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1. Introduction and main results

The concept of complete convergence was first introduced by Hsu and Robbins [13] as follows. A sequence 
of random variables {Un, n ≥ 1} is said to converge completely to a constant C if 

∑∞
n=1 P{|Un−C| > ε} < ∞

for all ε > 0. By the Borel–Cantelli lemma, this implies Un → C almost surely and the converse implication 
is not necessarily true if {Un, n ≥ 1} are not independent. Hsu and Robbins [13] proved that the sequence 
of arithmetic means of independent and identically distributed random variables converges completely to 
the expected value if the variance of the summands is finite. And Erdös [9,10] proved that the converse is 
also true.

This result has been generalized and extended in several directions, for example, see Katz [18], Baum 
and Katz [2], Bai and Su [1], Gut [12], Hu et al. [15], etc. It is worthwhile to point that Katz [18], Baum 
and Katz [2] obtained the following results: if 0 < p < 2 and r ≥ 1 then E|X|rp < ∞ if and only if

∞∑
n=1

nr−2P

{∣∣∣∣∣
n∑

j=1
Xj − nb

∣∣∣∣∣ > εn1/p

}
< ∞ for all ε > 0, (1.1)
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if and only if

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Xj − kb

∣∣∣∣∣ > εn1/p

}
< ∞ for all ε > 0, (1.2)

where b = EX if rp ≥ 1 and b = 0 if 0 < rp < 1.
Recently the rate of complete convergence for sequences of dependent random variables has attracted

lots of attention. One of those investigations is to investigate the rate of complete convergence for moving 
average processes based on the independent, identically distributed random variables. The concept of the 
moving average processes and relevant limit results is stated in the following:

Assume that {Xi, −∞ < i < +∞} is a doubly infinite sequence of identically distributed random 
variables. Let {ai, −∞ < i < +∞} be a sequence of real numbers with

∞∑
i=−∞

|ai|δ < ∞ (1.3)

for some 0 < δ ≤ 1 and define the moving average process as

Yn =
∞∑

i=−∞
aiXi+n, n ≥ 1. (1.4)

When {X, Xi, −∞ < i < +∞} is a sequence of independent and identically distributed random vari-
ables, many limiting results have been obtained for the moving average process {Yn, n ≥ 1}. For example, 
Ibragimov [17] established the central limit theorem, Burton and Dehling [4] obtained a large deviation 
principle assuming E exp{tX} < ∞ for all t, and Li et al. [20] obtained the complete convergence re-
sult for {Yn, n ≥ 1}. All those show that the partial sums of {Yn, n ≥ 1} have similar limiting behavior 
properties in comparison with the limiting properties of independent and identically distributed random 
variables.

For example, Hsu–Robbins result was extended by Li et al. [20] for moving average processes.

Theorem A. Let {X, Xi, −∞ < i < ∞} be a sequence of independent and identically distributed ran-
dom variables with EX = 0 and EX2 < ∞, {ai, −∞ < i < +∞} be a sequence of real numbers 
satisfying (1.3) for δ = 1. Suppose {Yn, n ≥ 1} is the moving average processes defined as (1.4). Then ∑∞

n=1 P{| 
∑n

j=1 Yj | > εn} < ∞ for all ε > 0.

Using a method different from that in Li et al. [20], Chen et al. [6] obtained the complete convergence for 
the maximum sums, which extended the results in Katz [18], Baum and Katz [2] partly to moving average 
processes.

Theorem B. Let {X, Xi, −∞ < i < ∞} be a sequence of independent and identically distributed random 
variables with EX = 0 and E|X|rp < 0 for r ≥ 1, 1 ≤ p < 2, and let {ai, −∞ < i < +∞} be a sequence of 
real numbers satisfying (1.3) for δ = 1 if rp > 1 and 0 < δ < 1 if rp = 1. Suppose {Yn, n ≥ 1} is the moving 
average process defined as (1.4). Then

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εn1/p

}
< ∞ for all ε > 0.
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In fact, Chen et al. [6] obtained their result under the dependent setup. And if we further assume that

a =
∞∑

i=−∞
ai �= 0, (1.5)

using the symmetrical method and the comparison principle, the converse of Theorems A and B also holds. 
The argument is similar to the proof of the divergence part of the main result.

