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1. Introduction and main results

A starting point of this project is a remarkable property of mean-value points in the first integral mean-value theorem.
Let f : [0,1] → R be a continuous function. For any x ∈ (0,1] consider ξ(x) that is the maximum of τ ∈ [0, x] such that
x · f (τ ) = ∫ x

0 f (t)dt . Then the inequality limx→0
ξ(x)

x � 1
e holds. This inequality was proposed by Professor V.K. Ionin and

was proved at first in the paper [9]. Further, this result was generalized in various ways [10,5,11–14]. But in this paper
we suggest another point of view: the main object of our study are not functions, but continuous curves (for example,
the graphs of functions).

At first we refine a definition of support points (with respect to a given chord) of a continuous parametric curve in spite
of the fact that this notion is quite natural and intuitively clear.

Definition 1. Let γ : (a,b) → E
2 be a continuous parametric curve in the Euclidean plane, [c,d] ⊂ (a,b). We say that a point

γ (τ0), τ0 ∈ [c,d] is a support point for the chord [γ (c), γ (d)] (if γ (c) �= γ (d)), if a straight line l passing through γ (τ0)

in parallel [γ (c), γ (d)] is such that for all τ , rather close to τ0, the points γ (τ ) are in one and the same half-plane
determined by l. If γ (c) = γ (d), then we set that any point γ (τ0) for τ0 ∈ [c,d] is a support point for the (degenerate)
chord [γ (c), γ (d)].

Note that our convention on the set of support points for γ (c) = γ (d) is stipulated by the universality of an analytic
description of such sets under this definition (see below). It is possible to modify this definition, but in any case it is not so
important since the case of chords with zero length is trivial (in some sense) for our questions.

Consider a (rectangular) Cartesian coordinate system O xy in the plane E
2. Then γ (t) = (x(t), y(t)) ∈ R

2, t ∈ (a,b).
The fact that a point γ (τ0), τ0 ∈ [c,d], is a support point for the chord [γ (c), γ (d)] could be expressed in the follow-
ing form. Consider a function Φ : (a,b) →R,

Φ(τ) = det

(
x(d) − x(c) y(d) − y(c)

x(τ ) y(τ )

)
.
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It is easy to see that a point γ (τ0), τ0 ∈ [c,d], is a support point for the chord [γ (c), γ (d)] if and only if τ0 is a point of
local extremum of the function Φ . Since Φ(c) = Φ(d), then there is at least one point of local extremum of the function
under consideration on the interval (c,d). Moreover, if the curve γ (t) is differentiable at the point τ0, then

Φ ′(τ0) = det

(
x(d) − x(c) y(d) − y(c)

x′(τ0) y′(τ0)

)
= 0,

that means the collinearity of the vectors γ (d) − γ (c) and γ ′(τ0). Note also that the straight line l in Definition 1 is a
tangent line to the curve γ (t) at the point γ (τ0) when γ (c) �= γ (d) and γ ′(τ0) �= 0.

Now we can formulate the main results of this paper. Let γ : [a,b) → E
2, where a,b ∈R = R∪{−∞,∞}, be a continuous

parametric curve in the Euclidean plane, that is not a constant in any neighborhood of the point a.
Further, by D(t) we denote a distance between the points γ (a) and γ (t).
For every t ∈ (a,b) we denote by S(t) a set of τ ∈ (a, t] such that the point γ (τ ) is a support point for the chord

[γ (a), γ (t)]. Now, consider

D S(t) = sup
{

D(τ )
∣∣ τ ∈ S(t)

}
.

The main object of our study is the asymptotic of the ratio D S(t)/D(t) when t → a. For a fixed t the set S(t) ⊂ (a, t]
could be organized quite complicated, and this is evident from a geometric interpretation of this set. The case D(t) = 0 is
exceptional. According to the definition, in this case we get S(t) = (a, t]. Obviously, there exists τ ∈ S(t) = (a, t] with the
property D(τ ) > 0 (otherwise, the curve γ is constant on the interval (a, t)). Hence D S(t) > 0 for a such t , and we set
D S(t)/D(t) = ∞ when D(t) = 0.

For a fixed value t it is possible to choose a curve with the ratio D S(t)/D(t) equal to a given positive number. On the
other hand, it is clear that this ratio could not be greater than 1 for all values of a parameter. A rather less evident fact
is that the ratio D S(t)/D(t) could not be less than some definite positive number for all values of a parameter. An exact
assertion consists in the following theorem that is the main result of this paper.

Theorem 1. Let γ : [a,b) → E
2 be an arbitrary continuous parametric curve. Then the inequality

lim
t→a

D S(t)

D(t)
� 1

e
(1)

holds, where, as usual, e = limn→∞(1 + 1
n )n.

For a differentiable curve any support point is a tangent point automatically. Therefore, the above theorem implies some
corresponding results for tangent points. Let us clarify the statement of the problem.

Let γ : [a,b) → E
2, where a,b ∈ R = R ∪ {−∞,∞}, be a continuous parametric curve in the Euclidean plane such that

for every t ∈ (a,b) there exists a non-zero derivative vector γ ′(t). Note that this vector defines a direction of the tangent
line to the considered curve at the point γ (t). If the derivative vector is continuous (with respect to a parameter), then
such a curve is called smooth regular, but we do not assume the continuity of the derivative vector in what follows (unless
otherwise stipulated).

By analogy with general continuous curves, for every t ∈ (a,b) we denote by T (t) the set of τ ∈ (a, t] such that the
vector γ ′(τ ) is collinear to the vector

−−−−−−−→
γ (a)γ (t). It is clear that the set T (t) is non-empty for every t ∈ (a,b) (since even the

set S(t) ⊂ T (t) is non-empty).
Let us consider the value

DT (t) = sup
{

D(τ )
∣∣ τ ∈ T (t)

}
.

We are interested in the asymptotic of the ratio DT (t)/D(t) when t → a. For a fixed t (by analogy with S(t)) the
set T (t) ⊂ (a, t] could be rather complicated that follows from the geometric interpretation of this set as a set of points
τ ∈ (a, t], such that a tangent line to the curve γ at the point γ (τ ) is parallel to the chord [γ (a), γ (t)]. For example,
for D(t) = 0 we get T (t) = (a, t], and we set DT (t)/D(t) = ∞ in this case. This is motivated by the fact that for some
τ ∈ (a, t) ⊂ T (t) the inequality D(τ ) > 0 holds (otherwise the derivative vector γ ′ should be trivial on the interval (a, t))
and, therefore, DT (t) > 0 (compare with analogous convention for D S(t)/D(t) when D(t) = 0).

