃ j for j � 1 (3.35)

hold. Hence, from (3.2) and (3.35), we have the following.

Proposition 3.6. Let � = 3g + 1 (g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0}). For the self-
affine measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z j and Z̃ j ( j = 1,2,3) are given
by (3.5) and (3.6) respectively with �,a,b and c given by (3.34).
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3.1.5. The case � = 3g + 1 (g ∈ Z \ {0}) and (E)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (E), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and

c = 3l2
(
l2 ∈ Z \ {0}), (3.36)

we find that the following inclusion relations

Z j+3 ⊆ Z j and Z̃ j+3 ⊆ Z̃ j ( j = 1,2, . . .) (3.37)

hold. Hence, from (3.2) and (3.37), we have the following facts.

Proposition 3.7. Let � = 3g + 1 (g ∈ Z \ {0}), a = 3l + 1 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 (l2 ∈ Z \ {0}). For the self-
affine measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z j and Z̃ j ( j = 1,2,3) are given
by (3.5) and (3.6) respectively with �,a,b and c given by (3.36).

3.1.6. The case � = 3g + 1 (g ∈ Z \ {0}) and (F)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (F), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l + 2 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and

c = 3l2 + 2 (l2 ∈ Z), (3.38)

we still have that the following inclusion relations

Z j+3 ⊆ Z j and Z̃ j+3 ⊆ Z̃ j ( j = 1,2, . . .) (3.39)

hold. Hence, from (3.2) and (3.39), we have the following facts.

Proposition 3.8. Let � = 3g + 1 (g ∈ Z \ {0}), a = 3l + 2 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z). For the self-affine
measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z j and Z̃ j ( j = 1,2,3) are given by (3.5)
and (3.6) respectively with �,a,b and c given by (3.38).

3.1.7. The case � = 3g + 1 (g ∈ Z \ {0}) and (G)
Under the conditions � = 3g + 1 (g ∈ Z \ {0}) and (G), that is

� = 3g + 1
(

g ∈ Z \ {0}), a = 3l + 2 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and

c = 3l2 + 1 (l2 ∈ Z), (3.40)

we find that the following inclusion relations

Z j ⊆ Z1 and Z̃ j ⊆ Z̃1 for j � 1 (3.41)

hold. Hence, from (3.2) and (3.41), we have the following facts.

Proposition 3.9. Let � = 3g + 1 (g ∈ Z \ {0}), a = 3l + 2 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z). For the self-affine
measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.18) and (3.19), where Z1 and Z̃1 are given by (3.5) and (3.6)
respectively with �,a,b and c given by (3.40).

3.2. The case � = 3g + 2 (g ∈ Z)

In the case when � = 3g + 2 (g ∈ Z), a,b and c satisfy one of the seven conditions (A), (B), (H), (I), (J), (K) and (L), we
will find certain inclusion relations between Z j and Z̃ j (a little difference from Section 3.1) by applying the same technique
as Section 3.1.

3.2.1. The case � = 3g + 2 (g ∈ Z) and (A)
Under the conditions � = 3g + 2 (g ∈ Z) and (A), that is

� = 3g + 2 (g ∈ Z), a = 3l (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z), (3.42)

as in the above Section 3.1.1, we first rewrite Z j in (3.5) and Z̃ j in (3.6) as
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Z j =
{(

(1+ j)2 j

3
(4+5 j)2 j−1

3

)
+

(
x(l, l2, g, j;k1,k2)

y(l, l1, g, j;k1,k2)

)
: k1,k2 ∈ Z

}
⊆ R

2, (3.43)

Z̃ j =
{(

(2+ j)2 j

3
(1+2 j)2 j

3

)
+

(
x̃(l, l2, g, j; k̃1, k̃2)

ỹ(l, l1, g, j; k̃1, k̃2)