The goal of the present investigation is to establish a version of complete convergence for moving average 
processes associated to integral test and heavy tailed distributions.

Before the main results are stated, we should mention that the moment assumption in Theorem B, 
E|X|rp < ∞ implies limx→∞ xrpP{|X| > x} = 0 and the converse is not necessary true. Of course, the 
condition limx→∞ xrpP{|X| > x} = c ∈ (0, ∞) does not imply the moment condition E|X|rp < ∞.

The assumption of a random variable with the heavy tailed distribution of order rp which is more general 
than limx→∞ xrpP{|X| > x} = c ∈ (0, ∞) is introduced as the following:

First we recall that a measurable function l(·) is said to be slowly varying at infinity if it is positive on 
[0, ∞) and limx→∞ l(λx)/l(x) = 1 for each λ > 0. We say that a random variable X with the heavy tailed 
distribution of order rp if

lim
x→∞

xP
{
|X| > ϕ(x)

}
= c ∈ (0,∞), (1.6)

where ϕ(x) = x
1
rp l(x), r ≥ 1, 0 < p < 2, and the function l(x) is slowly varying at infinity. From Bing-

ham et al. [3], we can obtain that P{|X| > x} is a regularly varying function with index −rp, i.e. for any 
λ > 0

lim
x→∞

P{|X| > λx}
P{|X| > x} = λ−rp.

We refer to Bingham et al. [3] for other equivalent definitions and for detailed and comprehensive study of 
properties of regularly varying functions and slowly varying functions.

Obviously, limx→∞ xrpP{|X| > x} = c ∈ (0, ∞) is the special case of a heavy tail distribution and (1.6)
is equivalent to

lim
x→∞

xrP
{
|X| > ϕ

(
xr

)}
= c ∈ (0,∞). (1.6)′

Now we are ready to state the main results and however all those proofs will be detailed in the next 
section.

Theorem 1.1. Assume that ϕ(x) = x
1
rp l(x) for 0 < p < 2, r ≥ 1, where l(x) > 0 (x > 0) is a slowly 

varying function at infinity, and f > 0 is a non-decreasing function. Let {X, Xi, −∞ < i < ∞} be a 
sequence of independent and identically distributed random variables satisfying (1.6) and EX = 0 if rp > 1, 
{ai, −∞ < i < +∞} be a sequence of real numbers satisfying (1.5) and (1.3) for δ = 1 if rp > 1 and 
0 < δ < rp if rp ≤ 1. Suppose {Yn, n ≥ 1} is the moving average process defined as in (1.4). Then for all 
ε > 0

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εϕ
((
nf(n)

)r)}
< ∞ or = ∞ (1.7)

according to 
∫∞ dx

r < ∞ or = ∞.
2 xf (x)
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We conclude two applications from Theorem 1.1 for r = 1 and r = 2 as two corollaries which are related 
to Chover’s type law of iterated logarithm for sequences and arrays respectively.

Corollary 1.1. Under the conditions of Theorem 1.1, let r = 1, then with probability one we have

lim sup
n→∞

1
ϕ(nf(n))

∣∣∣∣∣
n∑

j=1
Yj

∣∣∣∣∣ =
{

0,
∞ ⇔

∞∫
2

dx

xf(x)

{
< ∞,

= ∞.
(1.8)

Furthermore

lim sup
n→∞

∣∣∣∣
∑n

j=1 Yj

ϕ(n)

∣∣∣∣
1/ log log n

= e1/p a.s. (1.9)

Corollary 1.2. Let {X, Xni, n ≥ 1, −∞ < i < ∞} be an array of independent and identically distributed 
random variables. Suppose X and {ai, −∞ < i < ∞} as Theorem 1.1 and r = 2. Set

Ynj =
∞∑

i=−∞
aiXn,i+j , n ≥ 1, 1 ≤ j ≤ n.

Then with probability one we have

lim sup
n→∞

1
ϕ((nf(n))2)

∣∣∣∣∣
n∑

j=1
Ynj

∣∣∣∣∣ =
{

0,
∞ ⇔

∞∫
2

dx

xf2(x)

{
< ∞,

= ∞.
(1.10)

Furthermore

lim sup
n→∞

∣∣∣∣
∑n

j=1 Ynj

ϕ(n2)

∣∣∣∣
1/ log log n

= e1/(2p) a.s. (1.11)

Remark 1.1. Formula (1.9) is called Chover’s type law of the iterated logarithm. The pioneer work is due to 
Chover [8] for symmetrical stable random variables. For more general results, we refer to Chen and Hu [7]
and the references therein.