It is clear that for some fixed value of t (and for a curve chosen specially) the ratio DT (t)/D(t) could be equal to any
positive number. For a differentiable curve γ we obviously get the inclusion S(t) ⊂ T (t) (but S(t) �= ∅ under the condition)
and, therefore, the inequality D S(t) � DT (t) for an arbitrary t ∈ (a,b). Hence, the following result (obtained at first in [15])
is an immediate consequence of Theorem 1.

Theorem 2. (See [15].) Let γ : [a,b) → E
2 be an arbitrary continuous parametric curve with non-zero derivative vector γ ′(t) at every

point t ∈ (a,b). Then the inequality

lim
t→a

DT (t)

D(t)
� 1

e
(2)

holds.
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In Section 2 we consider some examples illustrating the assertions of Theorem 1 and Theorem 2. According to these
examples, the inequalities (1) and (2) are best possible.

Note also that the inequalities (1) and (2) have local character. Therefore, the domain of definition [a,b) of the curve
γ (t) in Theorem 1 or in Theorem 2 can be replaced by any interval [a,b1), where b1 ∈ (a,b).

Under conditions of Theorem 1, we can consider curve γ1 : [a1,b1) → E
2 instead of the curve γ : [a,b) → E

2, if γ1(t) =
γ (g(t)) for some continuous bijective function g : [a1,b1) → [a,b). In the case of Theorem 2, it should be required (in
addition) the existence of positive derivative for the function g on the interval (a1,b1). In other words, the assertions of the
above theorems concern the geometry of a nonparametric curve (that could be considered as a class of pairwise equivalent
parametric curves). Further (e.g., in the proof of Theorem 1 in Section 3) we will use these properties repeatedly.

On the other hand, the results of Theorem 1 and Theorem 2 may be used to study some special parameterizations of
a curve. In such a case we obtain a couple of (partially known) results on the asymptotic of mean-value points in some
classical differential and integral theorems (cf. Section 4). In the last section we formulate some unsolved questions that
can be used as a basis for further investigations in the designated direction. In particular, it would be desirable to hope that
results of this paper initiate more detailed study of the asymptotic behaviour of the ratios D S(t)/D(t) and DT (t)/D(t).

For functions defined on an interval [α,β] ⊂ R, we use limits and derivatives at the point α (β , respectively) having
in mind right hand limits and right derivatives (left hand limits and left derivatives, respectively). This natural convention
allows us to simplify the presentation.

2. Some examples

We will define curves with using of polar coordinates with a pole in the initial point of the curve. Moreover, a parameter
in the following examples is the polar angle t , t ∈ [a,b). A curve γ (t), t ∈ [a,b) is defined completely by t 
→ ρ(t) – the
distance function from the current point of the curve to the pole (ρ(a) = 0). The points τ ∈ T (t) ⊂ (a, t] are determined by
the equation

ρ(τ ) cos(t − τ ) − ρ ′(τ ) sin(t − τ ) = 0. (3)

Note also that the equality D(t) = ρ(t) holds in all examples below. Moreover, in all these examples, the equality T (t) = S(t)
holds for all possible values of the parameter t (it is easy to check), i.e. all tangent points are also support points for the
corresponding chords of the curve.

Example 1. Consider a curve defined by the equation ρ(t) = eαt , where α > 0, the parameter is the polar angle, t ∈ [−∞,b).
It is clear that t = τ + arccot(α) + πn (n ∈ Z, n � 0) for τ ∈ T (t) = S(t). Hence,

D S(t) = DT (t) = eαt−α·arccot(α), D(t) = ρ(t) = eαt,
DT (t)

D(t)
= D S(t)

D(t)
= e−α·arccot(α).

It is necessary to note that α · arccot(α) < 1 for α > 0 and limα→∞(α · arccot(α)) = 1. Therefore, the inequalities in Theo-
rem 1 and Theorem 2 are best possible.

Example 2. Consider a curve defined by the equation ρ(t) = tα , where α > 0, the parameter is the polar angle, t ∈ [0,b).
For determining of τ ∈ T (t) = S(t) we have the equation

τ cos(t − τ ) − α sin(t − τ ) = 0.

It is clear that t = τ + arccot( α
τ ) + πn (n ∈ Z, n � 0). Therefore,

lim
t→0

DT (t)

D(t)
= lim

t→0

D S(t)

D(t)
= lim

τ→0

τα

(τ + arccot(α
τ ))α

= lim
τ→0

(
1 + 1

τ
arccot

(
α

τ

))−α

=
(

1 + 1

α

)−α

> e−1.

Note also that limα→∞(1 + α−1)−α = e−1.

Example 3. Let us set l > 1, [a,b) = [−∞,0), ρ(t) = eφ(t) , where φ(t) = −|t|l = −(−t)l , a parameter is the polar angle
again, t ∈ [−∞,0). Obviously, t = τ + arccot(φ′(τ )) + πn (n ∈ Z, n � 0) for τ ∈ T (t) = S(t) (cf. the equality (3)). This implies
immediately

lim
t→−∞

DT (t)

D(t)
= lim

t→−∞
D S(t)

D(t)
= eL,

where L = lims→−∞(φ(s) − φ(s + α(s))) and α(s) = arccot(φ′(s)). Since φ′′(t) � 0, then

φ′(s) · α(s) � φ
(
s + α(s)

) − φ(s) � φ′(s + α(s)
) · α(s).

Since
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lim
β→∞

(
β · arccot(β)

) = 1, lim
s→−∞φ′(s) = ∞, lim

s→−∞
φ′(s + α(s))

φ′(s)
= 1,

then L = −1 and limt→−∞ DT (t)
D(t) = limt→−∞ D S(t)

D(t) = e−1. This example helps to understand better some steps in the proof
of Theorem 1.

