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a b s t r a c t

A stacked central configuration is a central configuration of the n-body problem for which
a proper subset of the bodies is already in a central configuration. In this paper we study all
the possibilities of stacked central configurations for the n-body problem when one body
is removed. The results have simple and analytic proofs.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

In celestial mechanics the classical n-body problem consists in the study of the motion of n point bodies with positive
masses m1, . . . ,mn, interacting among themselves through no other forces than their mutual gravitational attraction
according to Newton’s gravitational law [17]. Consider such bodies with position vectors r1, . . . , rn, where ri ∈ Rd, d = 2, 3.
The equations of motion are given by

r̈i = −

n
j=1
j≠i

mj

r3ij
(ri − rj), (1)

for i = 1, 2, . . . , n. Here the gravitational constant is taken equal to 1 and rij = |ri − rj| is the Euclidean distance between
the bodies at ri and rj.

Note that Eq. (1) is not well defined if rij = 0. So we consider configurations r = (r1, r2, . . . , rn) out of the collision set,
assuming rij ≠ 0 for all i ≠ j. We also consider the inertial barycentric system, that is, the origin of the inertial system is the
center of mass of the system, which is given by Cn =

n
j=1 mjrj/Mn, where Mn = m1 + · · · + mn is the total mass.

The n-body problem is not solvable by direct integration via quadratures when n > 2. So, the study of particular
solutions becomes very important. One interesting case of a particular solution is the homographic one: the initial form of
the configuration is preserved in the time evolution. In otherwords, themotions are given by dilations or rotations (centered
at the center of mass).

The first homographic solutions for the three-body problem were found by Euler [5]. In Euler’s solutions three bodies
move on conical sections, but on a straight line at each fixed instant. Lagrange [11] studied other homographic solutions for
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the three-body problem, in which the bodies are orbiting around the center of mass of the system on conical sections at the
vertices of an equilateral triangle in each fixed instant.

At a given instant t = t0 the n bodies are in a central configuration if there exists λ ≠ 0 such that r̈i = λri, referred to the
inertial barycentric system, for all i = 1, . . . , n. By a simple computation we have λ = −U/I , where

U =


1≤i<j≤n

mimj

rij
, I =

1
Mn


1≤i<j≤n

mimjr2ij (2)

are the Newtonian potential and the moment of inertia of the n bodies, respectively.
Two central configurations (r1, r2, . . . , rn) and (r̄1, r̄2, . . . , r̄n) of the n bodies are related if we can pass from one to the

other through a dilation or a rotation (centered at the center of mass). So we can study classes of central configurations
defined by the above equivalence relation.

Taking into account this equivalence there are exactly five classes of central configurations in the three-body problem.
The finiteness of the number of central configurations performed by n bodies with positive masses is a question posed by
Chazy in [3], Wintner in [23], and reformulated to the planar case by Smale in [22]. This problem has an affirmative answer
when n = 4. See [9]. Alternatively, see [2] for a proof of the finiteness when n = 4 and a partial answer when n = 5. This
question is open when n > 5.

It is important to emphasize that the computation of central configurations is reduced to a resolution of a set of algebraic
equations, since by (1) we have

λri = −

n
j=1
j≠i

mj

r3ij
(ri − rj), (3)

for each instant of time and i = 1, . . . , n. The expressions in Eq. (3) are called the equations of central configurations.
A powerful tool for studying central configurations in the planar n-body problem is provided by the so called planar

Laura–Andoyer equations. Consider n non-collinear bodies with masses m1, . . . ,mn and positions r1, . . . , rn, ri ∈ R2. Then
the planar Laura–Andoyer equations are given by

fij =

n
k=1
k≠i,j

mk(Rik − Rjk)∆ijk = 0, (4)

for 1 ≤ i < j ≤ n, where Rij = r−3
ij and ∆ijk = (ri − rj) ∧ (ri − rk) is twice the oriented area defined by the triangle with

vertices at ri, rj and rk. The n(n− 1)/2 Laura–Andoyer equations are equivalent to the equations of central configurations in
(3). See [7] or [14], for instance.

The spatial Laura–Andoyer equations are defined analogously. Consider n non-planar bodies with masses m1, . . . ,mn,
and positions r1, . . . , rn, with ri ∈ R3. Then the spatial Laura–Andoyer equations are given by

fijl =

n
k=1

k≠i,j,l

mk(Rik − Rjk)∆ijlk = 0, (5)

for i < j, l ≠ i, l ≠ j, i, j, l = 1, . . . , n, where Rij = r−3
ij and ∆ijlk = (ri − rj) ∧ (ri − rl) · (ri − rk) is six times the oriented

volume defined by the tetrahedron with vertices at ri, rj, rl and rk.
The knowledge of central configurations allows us to compute homographic solutions [16]; there is a relation between

central configurations and the bifurcations of the hypersurfaces of constant energy and angular momentum [21]; if the n
bodies are moving towards a simultaneous collision then the bodies tend to the set of central configurations [18]. See also
the Refs. [7,19,23].