Remark 1.2. In fact, Corollary 1.1 is a special case of Corollary 3.4 in Chen and Hu [7]. But we provide a 
different and interesting proof of the convergence part.

Remark 1.3. Corollary 1.2 is new even for partial sums of arrays of independent and identically distributed 
random variables. The strong law for arrays is studied by Hu et al. [16] firstly. There are more results can 
be found in Hu et al. [14] and the references therein.

2. Lemmas and proofs

We need the following lemmas in order to prove our main results. Throughout this section C represents 
a positive constant, which may be vary in different places.

Lemma 2.1. Let X be the same as in Theorem 1.1, then

(1) if t < rp, E|X|tI(|X| > x) ∼ c1x
tP{|X| > x} for some c1 = c1(t, rp) > 0,

(2) if t > rp, E|X|tI(|X| ≤ x) ∼ c2x
tP{|X| > x} for some c2 = c2(t, rp) > 0,

where a(x) ∼ b(x) means limx→∞ a(x)/b(x) = 1.
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Proof. Theses results follow from Theorem 1 on p. 273 of Feller [11] directly. �
Lemma 2.2 (Rosenthal’s type moment inequality). (See Petrov [21].) Let t ≥ 2, {Wn, n ≥ 1} be a sequence 
of centered and independent random variables with E|Wn|t < ∞ for all n ≥ 1. Then

E max
1≤k≤n

∣∣∣∣∣
k∑

j=1
Wj

∣∣∣∣∣
t

≤ Ct

(
n∑

j=1
E|Wj |t +

(
n∑

j=1
EW 2

j

)t/2)
,

where the positive constant Ct depends only on t. In particular

E max
1≤k≤n

∣∣∣∣∣
k∑

j=1
Wj

∣∣∣∣∣
2

≤ C2

n∑
j=1

EW 2
j .

Lemma 2.3. Let X as Theorem 1.1, f > 0 be a non-decreasing function with 
∫∞
2

dx
xfr(x) < ∞. Set bn =

ϕ((nf(n))r), then

(1) if t < rp, 
∑∞

n=1 n
r−1b−t

n E|X|tI(|X| > bn) < ∞,
(2) if t > rp, 

∑∞
n=1 n

r−1b−t
n E|X|tI(|X| ≤ bn) < ∞.

Proof. (1) By Lemma 2.1 and (1.6)′

∞∑
n=1

nr−1b−t
n E|X|tI

(
|X| > bn

)
≤ C

∞∑
n=1

nr−1P
{
|X| > bn

}
≤ C

∞∑
n=1

nr−1(nf(n)
)−r

= C
∞∑

n=1

(
nfr(n)

)−1 ≤ C

∞∫
2

dx

xfr(x) < ∞.

(2) By Lemma 2.1 and (1.6)′

∞∑
n=1

nr−1b−t
n E|X|tI

(
|X| ≤ bn

)
≤ C

∞∑
n=1

nr−1P
{
|X| > bn

}
< ∞. �

Proof of Theorem 1.1. For the convergence part, we assume that 
∫∞
2

dx
xfr(x) < ∞ and set bn = ϕ((nf(n))r). 

We will show that for every ε > 0

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εbn

}
< ∞. (2.1)

Set Znj = XjI(|Xj | > bn) and Wnj = XjI(|Xj | ≤ bn) for n ≥ 1 and −∞ < j < ∞. Obviously, Xj =
Znj + Wnj . Note that for any ε > 0

P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εbn

}
≤ P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Znj

∣∣∣∣∣ > εbn/2
}

+ P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

ai

i+k∑
Wnj

∣∣∣∣∣ > εbn/2
}
.

i=−∞ j=i+1
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Hence to prove (2.1), it is enough to show that for all ε > 0

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Znj

∣∣∣∣∣ > εbn

}
< ∞ (2.2)

and

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Wnj

∣∣∣∣∣ > εbn

}
< ∞. (2.3)

Since 0 < δ ≤ 1 and δ < rp, by Markov’s inequality, cr-inequality, (1.3) and Lemma 2.3