A couple of other examples follows from Theorem 4 and from Corollary 1 due to the asymptotic equation (8), because
such examples are considered in various papers, devoted to the asymptotic of mean-value points in classical mean-value
theorem [9,10,5,11]. Under some additional restrictions to the asymptotic of the curve t → γ (t) at the point a, there exists
a usual limit limt→a

DT (t)
D(t) (� e−1). Assertions of such kind for various integral and differential mean-value theorems are

obtained in the papers [1–4,6,7,17,19–21]. Moreover, this problematic is adequately depicted in the book [18], where one
can find also extensive references.

3. Proof of Theorem 1

Let us consider a Cartesian coordinate system O xy in E
2 such that O = γ (a). Then γ (t) = (x(t), y(t)) ∈ R

2, t ∈ [a,b),
and γ (a) = (x(a), y(a)) = (0,0). The fact, that a point τ0 ∈ (a, t] is in the set S(t), can be expressed in the following form.
Consider a function Φ : [a,b) → R,

Φ(τ) = det

(
x(t) y(t)
x(τ ) y(τ )

)
. (4)

Then a point τ0 ∈ (a, t] is in the set S(t) if and only if τ0 is a point of local extremum of the function τ 
→ Φ(τ).
In the rest of this section we prove Theorem 1. Further, we suppose that the assertion of Theorem 1 does not hold, and get the

contradiction.
Without loss of generality we may assume that γ (t) �= γ (a) for all t ∈ (a,b). Indeed, if there is a sequence of

points tn ∈ (a,b) such that tn → a as n → ∞ and γ (tn) = γ (a), then limt→a
DT (t)
D(t) = ∞ > 1

e (in this case D(tn) = 0 and
D S(tn)/D(tn) = ∞ according to our arrangements discussed just before the statement of Theorem 1), that is impossible.
Therefore, numbers t ∈ (a,b) with the property γ (t) = γ (a) cannot be close to a as much as possible. Therefore, if we
decrease (if necessary) the number b, then we get that such points t are absent.

Let us consider functions ρ, θ : [a,b) → R, defined in the following way. Put ρ(t) = D(t) – the distance between O and
a current point of the curve γ (t). As θ(t) we consider a number satisfied to equations x(t) = ρ(t) cos(θ(t)) and y(t) =
ρ(t) sin(θ(t)). Such a number (the polar angle) is defined uniquely up to a summand 2πn (n ∈ Z). Taking into account the
continuity of γ (t), it is easy to choose this angle in such a way that the function t 
→ θ(t) is continuous for all values
of t .

Let us show that we may assume θ(t) to be strictly increasing. In our new notations, the function Φ (cf. the equality (4))
has the following form:

Φ(τ) = ρ(t)ρ(τ ) sin
(
θ(τ ) − θ(t)

)
.

If t is a point of local maximum (minimum) of the function τ 
→ θ(τ ), then it is also a point of local minimum (maximum,
respectively) of the function τ 
→ Φ(τ), t ∈ S(t), and D S(t) � D(t). Therefore (cf. reasonings above), such points cannot be
close to a as much as possible. Decreasing (if necessary) the number b, we may assume that the point t is not a point of
local extremum of the function τ 
→ θ(τ ) for all t ∈ (a,b). Taking into account the continuity of this function, we get that it
is either strictly decreasing or strictly increasing on the interval (a,b). Replacing (if necessary) the ray O y with the opposite
ray (hence, changing the orientation), we may assume that this function is strictly increasing for t ∈ (a,b).

Now, we may change (without loss of generality) the parameter t in such a way that θ(t) = t for all t ∈ (a,b), i.e. the
curve under consideration is parameterized by the polar angle. Further, it will be convenient to consider a function

φ(t) = ln
(
ρ(t)

)
.

Since ρ(t) = eφ(t) , then (according to our conclusions and assumption on ρ(t)) the function φ : [a,b) → R is continuous,
takes finite values for t ∈ (a,b), and φ(a) = −∞. Further, we determine some other properties of this function.

Since we supposed Theorem 1 to be false, then we may assume that there is a number q > 1 such that

D(τ )

D(t)
� e−q

for all t ∈ (a,b) and all τ ∈ S(t). In our notations D(t) = eφ(t) , hence this inequality is equivalent to the following one:

φ(t) − φ(τ ) � q > 1 (5)

for all t ∈ (a,b) and for all τ ∈ S(t).
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Now, since x(t) = eφ(t) cos(t) and y(t) = eφ(t) sin(t), then a point τ ∈ (a, t] is in the set S(t) if and only if τ is a point of
local extremum of the function

τ 
→ −(
ρ(t)

)−1
Φ(τ) = ρ(τ ) sin(t − θ) = eφ(τ ) sin(t − τ ).

For a fixed t we consider an interval I(t) = [max{t − π,a}, t]. It is clear that the function τ 
→ eφ(τ ) sin(t − τ ) is vanished
at the endpoints of this interval. Therefore, there is at least one point of extremum of the latter function (i.e. a point in the
set S(t)) in the interior of this interval.

Further, we consider the function

τ 
→ φ(τ ) + ln
(
sin(t − τ )

) = ln
(
eφ(τ ) sin(t − τ )

) =: F t(τ ).

Claim 1. For every t ∈ (a,b), there is β(t) > 0 such that the function τ 
→ F t(τ ) is strictly decreasing on the interval [t − β(t), t].

Proof. Suppose the contrary. Then there are sequences of numbers {τn} and {ξn} such that τn < ξn < t and F t(τn) � F t(ξn)

for all n, τn → t as n → ∞. Since F t(τ ) → −∞ as τ → t − 0, then there is a point ηn of absolute maximum of the function
F t on the interval [τn, t). Clear, that ηn ∈ S(t) and ηn → t as n → ∞. But according to our assumption, the inequality
φ(t) − φ(ηn) > q (the inequality (5)) holds for all n, that is impossible (it suffices to pass to the limit in this inequality).
Therefore, we have proved the existence of the required β(t) > 0 (it is easy to see also that β(t) < π ). �
Remark 1. Recall that every increasing function f : [α,β] ⊂ R→ R is differentiable almost everywhere, its derivative is non-
negative and summable, and

∫ β

α f ′(t)dt � f (β) − f (α). Moreover, if f has derivative at every point of the interval [α,β],
then the above inequality becomes an equality (in this case the function x 
→ f (x) is absolutely continuous on the interval
[α,β]), cf. [8,16].