Hampton [8] provides a new family of planar central configurations for the five-body problem with an interesting prop-
erty: two bodies can be removed and the remaining three bodies are already in a central configuration. Such configurations
are called stacked central configurations.

Here we adopt the following nomenclature: a central configuration is called (n, k)-stacked when the n bodies are in a
central configuration and we can remove 0 < k < n bodies such that the remaining n − k bodies are already in a central
configuration. Without loss of generality, the k bodies to be removed are those of position vectors rn−k+1, rn−k+2, . . . , rn.

Some (5, 2)-stacked planar central configurations were studied by Llibre and Mello [12], and by Llibre, Mello and Perez-
Chavela [13]. Stacked central configurations in the spatial five-body and seven-body problems were studied by Santos [20]
and Hampton and Santoprete [10], respectively.

Fernandes and Mello [6] studied (5, 1)-stacked planar central configurations. The authors conclude that the only non-
collinear (5, 1)-stacked planar central configuration is formed by four bodies in a co-circular central configuration and one
body of arbitrary mass at the center of the circle.

In this paper we extend the results of [6] studying the general case of (n, 1)-stacked central configurations. The twomain
results are the following.
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Theorem 1. Consider the planar non-collinear n-body problem with n ≥ 4. Then the only (n, 1)-stacked central configurations
are formed by n − 1 bodies in a co-circular central configuration and one body (to be removed) of arbitrary mass at the center of
the circle.

Theorem 2. Consider the spatial non-planar n-body problem with n ≥ 4. Then the only (n, 1)-stacked central configurations
are formed by n − 1 bodies in a co-spherical central configuration and one body of arbitrary mass at the center of the sphere.

The proofs of Theorems 1 and 2 are given in Sections 2 and 3, respectively.
The (n, 1)-stacked central configurations have the following fundamental property: they are the only non-collinear

central configurations in which we can vary the value of one mass of the configuration keeping the positions and other
masses fixed and still have a central configuration.

2. Proof of Theorem 1

The proof of Theorem 1 is divided into two lemmas.

Lemma 3. In order to have an (n, 1)-stacked central configuration it is necessary that the central configuration of the n bodies
does not depend on the value of the mass of the body to be removed, that is mn.

Proof. The planar Laura–Andoyer equations fij = 0 must be satisfied for the n bodies. So, consider the Laura–Andoyer
equations with i ≠ n and j ≠ n. These equations can be written as

fij =


k≠i,j,n

mk

Rik − Rjk


∆ijk + mn


Rin − Rjn


∆ijn = 0, (6)

for all indices i and j such that 0 < i < j < n. Note that in (6) the parts under summation are exactly the Laura–Andoyer
equations for n − 1 bodies, which must vanish too. So, as we consider mn > 0, the following equations are necessary
conditions in order to have an (n, 1)-stacked central configuration:

Rin − Rjn

∆ijn = 0, (7)

for all indices i and j such that 0 < i < j < n. Remember that in equations fin = 0 the masses mn do not appear. Thus the
lemma is proved. �

The next lemma says that the remaining n − 1 bodies must be on a circle with center at rn.

Lemma 4. In order to have an (n, 1)-stacked central configuration it is necessary that the remaining n − 1 bodies must be in a
co-circular central configuration with center at rn.

Proof. By hypothesis the configuration must be non-collinear, so in Eq. (7) at least one ∆ijn is different from zero. Without
loss of generality, consider ∆12n ≠ 0. From

(R1n − R2n) ∆12n = 0

we have

R1n − R2n = 0,

which implies that r1n = r2n = d > 0. Thus, r1 and r2 belong to a circle with radius d and center at rn.
We can classify the other indices into two sets

C1 =

j : ∆1jn = 0


and

C2 =

j : ∆1jn ≠ 0


,

that is C1 contains the indices of the bodies whose vector positions are collinear with r1 and rn, while C2 contains the indices
of the bodies whose vector positions are not collinear with r1 and rn. For j ∈ C2 and from

R1n − Rjn

∆1jn = 0

we have

R1n − Rjn = 0.