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Znj

∣∣∣∣∣ > εbn

}

≤ C

∞∑
n=1

nr−2b−δ
n E max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Znj

∣∣∣∣∣
δ

≤ C

∞∑
n=1

nr−1b−δ
n E|X|δI

(
|X| > bn

)
< ∞,

i.e. (2.2) holds.
In order to prove (2.3), we have to divide rp into three cases as following:
If rp < 1, by Markov’s inequality, cr-inequality, (1.3) and Lemma 2.3

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

Wnj

∣∣∣∣∣ > εbn/2
}

≤ C

∞∑
n=1

nr−1b−1
n E|X|I

(
|X| ≤ bn

)
< ∞,

i.e. in the case 0 < rp < 1, (2.3) holds.
If rp = 1, note that f(x) → ∞ and P{|X| > x} is a regularly varying function with index −1, by the 

dominated convergence theorem

b−1
n n

∣∣EXI
(
|X| ≤ bn

)∣∣ ≤ b−1
n nE|X|I

(
|X| ≤ bn

)
≤

1∫
0

nP
{
|X| > xbn

}
dx → 0.

If rp > 1, in this case EX = 0, by Lemma 2.1 and (1.6)′

b−1
n n

∣∣EXI
(
|X| ≤ bn

)∣∣ = b−1
n n

∣∣EXI
(
|X| > bn

)∣∣ ≤ b−1
n nE|X|I

(
|X| > bn

)
≤ CnP

{
|X| > bn

}
≤ C/fr(n) → 0.

Hence in the case rp ≥ 1, to prove (2.3), it is enough to prove that for all ε > 0

∞∑
nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

ai

i+k∑
(Wnj − EWnj)

∣∣∣∣∣ > εbn

}
< ∞. (2.4)
n=1 i=−∞ j=i+1
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If 1 ≤ rp < 2, by Markov’s inequality, Hölder’s inequality, Lemmas 2.2 and 2.3
∞∑

n=1
nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

(Wnj − EWnj)

∣∣∣∣∣ > εbn/2
}

≤ C

∞∑
n=1

nr−2b−2
n E max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

(Wnj −EWnj)

∣∣∣∣∣
2

≤ C
∞∑

n=1
nr−2b−2

n

( ∞∑
i=−∞

|ai|
) ∞∑

i=−∞
|ai|E max

1≤k≤n

∣∣∣∣∣
i+k∑

j=i+1
(Wnj − EWnj)

∣∣∣∣∣
2

≤ C
∞∑

n=1
nr−1b−2

n E|X|2I
(
|X| ≤ bn

)
< ∞.

If rp ≥ 2, taking t > rp large enough such that r − 2 + t/2 − t/p < −1, by Markov’s inequality, Hölder’s 
inequality, Lemma 2.2

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

(Wnj −EWnj)

∣∣∣∣∣ > εbn/2
}

≤ C
∞∑

n=1
nr−2b−t

n E max
1≤k≤n

∣∣∣∣∣
∞∑

i=−∞
ai

i+k∑
j=i+1

(Wnj −EWnj)

∣∣∣∣∣
t

≤ C

∞∑
n=1

nr−2b−t
n

( ∞∑
i=−∞

|ai|
)t−1 ∞∑

i=−∞
|ai|E max

1≤k≤n

∣∣∣∣∣
i+k∑

j=i+1
(Wnj − EWnj)

∣∣∣∣∣
t

≤ C

∞∑
n=1

nr−2b−t
n

{(
nE|X|2I

(
|X| ≤ bn

))t/2 + nE|X|tI
(
|X| ≤ bn

)}
.

For any s ∈ (0, 1), E|X|2−2s < ∞. Take s small enough such that r − 2 + t/2 − (1 − s)t/p < −1, and note 
that bn = (nf(n))1/pl((nf(n))r), hence

∞∑
n=1

nr−2b−t
n

{(
nE|X|2I

(
|X| ≤ bn

))}
t/2 ≤ C

∞∑
n=1

nr−2+t/2b−t
n bstn < ∞,

and by Lemma 2.3
∞∑

n=1
nr−2b−t

n nE|X|tI
(
|X| ≤ bn

)
< ∞.