Claim 2. For any t ∈ (a,b) the function φ is differentiable almost everywhere on every interval [c,d] ⊂ (t − β(t), t), its derivative is
summable and

φ(d) − φ(c) �
d∫

c

φ′(τ )dτ .

Proof. According to Claim 1 the function τ 
→ F t(τ ) = φ(τ )+ ln(sin(t − τ )) decreases on the interval [t −β(t), t]. Therefore,
the function −F t increases on this interval. Using properties of increasing functions (cf. Remark 1), differentiability and
absolute continuity of the function τ 
→ ln(sin(t − τ )) on the interval [c,d] ⊂ (t − β(t), t) ⊂ (t − π, t), we easily get the
required properties of the function φ. �
Claim 3. The function φ is differentiable almost everywhere on the interval (a,b). Its derivative φ′ is summable on every interval
[c,d] ⊂ (a,b) and satisfies the inequality

φ(d) − φ(c) �
d∫

c

φ′(τ )dτ .

Proof. For every t ∈ (a,b) we consider the interval I(t) := (t −β(t), t) (Claim 1). All these intervals cover jointly the interval
[c,d]. By compactness, [c,d] is covered also by some finite subset of the intervals I(t), say, by I(t0), I(t1), . . . , I(tl), t0 <

t1 < · · · < tl . Now, choose numbers si , i = 0, . . . , l, such that c = s0 < s1 < · · · < sl−1 = d and [si, si+1] ⊂ I(ti). According to
Claim 2 the function φ is differentiable almost everywhere on every interval [si, si+1], and the inequality

φ(si+1) − φ(si) �
si+1∫
si

φ′(τ )dτ

holds. Hence, φ is differentiable almost everywhere on the interval [c,d]. Summing the obtained inequalities by i from 0 to
s − 1, we get an analogous inequality on the interval [c,d]. Since the interval [c,d] ⊂ (a,b) is arbitrary, the function φ is
differentiable almost everywhere on the interval (a,b). �

Further, it will be helpful to consider the set

Sm = {
t ∈ (a,b)

∣∣ there exists φ′(t) ∈R
}
.
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Consider also the function α : Sm →R, defined by the equation

α(t) = arccot
(
φ′(t)

)
.

It is clear that α(t) ∈ (0,π) for all values of the parameter.

Claim 4. For every τ ∈ Sm either the inequality τ + α(τ ) � b, or the inequality φ(τ + α(τ )) − φ(τ ) � q holds.

Proof. Let us fix some τ0 ∈ Sm and suppose that t0 := τ0 + α(τ0) < b. If the point τ0 is a point of local extremum of
the function τ 
→ eφ(τ ) sin(t0 − τ ), then τ0 ∈ S(t0) and (according to our assumptions) the inequality φ(t0) − φ(τ0) > q
(the inequality (5)) holds, that implies the required result. However, τ0 should not be a point of local extremum of
the above function, but in any case, the point τ0 is a critical point of the function τ 
→ eφ(τ ) sin(t0 − τ ) (α(τ0) =
arccot(φ′(τ0)) by definition). In other word, the tangent line to the curve γ (t) at the point γ (τ0) is parallel to the chord
[O = γ (a), γ (t0)].

Now, choose sequences of numbers {τn} and {tn} such that τn → τ0, tn → t0 as n → ∞ and the chord [O , γ (tn)] is
parallel to the chord [γ (τ0), γ (τn)] for all n. Since τ0 ∈ Sm, then

1

τn − τ0

−−−−−−−−−−→
γ (τn)γ (τ0) → γ ′(τ0) as n → ∞.

Let us show that for every n there exists a number ηn ∈ S(tn) between the numbers τ0 and τn . Such a number should be a

point of local extremum of the function τ 
→ eφ(τ ) sin(tn −τ ). For this goal we consider the function Ψ (τ ) = det
( γ (τn)−γ (τ0)

γ (τ )

)
.

Since Ψ (τ0) = Ψ (τn), then there is a point ηn of local extremum of this function between the points τ0 and τn . But the
same point is also a point of local extremum of the function

τ 
→ det

(
γ (tn)

γ (τ )

)
= det

(
eφ(tn) cos(tn) eφ(tn) sin(tn)

eφ(τ ) cos(τ ) eφ(τ ) sin(τ )

)
= (−eφ(tn)

)
eφ(τ ) sin(tn − τ ),

i.e. ηn ∈ S(tn). According to the inequality (5) we get φ(tn) − φ(ηn) > q for n. Since ηn → τ0 and tn → t0 as n → ∞, then
passing to limits in this inequality, we obtain φ(t0) − φ(τ0) � q. �

Let us fix a number b∗ ∈ (a,b). Now we obtain one remarkable property of the function α(t) on the interval (a,b∗].

Claim 5. For every t ∈ (a,b∗) ∩ Sm at least one of the following two assertions holds:

(1) t + α(t) � b∗;
(2) there is ξ = ξ(t) ∈ (t, t + α(t)) ∩ Sm such that α(t) > q · α(ξ).

Proof. Suppose that Assertion (1) does not hold, i.e. t + α(t) < b∗ . Set s = t + α(t), then t < s < b∗ . According to Claim 4,
φ(s) − φ(t) � q > 1. According to Claim 3, the function φ is differentiable almost everywhere on the interval [t, s], the
derivative φ′ is summable on this interval, and the inequality

1 < q � φ(s) − φ(t) �
s∫

t

φ′(τ )dτ

holds.
Further, for some number ξ ∈ (t, s) ∩ Sm the inequality

∫ s
t φ′(τ )dτ � (s − t)φ′(ξ) holds. Indeed, the set (t, s) ∩ Sm is a

set of full measure on the interval (t, s). If for all points ξ of this set we have
∫ s

t φ′(τ )dτ > (s − t)φ′(ξ), then we get a
contradiction by integrating this inequality with respect to ξ on (t, s). Therefore, the required point ξ ∈ (t, s)∩ Sm does exist
(such points consist of a set with positive measure), hence,

1 < q � φ(s) − φ(t) �
s∫

t

φ′(τ )dτ � (s − t)φ′(ξ).