)
: k̃1, k̃2 ∈ Z

}
⊆ R

2, (3.44)

where

x(l, l2, g, j;k1,k2) = (3g + 2) j − 2 j

3
+ 2 j(3g + 2) j−1 − 2 j2 j−1

3
+ (l + 2l2 − g) j(3g + 2) j−1

+ (1 − j)k1�
j + ajk1�

j−1 + cjk2�
j−1 ∈ Z, (3.45)

y(l, l1, g, j;k1,k2) = 2(3g + 2) j − 2 j+1

3
+ 5 j(3g + 2) j−1 − 5 j2 j−1

3
+ (2g − 2l + l1) j(3g + 2) j−1

+ (1 + j)k2�
j − ajk2�

j−1 + bjk1�
j−1 ∈ Z, (3.46)

x̃(l, l2, g, j; k̃1, k̃2) = 2(3g + 2) j − 2 j+1

3
+ 2 j(3g + 2) j−1 − 2 j2 j−1

3
+ (2l + l2 − 2g) j(3g + 2) j−1

+ (1 − j)k̃2�
j + ajk̃2�

j−1 + cjk̃1�
j−1 ∈ Z, (3.47)

and

ỹ(l, l1, g, j;k1,k2) = (3g + 2) j − 2 j

3
+ 4 j(3g + 2) j−1 − j2 j+1

3
+ (g − l + 2l1) j(3g + 2) j−1

+ (1 + j)k̃1�
j − ajk̃1�

j−1 + bjk̃2�
j−1 ∈ Z. (3.48)

Then, one can verify that

Z j+3 ⊆ Z̃ j and Z̃ j+3 ⊆ Z j ( j = 1,2, . . .). (3.49)

Hence, from (3.2) and (3.49), we have the following.

Proposition 3.10. Let � = 3g + 2 (g ∈ Z), a = 3l (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z). For the self-affine measure
μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z j and Z̃ j ( j = 1,2,3) are given by (3.43) and
(3.44) respectively with �,a,b and c given by (3.42).

3.2.2. The case � = 3g + 2 (g ∈ Z) and (B)
Under the conditions � = 3g + 2 (g ∈ Z) and (B), that is

� = 3g + 2 (g ∈ Z), a = 3l (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z), (3.50)

as in the above Section 3.2.1, we first rewrite Z j in (3.5) and Z̃ j in (3.6) as

Z j =
{(

2 j

3
2 j+1

3

)
+

(
x(l, l2, g, j;k1,k2)

y(l, l1, g, j;k1,k2)

)
: k1,k2 ∈ Z

}
⊆ R

2, (3.51)

Z̃ j =
{(

2 j+1

3
2 j

3

)
+

(
x̃(l, l2, g, j; k̃1, k̃2)

ỹ(l, l1, g, j; k̃1, k̃2)

)
: k̃1, k̃2 ∈ Z

}
⊆ R

2, (3.52)

where

x(l, l2, g, j;k1,k2) = (3g + 2) j − 2 j

3
+ (l + 2l2 − g) j(3g + 2) j−1

+ (1 − j)k1�
j + ajk1�

j−1 + cjk2�
j−1 ∈ Z, (3.53)

y(l, l1, g, j;k1,k2) = 2(3g + 2) j − 2 j+1

3
+ (2g − 2l + l1 + 2) j(3g + 2) j−1

+ (1 + j)k2�
j − ajk2�

j−1 + bjk1�
j−1 ∈ Z, (3.54)

x̃(l, l2, g, j; k̃1, k̃2) = 2(3g + 2) j − 2 j+1

3
+ (2l + l2 − 2g − 1) j(3g + 2) j−1

+ (1 − j)k̃2�
j + ajk̃2�

j−1 + cjk̃1�
j−1 ∈ Z (3.55)

and
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ỹ(l, l1, g, j;k1,k2) = (3g + 2) j − 2 j

3
+ (g − l + 2l1 + 2) j(3g + 2) j−1

+ (1 + j)k̃1�
j − ajk̃1�

j−1 + bjk̃2�
j−1 ∈ Z. (3.56)

Then, we find, with a little difference from the above cases, that the following inclusion relations

Z j+1 ⊆ Z̃ j and Z̃ j+1 ⊆ Z j ( j = 1,2, . . .) (3.57)

hold. Hence, from (3.2) and (3.57), we have the following.