Then (2.4) follows from above two formulas.
For divergence part, we assume that 

∫∞
2

dx
xfr(x) = ∞. We will show that for all ε > 0

∞∑
n=1

nr−2P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εϕ
((
nf(n)

)r)} = ∞. (2.5)

By Lemma 2.2 in Chen [5], without loss of generality, we can assume that f(x) → ∞. In fact, it is enough 
to show that for all ε > 0

∞∑
nr−2P

{∣∣∣∣∣
n∑

Yj

∣∣∣∣∣ > εϕ
((
nf(n)

)r)} = ∞. (2.6)

n=1 j=1
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We will prove (2.6) by contradiction. Suppose that for some ε0 > 0

∞∑
n=1

nr−2P

{∣∣∣∣∣
n∑

j=1
Yj

∣∣∣∣∣ > ε0ϕ
((
nf(n)

)r)}
< ∞.

Let {X ′
i, −∞ < i < ∞} be an independent copy of {Xi, −∞ < i < ∞}. Then the above also holds for 

{X ′
i, −∞ < i < ∞} and hence

∞∑
n=1

nr−2P

{∣∣∣∣∣
∞∑

i=−∞
ai

i+n∑
j=i+1

(
Xj −X ′

j

)∣∣∣∣∣ > 2ε0ϕ
((
nf(n)

)r)}
< ∞. (2.7)

Set ani =
∑n

j=1 aj−i. Note that 
∑∞

i=−∞ ai
∑i+n

j=i+1(Xj −X ′
j) =

∑∞
i=−∞ ani(Xi −X ′

i). By the comparison 
principle (see Lemma 6.5 of Ledoux and Talagrand [19]), (2.7) implies that

∞∑
n=1

nr−2P

{∣∣∣∣∣
[n/2]∑

i=[n/3]

ani
(
Xi −X ′

i

)∣∣∣∣∣ > 2ε0ϕ
((
nf(n)

)r)}
< ∞. (2.8)

Note that a =
∑∞

i=−∞ ai �= 0. Then for n large enough, |ani| ≥ |a|/2 holds uniformly for [n/3] ≤ i ≤ [n/2]. 
By (2.8) and the comparison principle (see Lemma 6.5 of Ledoux and Talagrand [19]) again,

∞∑
n=1

nr−2P

{∣∣∣∣∣
[n/2]∑

i=[n/3]

(
Xi −X ′

i

)∣∣∣∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
< ∞. (2.9)

By Lévy’s inequality (see Proposition 2.3 of Ledoux and Talagrand [19])

P
{

max
[n/3]≤i≤[2/n]

∣∣(Xi −X ′
i

)∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}

≤ 2P
{∣∣∣∣∣

[n/2]∑
i=[n/3]

(
Xi −X ′

i

)∣∣∣∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
. (2.10)

Note that f(x) → ∞, so it is easy to show that

nP
{∣∣X −X ′∣∣ > ϕ

((
nf(n)

)r)} → 0

and

nϕ−2((nf(n)
)r)

E
(
X −X ′)2I(∣∣X −X ′∣∣ ≤ ϕ

((
nf(n)

)r)) → 0

from (1.6)′ and Lemma 2.1. By Theorem 3.1 in Taylor et al. [22]

P

{∣∣∣∣∣
[n/2]∑

i=[n/3]

(
Xi −X ′

i

)∣∣∣∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
→ 0. (2.11)

By (2.10) and (2.11), for n large enough, we have

P
{

max
∣∣(Xi −X ′

i

)∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
≤ 1/2.
[n/3]≤i≤[2/n]
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Hence by Lemma 2.6 of Ledoux and Talagrand [19]

[n/2]∑
i=[n/3]

P
{∣∣(Xi −X ′

i

)∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}

≤ 2P
{

max
[n/3]≤i≤[2/n]

∣∣(Xi −X ′
i

)∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
(2.12)

when n large enough. So by (2.9) and (2.12)
∞∑

n=1
nr−1P

{∣∣X −X ′∣∣ > 4ε0ϕ
((
nf(n)

)r)
/|a|

}
< ∞,

which ensures that
∞∑

n=1
nr−1P

{
|X| > 8ε0ϕ

((
nf(n)

)r)
/|a|

}
< ∞.