It is clear that φ′(ξ) > 0, therefore, α(ξ) = arccot(φ′(ξ)) ∈ (0,π/2). Further,

φ′(ξ) = cot
(
α(ξ)

) = 1/ tan
(
α(ξ)

)
< 1/α(ξ),

because tan(x) > x for x ∈ (0,π/2). Consequently, q � φ′(ξ) · α(t) <
α(t)
α(ξ)

, and Assertion (2) is proved. �
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Now, consider the set

S∗ = Sm ∩ (
a,b∗].

It has full measure on the interval (a,b∗]. Later on we will need some properties of the function t 
→ α(t) on the set S∗ .

Claim 6. At least one of the following assertions holds:

(1) there are a point t∗ ∈ (a,b∗] and a sequence {tn}, tn ∈ S∗ , such that α(tn) → 0 and tn → t∗ as n → ∞;
(2) a > −∞ and there is c > 0 such that α(t) � c for all t ∈ S∗ .

Proof. Suppose that Assertion (1) does not hold and prove Assertion (2).
Consider any b0 ∈ (a,b) and let c1 � 0 be the greatest lower bound of the function t 
→ α(t) on the set S∗ ∩ [b0,b]. If

c1 = 0, then using the compactness of the interval [b0,b], it is easy to find a sequence {tn}, tn ∈ S∗ ∩ [b0,b) ⊂ (a,b), that
tends to some t∗ ∈ S∗ ∩ [b0,b] and such that α(tn) → 0 as n → ∞. But Assertion (1) does not hold and, consequently, we
get the inequality c1 > 0.

Now, set c = min{c1,b∗ − b0} > 0. Let us show that α(t) � c for all t ∈ S∗ . Suppose that the set

S = {
t ∈ S∗ ∣∣ α(t) < c

}
is non-empty. Obviously, S ⊂ (a,b0]. Note that for all t ∈ S the inequality t + α(t) < b∗ holds (otherwise α(t) � b∗ − t �
b∗ − b0 � c), hence, by Claim 5 there exists ξ = ξ(t) ∈ (t, t + α(t)) ∩ Sm such that α(ξ) < α(t)/q < α(t) < c, in particular,
ξ ∈ S .

Now, choose some t1 ∈ S and construct a sequence of points {tn} from S by the following method: if ti is defined, then
put ti+1 = ξ(ti). By construction ti < ti+1, and, since c > α(ti) � q · α(ξ(ti)) = q · α(ti+1) > α(ti+1), then ti+1 ∈ S . Since the
constructed sequence increases and is bounded from above by the number b0 (S ⊂ (a,b0]), it has a finite limit t∗ ∈ (a,b0],
and the inequality α(ti) � q · α(ti+1) implies α(tn) → 0 as n → ∞. Therefore, Assertion (1) holds that is impossible by our
assumptions. Therefore, S = ∅, i.e. α(t) � c for all t ∈ (a,b].

If a > −∞, then we get Assertion (2) from statement of the claim. Hence, we consider now the case a = −∞.
For all i � 1 define the numbers bi by the recurrent formula bi = bi−1 − qi · c (b0 has been chosen earlier). Let us prove

by induction that

α(t) � c · qi

for all t ∈ (−∞,bi] ∩ Sm. We have proved this inequality for i = 0. Assume that it is proved for all i < k and prove it for
i = k.

Consider any t ∈ (−∞,bk] ∩ Sm. If t + α(t) � bk−1, then α(t) > bk−1 − t � bk−1 − bk = c · qk . If t + α(t) � bk−1 (that
contradicts to the inequality t + α(t) > b > bk−1), then by Claim 5 there is ξ = ξ(t) ∈ (t, t + α(t)) ∩ Sm ⊂ (t,bk−1) such that
α(t) � q · α(ξ). Since ξ < bk−1, then α(ξ) � c · qk−1 by the inductive assumption. Therefore, α(t) � c · qk in this case too.

Now, it suffices to note that the just proved inequality α(t) � c · qi contradicts to the inequality α(t) = arccot(φ′(t)) < π .
Actually, for rather large i the inequality c · qi > π holds. This contradiction completes the proof of the claim. �

Now, we are ready to finish the proof of Theorem 1. As we have proved, either Assertion (1), or Assertion (2) from the
statement of Claim 6 holds, therefore, it suffices to get a contradiction in both these cases.

Suppose that Assertion (1) holds, i.e. there are a point t∗ ∈ (a,b∗] and a sequence {tn}, tn ∈ S∗ ⊂ Sm such that α(tn) → 0
and tn → t∗ as n → ∞. Put sn = tn + α(tn). By Claim 4 for rather large n the inequality φ(sn) − φ(tn) � q holds (since
sn → t∗ < b as n → ∞). But it is impossible, since tn → t∗ , sn = tn + α(tn) → t∗ , and the function t 
→ φ(t) is continuous at
the point t∗ . Therefore, we have proved the theorem in this case.

Now, suppose that Assertion (2) holds, i.e. a > −∞ and there is c > 0 such that α(t) � c for all t ∈ S∗ . Since α(t) =
arccot(φ′(t)), we get the inequality φ′(t) � cot(c) ∈ R, t ∈ S∗ . According to Claim 3 for every η ∈ (a,b∗) the derivative φ′ is
summable on the interval [η,b∗] ⊂ (a,b) and satisfies the inequality

φ
(
b∗) − φ(η) �

b∗∫
η

φ′(τ )dτ � cot(c)
(
b∗ − η

)
.

Tending η to a, we get φ(b∗) − φ(a) � cot(c)(b∗ − a) ∈ R, but the latter is impossible because of φ(a) = −∞. Consequently,
we have proved the theorem in this case too.
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4. Various consequences and connections with other results

At first we will use the assertion of Theorem 1 for parameterizations of some special type. Let us consider two continuous
functions h, g : [a,b) ⊂ R → R and suppose that the function h is increasing and is not a constant in any neighborhood of
the point a. For any x ∈ (a,b) we consider the set of numbers τ ∈ (a, x], that are points of local extremum of the function

t 
→ (
g(x) − g(a)

)
h(t) − (

h(x) − h(a)
)

g(t). (6)

Let μ(x) be the supremum of such τ . The following theorem gives a non-trivial information on a behavior of μ(x) as x → a.