Proposition 3.11. Let � = 3g + 2 (g ∈ Z), a = 3l (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z). For the self-affine mea-
sure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.18) and (3.19), where Z1 and Z̃1 are given by (3.51) and (3.52)
respectively with �,a,b and c given by (3.50).

3.2.3. The case � = 3g + 2 (g ∈ Z) and (H)
Under the conditions � = 3g + 2 (g ∈ Z) and (H), that is

� = 3g + 2 (g ∈ Z), a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z), (3.58)

we find that the following inclusion relations

Z̃ j+1 ⊆ Z j and Z j+1 ⊆ Z̃ j ( j = 1,2, . . .) (3.59)

hold. Hence, from (3.2) and (3.59), we have the following.

Proposition 3.12. Let � = 3g + 2 (g ∈ Z), a = 3l + 1 (l ∈ Z), b = 3l1 + 1 (l1 ∈ Z) and c = 3l2 + 2 (l2 ∈ Z). For the self-affine
measure μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.18) and (3.19), where Z1 and Z̃1 are given by (3.5) and (3.6)
respectively with �,a,b and c given by (3.58).

3.2.4. The case � = 3g + 2 (g ∈ Z) and (I)
Under the conditions � = 3g + 2 (g ∈ Z) and (I), that is

� = 3g + 2 (g ∈ Z), a = 3l + 1 (l ∈ Z), b = 3l1 + 2 (l1 ∈ Z) and c = 3l2 + 1 (l2 ∈ Z), (3.60)

we find that the following inclusion relations

Z̃ j+3 ⊆ Z j and Z j+3 ⊆ Z̃ j ( j = 1,2, . . .) (3.61)

hold. Hence, from (3.2) and (3.61), we have the following.

Proposition 3.13. Let � = 3g +2 (g ∈ Z), a = 3l +1 (l ∈ Z), b = 3l1 +2 (l1 ∈ Z) and c = 3l2 +1 (l2 ∈ Z). For the self-affine measure
μM,D corresponding to (1.8), the zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z1 , Z2 and Z3 are given by (3.5), Z̃1 , Z̃2 and Z̃3
are given by (3.6).

3.2.5. The other three cases
Under the other three cases, that is

Case 1. � = 3g + 2 (g ∈ Z) and (J),
Case 2. � = 3g + 2 (g ∈ Z) and (K),
Case 3. � = 3g + 2 (g ∈ Z) and (L),

we find that the following inclusion relations

Z̃ j+3 ⊆ Z j and Z j+3 ⊆ Z̃ j ( j = 1,2, . . .) (3.62)

hold. Hence we have the following.

Proposition 3.14. If �, a, b and c hold one of the above three cases, then for the self-affine measure μM,D corresponding to (1.8), the
zero set Z(μ̂M,D) satisfies (3.30) and (3.31), where Z1 , Z2 and Z3 are given by (3.5), Z̃1 , Z̃2 and Z̃3 are given by (3.6).

Lastly, when m = 0, we can rewrite the plane sets Z j and Z̃ j in (3.3) and (3.4) as

Z j =
{(

� j

3
2� j

)
+

(
k1�

j

k2�
j

)
: k1,k2 ∈ Z

}
⊆ R

2 (3.63)

3
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and

Z̃ j =
{( 2� j

3
� j

3

)
+

(
k̃2�

j

k̃1�
j

)
: k̃1, k̃2 ∈ Z

}
⊆ R

2. (3.64)

The condition � ∈ Z can be divide into the following two cases:

� = 3g + 1
(

g ∈ Z \ {0}); � = 3g + 2 (g ∈ Z). (3.65)

3.3. The case � = 3g + 1 (g ∈ Z \ {0}) or � = 3g + 2 (g ∈ Z)

Under the conditions � = 3g + 1 (g ∈ Z\ {0}) or � = 3g + 2 (g ∈ Z), one can verify that the following inclusion relations

Z̃ j+1 ⊆ Z j and Z j+1 ⊆ Z̃ j for j � 1 (3.66)

hold. Hence, from (3.2) and (3.66), we have the following facts.