But in the other hand, by (1.6)′ and 
∫∞
2

dx
xfr(x) = ∞, for all ε > 0

∞∑
n=1

nr−1P
{
|X| > εϕ

((
nf(n)

)r)} = ∞

which leads a contradiction. Hence (2.5) holds completing the proof of Theorem 1.1. �
Proof of Corollary 1.1. The proof of the divergence part of (1.8) can be seen in Chen and Hu [7], we 
only prove the convergence part. Assume 

∫∞
2

dx
xf(x) < ∞. By Lemma 2.2 in Chen [5], we can assume that 

lim supx→∞ f(2x)/f(x) < ∞, it follows that

lim sup
n→∞

ϕ
(
2nf(2n)

)
/ϕ

(
nf(n)

)
< ∞.

By Theorem 1.1, for all ε > 0

∞∑
n=1

n−1P

{
max

1≤k≤n

∣∣∣∣∣
k∑

j=1
Yj

∣∣∣∣∣ > εϕ
(
nf(n)

)}
< ∞.

Hence by Theorem 2.1 in Yang et al. [23]

1
ϕ(nf(n))

n∑
j=1

Yj → 0 a.s.

For every δ > 0, by taking f(x) = log1+δ x in (1.8),

lim sup
n→∞

(
ϕ
(
n log1+δ n

))−1
∣∣∣∣∣

n∑
j=1

Yj

∣∣∣∣∣ = 0 a.s.

By the property of slowing varying function (see Bingham et al. [3] ), we have for any δ′ > 0

lim sup
n→∞

(
ϕ(n) log1/p+δ/p+δ′ n

)−1
∣∣∣∣∣

n∑
Yj

∣∣∣∣∣ = 0 a.s.,

j=1
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which implies

lim sup
n→∞

∣∣∣∣∣(ϕ(n)
)−1

n∑
j=1

Yj

∣∣∣∣∣
1/ log log n

≤ e1/p+δ/p+δ′ a.s.

Thus we have

lim sup
n→∞

∣∣∣∣∣(ϕ(n)
)−1

n∑
j=1

Yj

∣∣∣∣∣
1/ log log n

≤ e1/p a.s. (2.13)

For every δ > 0, by taking f(x) = log1−δ x in (1.8),

lim sup
n→∞

(
ϕ
(
n log1−δ n

))−1
∣∣∣∣∣

n∑
j=1

Yj

∣∣∣∣∣ = ∞ a.s.

By the property of slowing varying function (see Bingham et al. [3]), we have for any δ′ > 0

lim sup
n→∞

(
ϕ(n) log1/p−δ/p−δ′ n

)−1
∣∣∣∣∣

n∑
j=1

Yj

∣∣∣∣∣ = ∞ a.s.,

which implies

lim sup
n→∞

∣∣∣∣∣(ϕ(n)
)−1

n∑
j=1

Yj

∣∣∣∣∣
1/ log log n

≥ e1/p−δ/p−δ′ a.s.

Thus we have

lim sup
n→∞

∣∣∣∣∣(ϕ(n)
)−1

n∑
j=1

Yj

∣∣∣∣∣
1/ log log n

≥ e1/p a.s. (2.14)

Hence (1.9) holds from (2.13) and (2.14). The proof is completed. �
Proof of Corollary 1.2. Let {Xi, −∞ < i < ∞} be a sequence of independent and identically distributed 
random variables, the common distribution is as X. Then by Theorem 1.1 and its proof, for all ε > 0

∞∑
n=1

P

{∣∣∣∣∣
n∑

j=1
Yj

∣∣∣∣∣ > εϕ
((
nf(n)

)2)}
< ∞ or = ∞

according to 
∫∞
2

dx
xf2(x) < ∞ or = ∞. Hence for all ε > 0

∞∑
n=1

P

{∣∣∣∣∣
n∑

j=1
Ynj

∣∣∣∣∣ > εϕ
((
nf(n)

)2)}
< ∞ or = ∞

according to 
∫∞
2

dx
xf2(x) < ∞ or = ∞. Note that {

∑n
j=1 Ynj , n ≥ 1} is a sequence of independent random 

variables. By the Borel–Cantelli Lemma
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lim sup
n→∞

1
ϕ((nf(n))2)

∣∣∣∣∣
n∑

j=1
Ynj

∣∣∣∣∣ = 0 or ∞ a.s.

according to 
∫∞
2

dx
xf2(x) < ∞ or = ∞.

The proof of (1.11) is similar to that of (1.9) and so we omit the details. �
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