Thus, rjn = r1n = d > 0 for all j ∈ C2. Then r1, r2 and rj belong to the circle of radius d and center at rn for all j ∈ C2.
To complete the proof of the lemmawe need to show that C1 has at most one element. Suppose, by contradiction, that there
exist two indices b, c ∈ C1. So ∆1bn = 0, which implies that ∆2bn ≠ 0. From

(R2n − Rbn) ∆2bn = 0,
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Fig. 1. There is no position for rc out of the collision set.

we have

R2n − Rbn = 0,

which implies that rbn = r2n = d > 0. Thus rb belongs to the circle of radius d and center at rn. As the central configurations
are out of the collision set, rb must be diametrically opposite to r1. Now consider the index c ∈ C1. So ∆1cn = 0, which
implies that ∆2cn ≠ 0. From

(R2n − Rcn) ∆2cn = 0

we have

R2n − Rcn = 0,

which implies that rcn = r2n = d > 0. Here we have a contradiction, since, in this case, rc coincides with either r1 or rb. See
Fig. 1. The lemma is proved. �

Lemma 4 has the following corollary.

Corollary 5. In a non-collinear (n, 1)-stacked planar central configuration the polygon formed by the position vectors of the
remaining n − 1 bodies is convex.

The proof of Theorem 1 follows from Lemmas 3 and 4.

3. Proof of Theorem 2

The proof of Theorem 2 is divided into two lemmas.

Lemma 6. In order to have an (n, 1)-stacked spatial central configuration it is necessary that the central configuration of the n
bodies does not depend on the value of the mass of the body to be removed, that is mn.

The proof of Lemma 6 is similar to the proof of Lemma 3. The main difference is the use of spatial Laura–Andoyer
equations. In other words, the following equations are necessary to an (n, 1)-stacked spatial central configuration:

Rin − Rjn

∆ijkn = 0, (8)

for all 1 ≤ i < j ≤ n and k ≠ i, j, n.
The equations in (8) have some geometrical implications for the central configuration.

Lemma 7. In order to have an (n, 1)-stacked spatial central configuration it is necessary that the remaining n − 1 bodies must
be co-spherical.

Proof. By hypothesis the configuration must be non-coplanar, so in Eq. (8) at least one ∆ijkn is different from zero. Without
loss of generality, consider ∆123n ≠ 0. From

(R1n − R2n) ∆123n = 0

we have

R1n − R2n = 0,

which implies that r1n = r2n = d > 0. Thus, r1 and r2 belong to a sphere with radius d and center at rn.
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Fig. 2. Example of a (5, 1)-stacked spatial central configuration.

We can classify the other indices into two sets

D1 =

j : ∆12jn = 0


and

D2 =

j : ∆12jn ≠ 0


,

that is D1 contains the indices of the bodies whose vector positions are coplanar with r1, r2 and rn, while D2 contains the
indices of the bodies whose vector positions are not coplanar with r1, r2 and rn. For j ∈ D2, we have

R1n − Rjn

∆12jn = 0,

which implies that

R1n − Rjn = 0.

Thus, rjn = r1n = d > 0 for all j ∈ D2. Then r1, r2 and rj belong to the sphere of radius d and center at rn for all j ∈ D2.
To complete the proof of the lemma note that the index 3 does not belong to D1; thus r3n = d. Take now the equations in
(8) for which the first index is 3 and the second belongs to D1. So

R3n − Rjn

∆3j1n = 0

and thus

R3n − Rjn = 0,

which implies that rjn = r3n = d > 0 for all j ∈ D1, that is rjn = d > 0 for all j such that 1 ≤ j < n. The lemma is proved. �

In short, Theorem 2 is proved from Lemmas 6 and 7.
The only possibility of a central configuration with n bodies for which a proper subset of n− 1 bodies also form a central

configuration is given by n − 1 bodies in a central configuration on a sphere S and one body of arbitrary mass at the center
of S.

Little is known about co-spherical central configurations. See [15] for some results on co-spherical kite central
configurations. Platonic polyhedrons with bodies of equal masses at the vertices and one body of arbitrary mass at their
geometrical barycenters are examples of (n, 1)-stacked spatial central configurations. See Fig. 2.

Pyramidal central configurations are also examples of (n, 1)-stacked spatial central configurations. See [1]. In particular,
these central configurations are the only possible (n, 1)-stacked spatial central configurations with a proper planar subset
of the bodies which form a planar central configuration. See Fig. 3.

The study of pyramidal central configurations requires a better understanding of co-circular central configurations. See
the work of Roberts and Cors [4] for the explanation of the case n = 4. The general case still remains open.

4. Concluding remarks

In Theorem 1 (Theorem 2, respectively) we have characterized the (n, 1)-stacked central configuration for the planar
non-collinear (spatial non-planar, respectively) n-body problem, n ≥ 4. On the basis of the proofs of Theorems 1 and 2 the
following problem arises: What can be said about the center of mass of an (n, 1)-stacked central configuration?

This problem will be investigated in a future work.
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Fig. 3. Example of an (n, 1)-stacked spatial central configuration with a planar subset of bodies that also form a central configuration.
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