Proposition 3.15. If � = 3g + 1 (g ∈ Z \ {0}) or � = 3g + 2 (g ∈ Z), then for the self-affine measure μM,D corresponding to (1.8),
the zero set Z(μ̂M,D) satisfies (3.18) and (3.19), where Z1 and Z̃1 are given by (3.63) and (3.64) respectively.

3.4. Summary of the above cases (thirteen subcases)

The above discussion involves the four cases:

� = 3g + 1
(

g ∈ Z \ {0}, m = 1
)

(Section 3.1), � = 3g + 2 (g ∈ Z, m = 1) (Section 3.2),

� = 3g + 1
(

g ∈ Z \ {0}, m = 0
)

(Section 3.3) and � = 3g + 2 (g ∈ Z, m = 0) (Section 3.3).

Propositions 3.3–3.15 correspond to the thirteen subsections. These established propositions characterize the zero set
Z(μ̂M,D). They can be divided into two typical cases:

Typical case 1. Propositions 3.3, 3.9, 3.11, 3.12 and 3.15 illustrate that Z(μ̂M,D) satisfies (3.18) and (3.19).

Typical case 2. Propositions 3.4, 3.5, 3.6, 3.7, 3.8, 3.10, 3.13 and 3.14 illustrate that Z(μ̂M,D) satisfies (3.30) and (3.31).

The above two typical cases correspond to two kinds of representations for Z(μ̂M,D) which will help us to prove Theo-
rem 1.3 in the next section.

4. Proof of Theorem 1.3

If c = 0, then Theorem 1.3 fall into Theorem 1.1. If b = 0, then Theorem 1.3 fall into Theorem 1.2. In the following we will
discuss the case bc 
= 0.

If λ j ( j = 1,2,3,4) ∈ R
2 are such that the exponential functions

e2π i〈λ1,x〉, e2π i〈λ2, x〉, e2π i〈λ3, x〉, e2π i〈λ4, x〉

are mutually orthogonal in L2(μM,D), then the differences λ j − λk (1 � j 
= k � 4) are in the zero set Z(μ̂M,D). That is, we
have

λ j − λk ∈ Z(μ̂M,D) (1 � j 
= k � 4). (4.1)

We will use the above established facts on the zero set Z(μ̂M,D) to deduce a contradiction. The proof will divide into two
sections according to Typical cases 1–2.

Typical case 1. From (3.18) and (4.1) we have

λ j − λk ∈ Z1 ∪ Z̃1 (1 � j 
= k � 4) (4.2)

and (3.19) hold. Especially the following three differences

λ1 − λ2, λ1 − λ3, λ1 − λ4 (4.3)

are in Z1 ∪ Z̃1. Combined with (3.19), (4.2) and Proposition 3.2(2), we immediately deduce a contradiction, since any two
of three differences in (4.3) cannot belong to the same set Z1 or Z̃1. For example, if λ1 − λ2 ∈ Z̃1 and λ1 − λ4 ∈ Z̃1, by
Proposition 3.2(2), then

λ4 − λ2 = (λ1 − λ2) − (λ1 − λ4) ∈ Z̃1 − Z̃1 ⊆ Z
2
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which contradicts (3.19) and (4.2). Hence any set of μM,D -orthogonal exponentials contains at most 3 elements. We can
find many such orthogonal systems which contain three elements. For instance, the exponential function system EΛ with Λ

given by

Λ = {0, s1, s2} ⊆ R
2 (4.4)

is a three-elements orthogonal system in L2(μM,D), where s1 ∈ Z1 and s2 ∈ Z̃1. This shows that the number 3 is the best.