Theorem 3. Suppose in addition that there exists a finite limit limx→a
g(x)−g(a)
h(x)−h(a)

, then the following inequality holds

lim
x→a

h(μ(x)) − h(a)

h(x) − h(a)
� 1

e
. (7)

Proof. We use the assertion of Theorem 1 for the curve γ (t) = (g(t),h(t)) ∈ R
2. For this curve, it is clear that τ ∈ S(x)

if and only if τ is a point of extremum of the function (6), D(x) = √
(g(x) − g(a))2 + (h(x) − h(a))2. Since the limit P :=

limx→a
g(x)−g(a)
h(x)−h(a)

exists and is finite, then it is easy to see that

D S(x) = sup
{

D(τ )
∣∣ τ ∈ S(x)

} ∼ D
(
μ(x)

) =
√(

g
(
μ(x)

) − g(a)
)2 + (

h
(
μ(x)

) − h(a)
)2

as x → a.

Set L(x) = h(μ(x))−h(a)
h(x)−h(a)

, then taking into account the above asymptotic equality, we get

(
D S(x)

D(x)L(x)

)2

∼
1 + (

g(μ(x))−g(a)
h(μ(x))−h(a)

)2

1 + (
g(x)−g(a)
h(x)−h(a)

)2
→ 1 + P 2

1 + P 2
= 1 (8)

as x → a. Therefore, by Theorem 1

lim
x→a

h(μ(x)) − h(a)

h(x) − h(a)
= lim

x→a

D S(x)

D(x)
� 1

e
. �

Now, suppose in addition that the function h, g : [a,b) ⊂ R → R have derivatives and h′(t) > 0 on the interval (a,b).
Then by Cauchy’s mean-value theorem, for any x ∈ (a,b) there is τ ∈ (a, x) with the property:

g(x) − g(a)

h(x) − h(a)
= g′(τ )

h′(τ )
. (9)

Let ξ(x) be the supremum of such τ . Obviously, any point τ of extremum of the function (6) satisfies the equality (9).
Hence, ξ(x) � μ(x) for all x, and Theorem 3 implies a non-trivial information on a behavior of ξ(x) as x → a.

Theorem 4. Suppose in addition that there exists a finite limit limx→a
g(x)−g(a)
h(x)−h(a)

, then the following inequality holds

lim
x→a

h(ξ(x)) − h(a)

h(x) − h(a)
� 1

e
. (10)

Remark 2. Note that for any fixed function h the inequality (10) (as well as the inequality (7)) is best possible in general. To
show this, set g(x) = (h(x) − h(a))1+α , where α > 0. Since h is monotone, for all x ∈ (a,b) there is a unique τ = ξ(x) ∈ (a, x)
that satisfies Eq. (9). Simple calculations imply

h(ξ(x)) − h(a)

h(x) − h(a)
=

(
1

1 + α

)1/α

for all x ∈ (a,b). Therefore, limx→a
h(ξ(x))−h(a)

h(x)−h(a)
= ( 1

1+α )1/α . Note also that limα→0(
1

1+α )1/α = e−1. The same example and the
last formula in the proof of Theorem 3 imply also the unimprovability of the inequality (2).

In the case h(x) = x Theorem 4 implies an assertion on the asymptotic of mean-value points in Lagrange’s theorem.
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Corollary 1. Let g : [a,b) ⊂ R→ R be a continuous function that is differentiable on the interval (a,b). For every x ∈ (a,b) denote by
ξ(x) the supremum of numbers τ ∈ (a, x] such that g′(τ ) · (x − a) = g(x) − g(a). If the function g has (right hand) derivative at the
point a, then the inequality

lim
x→a

ξ(x) − a

x − a
� 1

e
(11)

holds.

The inequality (11) becomes an equality, for example, for the function g : [0,1) → R, defined by the equality g(x) =
− ∫ x

0
dt
ln t . The conjecture of validity of the above corollary has been stated (as well as some other conjectures) by Professor

V.K. Ionin. In the case, when the derivative g′ =: f is continuous, this conjecture could be reformulated in the integral form.
Consider a continuous function f : [a,b] →R. For any x ∈ (a,b] there exists τ ∈ [a, x] such that

x∫
a

f (t)dt = (x − a) f (τ )

(this is a partial case of the integral mean-value theorem). Such τ is unique if f is strictly decreases or strictly increases. In
general case we set

η(x) := max

{
τ ∈ [0, x]

∣∣∣
x∫

a

f (t)dt = xf (τ )

}
.

Then (this is equivalent to Corollary 1) the inequality

lim
x→a

η(x) − a

x − a
� 1

e

holds. The latter inequality was proved at first in the paper [9], one can find various generalisations of this result in more
recent papers [5,10,12–14].

Theorems 3 and 4 give us a non-trivial information on a behavior of the functions μ(x) and ξ(x) by estimating the
asymptotic of h(μ(x))−h(a)

h(x)−h(a)
and h(ξ(x))−h(a)

h(x)−h(a)
respectively.

However, it would be desirable to get analogues assertions for the values μ(x)−a
x−a and ξ(x)−a

x−a (in the case of Lagrange’s
theorem h(x) = x we have got the required results, of course). The following results imply some results of this kind.

Definition 2. For a function f : [a,b) → R we denote by limx→a ess f (x) the greatest lower bound of numbers t ∈ R such
that f (x) � t almost everywhere on some interval [a, δ] ⊂ [a,b) (essential upper limit). By analogy, lim x→a ess f (x) means
the least upper bound of numbers t ∈ R such that f (x) � t almost everywhere on some interval [a, δ] ⊂ [a,b) (essential
lower limit).

Lemma 1. Let h : [a,b) →R be an increasing function and suppose that

C := lim
x→a

ess
h(x) − h(a)

(x − a)h′(x)
< ∞.

Then for any number q ∈ (0,1) we get the inequality

lim
x→a

h(a + q(x − a)) − h(a)

h(x) − h(a)
� q1/C .

Proof. Let us fix some number ε > 0. Decreasing (if necessary) the number b, we may assume that for almost all t ∈ (a,b]
the inequality

h(t) − h(a)

(t − a)h′(t)
< C + ε

holds, or, equivalently

h′(t)
h(t) − h(a)

>
1

C + ε
· 1

t − a
.
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Integrating the latter inequality from t = xq := a + q(x − a) to t = x, we get

1

C + ε
· ln

1

q
<

x∫
xq

h′(t)dt

h(t) − h(a)
� ln

(
h(t) − h(a)

)∣∣t=x
t=xq

= ln
h(x) − h(a)

h(xq) − h(a)
.