Typical case 2. We obtain from (3.30) and (4.1) that

λ j − λk ∈ Z1 ∪ Z2 ∪ Z3 ∪ Z̃1 ∪ Z̃2 ∪ Z̃3 (1 � j 
= k � 4) (4.5)

and (3.31) hold. We will use Proposition 3.2, (3.31) and (4.5) to deduce a contradiction.
Observe that the following six differences

λ1 − λ2, λ1 − λ3, λ1 − λ4,

λ2 − λ3, λ2 − λ4,

λ3 − λ4, (4.6)

belong to the six sets Z1, Z2, Z3, Z̃1, Z̃2, Z̃3. By Proposition 3.2 and (3.31), the differences in each row of (4.6) (except the
final row) and the differences in each column of (4.6) (except the first column) cannot belong to the same set. Especially,
the following three differences in the first row of (4.6)

λ1 − λ2, λ1 − λ3, λ1 − λ4

will be in the three different sets of the six sets Z1, Z2, Z3, Z̃1, Z̃2, Z̃3. There are 120 distribution methods. One can use the
method presented in [21] to deal with each case. For completeness, we use this method to deal with the following one of
three typical cases:

Case 1. λ1 − λ2 ∈ Z̃1, λ1 − λ3 ∈ Z̃2, λ1 − λ4 ∈ Z̃3.
Case 2. λ1 − λ2 ∈ Z1, λ1 − λ3 ∈ Z2, λ1 − λ4 ∈ Z̃3.
Case 3. λ1 − λ2 ∈ Z1, λ1 − λ3 ∈ Z2, λ1 − λ4 ∈ Z̃1.

In the sequel we only discuss Case 1, the other cases may be proved in the same manner.

Case 1. By Proposition 3.2(1), we first have the following fact holds:

λ2 − λ3 cannot belong to the sets (or small boxes) Z1, Z2, Z̃1, Z̃2. (4.7)

The reason is following.
(1) If λ2 − λ3 ∈ Z1, by Proposition 3.2(2), then

λ3 − λ1 = (λ2 − λ1) − (λ2 − λ3) ∈ Z1 − Z1 ⊆ Z
2, (4.8)

which contradicts (3.31) and λ3 − λ1 ∈ Z2. Similarly, we show that λ2 − λ3 /∈ Z̃2.
(2) If λ2 − λ3 ∈ Z2, then from Proposition 3.2(3), we get that

λ2 − λ1 = (λ2 − λ3) + (λ3 − λ1) ∈ Z2 + Z2 ⊆ Z̃2, (4.9)

which contradicts (3.31) and λ2 − λ1 ∈ Z1. The same reason shows that λ2 − λ3 /∈ Z̃1.
Similarly, the following facts hold:

λ2 − λ4 cannot belong to the sets (or small boxes) Z1, Z3, Z̃1, Z̃3; (4.10)

λ3 − λ4 cannot belong to the sets (or small boxes) Z2, Z3, Z̃2, Z̃3. (4.11)

Hence, from (4.7), (4.10) and (4.11), we have

λ2 − λ3 ∈ Z3 or Z̃3; λ2 − λ4 ∈ Z2 or Z̃2; λ3 − λ4 ∈ Z1 or Z̃1 (4.12)

which is impossible. To see this, we only consider the following two typical cases:
(1′) If

λ2 − λ3 ∈ Z3, λ2 − λ4 ∈ Z2, λ3 − λ4 ∈ Z1,

then by Proposition 3.2(1)–(3), since

(λ2 − λ1) − (λ3 − λ4) = (λ4 − λ1) + (λ2 − λ3),
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the left-hand side is in Z1 − Z1 ⊆ Z
2 and the right-hand side is in Z3 + Z3 ⊆ Z̃3, which leads to a contradiction by (3.31).