Here we used properties of the increasing function x 
→ ln(h(x) − h(a)) (its increment at the interval is not less than the
integral of its derivative on the same interval, cf. Remark 1). After simple transformations we get

h(xq) − h(a)

h(x) − h(a)
� q

1
C+ε and lim

x→a

h(xq) − h(a)

h(x) − h(a)
� q

1
C+ε .

Since ε > 0 is arbitrary, then the lemma is proved. �
Theorem 5. Let C = limx→a ess h(x)−h(a)

(x−a)h′(x) in the assumptions and notations of Theorem 3. Then the inequality

lim
x→a

μ(x) − a

x − a
� e−C

holds. If, in addition, the assumptions of Theorem 4 are fulfilled, then the inequality

lim
x→a

ξ(x) − a

x − a
� e−C

holds too.

Proof. Let us prove the first inequality. For C = ∞ all is clear. Further consider the case C < ∞. Suppose that the theorem
is false. Choose some number q between limx→a

μ(x)−a
x−a and e−C (0 < q < e−C < 1, in particular). Without loss of generality

we may assume that the inequality

μ(x) − a

x − a
< q

(or, equivalently, the inequality μ(x) < xq = a+q(x−a)) holds for all x ∈ (a,b). Since the function h increases, then h(μ(x)) <

h(a + q(x − a)). By Theorem 3 we get

lim
x→a

h(a + q(x − a)) − h(a)

h(x) − h(a)
� lim

x→a

h(μ(x)) − h(a)

h(x) − h(a)
� 1

e
.

Now, Lemma 1 implies e−1 � q1/C , i.e. e−C � q, that contradicts to the choice of the number q. This contradiction proves
the first inequality of the theorem.

The second inequality obviously follows from the first one and the fact that ξ(x) � μ(x) for all x in the conditions of
Theorem 4. �

Let f : [0,1] → R be a continuous function, and let ϕ : [0,1] → R be a summable and non-negative. Let us define the
function η : [0,1] → R in the following way: for any x ∈ (0,1], η(x) is the maximum of numbers τ ∈ (0, x] satisfied the
equation

x∫
0

ϕ(t) f (t)dt = f (τ )

x∫
0

ϕ(t)dt

(such numbers τ ∈ (0, x] do exist because of the integral mean-value theorem). Theorem 5 implies

Theorem 6. (See [10,11].) Let C = limx→0 ess(
∫ x

0 ϕ(t)dt · (xϕ(x))−1), then in the notations as above the inequality

lim
x→0

η(x)

x
� e−C (12)

holds.

Proof. We may assume that the function t 
→ ϕ(t) is not zero almost everywhere in any neighborhood of the point 0
(otherwise, in such neighborhood the equality η(x) = x holds, and all is clear). By the same manner we may assume that
for some ε > 0 the value ϕ(t) is not zero almost everywhere on any interval [c,d] ⊂ (0, ε) of non-zero length (otherwise,
C = ∞, and nothing to prove).
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Now, we define two functions g,h : [0,1] →R by the formulas

g(x) =
x∫

0

ϕ(t) f (t)dt, h(x) =
x∫

0

ϕ(t)dt.

It is clear that the function x 
→ h(x) increases and is not a constant in any neighborhood of 0, g(0) = h(0) = 0,
limx→0

g(x)−g(0)
h(x)−h(0)

= f (0) ∈ R. Therefore, we can apply the part of Theorem 5, dealing with the function x 
→ μ(x), to these
two functions (in this case a = 0, b = 1). Now, it suffices to verify the inequality

η(x) � μ(x)

for all x (sufficiently close to 0). In turn, for this goal it is enough to prove the following assertion for all x sufficiently close
to 0: Every τ ∈ (0, x] provided a local extremum to the function

t 
→ (
g(x) − g(0)

)
h(t) − (

h(x) − h(0)
)

g(t) =
x∫

0

ϕ(s) f (s)ds

t∫
0

ϕ(s)ds −
x∫

0

ϕ(s)ds

t∫
0

ϕ(s) f (s)ds =: Ψ (t),

satisfies the equality
∫ x

0 ϕ(s) f (s)ds = f (τ )
∫ x

0 ϕ(s)ds.
Let us suppose the contrary. Then by the integral mean-value theorem we get

Ψ (τ + �) − Ψ (τ ) =
τ+�∫
τ

ϕ(s)ds

( x∫
0

ϕ(s) f (s)ds − f (ν)

x∫
0

ϕ(s)ds

)
,

where ν is some number between τ + � and τ . For sufficiently small � the sign of the expression in the brackets coincides
with the sign of the (non-zero by our assumption!) expression

∫ x
0 ϕ(s) f (s)ds − f (τ )

∫ x
0 ϕ(s)ds. At the same time, the sign

of
∫ τ+�

τ ϕ(s)ds coincides with the sign of � (at least for all τ ∈ (0, ε), where ε is the number discussed in the beginning
of the proof). This means that the point τ could not be a point of local extremum of the function t 
→ Ψ (t). The theorem is
proved. �

Notice that one can find various generalizations and refinements of the proved theorem in the papers [10,11].

5. Open questions

Note that there is another (but quite natural from a geometric point of view) proximity estimation of points γ (τ ), τ ∈
T (t)(S(t)), to a point γ (t). Suppose that the curve γ : [a,b] → E

2 is continuous and rectifiable. Of course, this assumption
essentially narrows a class of curves under investigation. Let L : [a,b] → R be such that L(t) is the length of an arc (of the
curve γ ), corresponding to values of the parameter from the interval [a, t]. It is clear that for every t ∈ (a,b) the inequality
0 � L(τ ) � L(t) holds for all τ ∈ S(t) (for all τ ∈ T (t) in the case of differentiable curve), therefore, 0 � sup{L(τ ) | τ ∈
S(t) (τ ∈ T (t))} � L(t). It is quite possible that the following conjecture is true.

Conjecture 1. Let γ : [a,b] → E
2 be an arbitrary continuous rectifiable parametric curve. Then the inequality

lim
t→a

sup{L(τ ) | τ ∈ S(t)}
L(t)

� 1

e

holds.

A version of this conjecture for differentiable curves also has doubtless interest.

Conjecture 2. Let γ : [a,b] → E
2 be an arbitrary continuous rectifiable parametric curve such that for every t ∈ (a,b) there is a

non-zero derivative vector γ ′(t), then the inequality

lim
t→a

sup{L(τ ) | τ ∈ T (t)}
L(t)

� 1

e

holds.

Obviously, the latter conjecture is true for all curves with the property

L(t) ∼ D(t) as t → a. (13)
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However, this asymptotic equality is not universal, hence, the result of Theorem 2 is not sufficient for studying of Conjec-
ture 2, it demands some special approach. Nevertheless, it is well known that in the case of a smooth curve γ : [a,b] → E

2

(when a curve has a continuous derivative vector γ ′(t), t ∈ [a,b]), the relation (13) is fulfilled. Hence, we get the following
corollary from Theorem 2.

Corollary 2. Let γ : [a,b] → E
2 be an arbitrary regular smooth parametric curve. Then the inequality

lim
t→a

sup{L(τ ) | τ ∈ T (t)}
L(t)

� 1

e

holds.

Finally, we note the following independent interesting problem: to find a convenient criterion for fulfillment of the
asymptotic equality (13).

Acknowledgments

The project was supported in part by the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (grant NSh-921.2012.1).
The author is grateful to the referees for helpful comments and suggestions that improved the presentation of this paper.

References

[1] U. Abel, On the Lagrange remainder of the Taylor formula, Amer. Math. Monthly 110 (7) (2003) 627–633, Zbl.1056.41026, MR2001154.
[2] U. Abel, M. Ivan, The differential mean value of divided differences, J. Math. Anal. Appl. 325 (1) (2007) 560–570, Zbl.1108.26006, MR2273546.
[3] A.S. Adikesavan, A note on Taylor’s theorem, Indian J. Pure Appl. Math. 11 (4) (1980) 444–449, Zbl.0435.41018, MR0567920.
[4] A.G. Azpeitia, On the Lagrange remainder of the Taylor formula, Amer. Math. Monthly 89 (5) (1982) 311–312, Zbl.0597.41033, MR0653508.
[5] V.V. Ivanov, Yu.G. Nikonorov, Asymptotics of Lagrange points in the Taylor formula, Siberian Math. J. 36 (1) (1995) 78–83, Zbl.0862.26002, MR1335210.
[6] B. Jacobson, On the mean value theorem for integrals, Amer. Math. Monthly 89 (5) (1982) 300–301, Zbl.0489.26003, MR0653503; see also

Wong Jingcheng, Errata: “On the mean value theorem for integrals”, Amer. Math. Monthly 97 (5) (1990) 412, MR1048923.
[7] R. Mera, On the determination of the intermediate point in Taylor’s theorem, Amer. Math. Monthly 99 (1) (1992) 56–58, Zbl.0757.26003, MR1140280.
[8] I.P. Natanson, Theory of Functions of a Real Variable, third ed., Nauka, Moscow, 1974, 480 pp. (in Russian), MR0354979.
[9] Yu.G. Nikonorov, On the integral mean value theorem, Siberian Math. J. 34 (6) (1993) 1135–1137, Zbl.0812.26005, MR1268165.

[10] Yu.G. Nikonorov, On sharp estimates in the first mean value theorem, Russ. Acad. Sci. Dokl. Math. 49 (3) (1994) 493–496, Zbl0840.26008.
[11] Yu.G. Nikonorov, On sharp estimates in integral mean value theorems, Candidate Dissertation in Mathematics, Sobolev Institute of Mathematics, Novosi-

birsk, 1995 (in Russian).
[12] Yu.G. Nikonorov, On solutions to some integral equations with deviating argument, in: Current Problems of Modern Mathematics. Collection of Scien-

tific Works, vol. 3, NII MIOO NGU, Novosibirsk, 1997, pp. 136–141 (in Russian), Zbl.0916.45002.
[13] Yu.G. Nikonorov, Sharpening estimates in mean-value theorems for operators whose kernels are sign-changing, Tr. Rubtsovsk. Ind. Inst. 4 (1997) 192–

199 (in Russian), Zbl.0956.26009.
[14] Yu.G. Nikonorov, On the asymptotics of mean value points for some finite-difference operators, Siberian Math. J. 43 (3) (2002) 518–524, Zbl.1014.39017,

MR1916810.
[15] Yu.G. Nikonorov, Asymptotics of the points of tangency of planar curves, Mat. Tr. 14 (1) (2011) 141–157 (in Russian), MR2858661; English transl.: Sib.

Adv. Math. 22 (2012), in press.
[16] F. Riesz, B. Sz.-Nagy, Functional Analysis, Dover Publications, New York, 1990, 504 pp., Zbl.0732.47001.
[17] R.C. Powers, T. Riedel, P.K. Sahoo, Limit properties of differential mean values, J. Math. Anal. Appl. 227 (1) (1998) 216–226, Zbl.0923.26005, MR1652935.
[18] P.K. Sahoo, T. Riedel, Mean Value Theorems and Functional Equations, World Scientific Publishing, New Jersey, 1998, xii+245 pp., Zbl.0980.39015,

MR2130372.
[19] T. Trif, Asymptotic behavior of intermediate points in certain mean value theorems, J. Math. Inequal. 2 (2) (2008) 151–161, Zbl.1169.26002, MR2426821.
[20] Zhang Bao-lin, A note on the mean value theorem for integrals, Amer. Math. Monthly 104 (6) (1997) 561–562, Zbl.0882.26001, MR1453659.
[21] Xu Aimin, Cui Feng, Hu Zhicheng, Asymptotic behavior of intermediate points in the differential mean value theorem of divided differences with

repetitions, J. Math. Anal. Appl. 365 (1) (2010) 358–362, Zbl.pre05673286, MR2585108.


	Asymptotic behavior of support points for planar curves
	1 Introduction and main results
	2 Some examples
	3 Proof of Theorem 1
	4 Various consequences and connections with other results
	5 Open questions
	Acknowledgments
	References