Also, by Proposition 3.2(3), the differences in Z1 and Z2 have the character that

(λ2 − λ1) + (λ3 − λ4) = (λ3 − λ1) + (λ2 − λ4) ∈ Z̃1 ∩ Z̃2,

which contradicts (3.31).
(2′) If

λ2 − λ3 ∈ Z̃3, λ2 − λ4 ∈ Z̃2, λ3 − λ4 ∈ Z1,

then, by Proposition 3.2(1) and Propositions 3.2(3), the elements in Z2 and Z3 (or Z̃2 and Z̃3) have the character that

(λ3 − λ1) + (λ4 − λ2) = (λ4 − λ1) + (λ3 − λ2) ∈ Z̃2 ∩ Z̃3,

which contradicts (3.31). Another way to deduce a contradiction is to apply Propositions 3.2(2), 3.2(3) on the elements of
sets Z1 and Z2 (or Z̃1 and Z̃2) respectively. Since

(λ2 − λ1) + (λ3 − λ4) = (λ3 − λ1) − (λ4 − λ2),

the left-hand side is in Z1 + Z1 ⊆ Z̃1 and the right-hand side is in Z2 − Z2 ⊆ Z
2, which also leads to a contradiction

by (3.31). This completes the proof of Case 1.

Hence any set of μM,D -orthogonal exponentials contains at most 3 elements. For instance, the exponential function
system EΛ with Λ given by (4.4) or Λ given by

Λ = {0, s1, s2} ⊆ R
2 for each s1 ∈ Z2 and s2 ∈ Z̃2 (4.13)

or with Λ given by

Λ = {0, s1, s2} ⊆ R
2 for each s1 ∈ Z3 and s2 ∈ Z̃3 (4.14)

is also the three-elements orthogonal system in L2(μM,D). This shows that the number 3 is the best. The proof of Theo-
rem 1.3 is complete.

Remark 4.1. Note that in the above each type, Z j and Z̃ j have different representations according to the corresponding
Propositions 3.3–3.15 or thirteen subcases.

5. Concluding remarks and examples

The non-spectral self-affine measure problem mentioned in Section 1 depends fundamentally on the characterization of
the zero Z(μ̂m,D). For any finite set D ⊆ R

n of the cardinality |D| = 3 or 4, one can obtain the certain expression for the
set Z(μ̂m,D) similar to (3.2). But it is more difficult to obtain some characteristic properties on this set.

Example 5.1. The self-affine measure μM,D corresponds to

M =
[

2 1
0 3

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, (5.1)

from Theorem 1.1, we get that there exist at most 3 mutually orthogonal exponential functions in L2(μ̃M,D), but |D| = 3 ∈
W (6).

Here the number 3 matches the cardinality of |D|, and we need not to divide |det(M)| or |D| into the two cases: |D| <
|det(M)| and |D| > |det(M)|. The all known results on the non-spectral self-affine measure problem are in the case |D| <

|det(M)|. In the IFS {φ}d∈D , the condition |D| � |det(M)| is necessary for T (M, D) to have positive Lebesgue measure. For
the integral self-affine tile T (M, D), there are infinite families of orthogonal exponentials in L2(μ̃M,D) (see [20]). However
this conclusion does not hold in the case when |D| > |det(M)|, even if T (M, D) has positive Lebesgue measure.

Example 5.2. (See [22].) The pair (M, D) is given by

M =
[

0 2
1 0

]
and D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
. (5.2)

We see that T (M, D) has positive Lebesgue measure and |D| > |det(M)|, but there are at most 3 mutually orthogonal
exponentials in L2(μ̃M,D), and the number 3 is the best.

Finally, it should be pointed out that we only consider the case (a + d)2 = 4(ad − bc) in Theorem 1.3. When (a + d)2 
=
4(ad − bc), the method here may be provide a way to deal with such question.
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