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This paper studies the relations between Pesin–Pitskel topological pressure on an 
arbitrary subset and measure theoretic pressure of Borel probability measures, 
which extends Feng and Huang’s recent result on entropies [13] for pressures. 
More precisely, this paper defines the measure theoretic pressure Pμ(T, f) for any 
Borel probability measure, and shows that PB(T, f, K) = sup{Pμ(T, f) : μ ∈
M(X), μ(K) = 1}, where M(X) is the space of all Borel probability measures, 
K ⊆ X is a non-empty compact subset and PB(T, f, K) is the Pesin–Pitskel 
topological pressure on K. Furthermore, if Z ⊆ X is an analytic subset, then 
PB(T, f, Z) = sup{PB(T, f, K) : K ⊆ Z is compact}. This paper also shows 
that Pesin–Pitskel topological pressure can be determined by the measure theoretic 
pressure.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Throughout this paper X is a compact metric space with metric d and T : X → X is a continuous 
transformation, such a pair (X, T ) is a topological dynamical system (TDS for short). Let M(X) be the space 
of all Borel probability measures on X, and denote by MT and ET the set of all T -invariant (respectively, 
ergodic) Borel probability measures on X. For any μ ∈ MT , let hμ(T ) denote the measure theoretic entropy 
of μ with respect to T and let htop(T ) denote the topological entropy of the system (X, T ), see [34] for the 
precise definitions. It is well-known that entropies constitute essential invariants in the characterization of 
the complexity of dynamical systems. The classical measure theoretic entropy for an invariant measure and 
the topological entropy are introduced in [19] and [1] respectively. The basic relation between topological 
entropy and measure theoretic entropy is the variational principle, e.g., see [34].

Topological pressure is a non-trivial and natural generalization of topological entropy. One of the most 
fundamental dynamical invariants that associate to a continuous map is the topological pressure with 
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a potential function. It roughly measures the orbit complexity of the iterated map on the potential function. 
Ruelle [29] introduced topological pressure of a continuous function for Zn-actions on compact spaces and 
established the variational principle for topological pressure when the action is expansive and satisfies the 
specification property. Later, Walters [33] generalized the variational principle for a Z+-action without these 
assumptions. Misiurewicz [23] gave an elegant proof of the variational principle for Zn

+-action. See [16,26,
25,30–32] for the variational principle for amenable group actions and [11,18] for sofic groups actions. And 
we would like to mention, Barreira [2–4], Cao, Feng and Huang [8], Mummert [24], Zhao and Cheng [39,40]
dealing with variational principle for topological pressure with nonadditive potentials, and Huang and Yi
[17] and Zhang [36], where variational principle for the local topological pressure are also considered. This 
paper conducts research for Z or Z+-actions.

From a viewpoint of dimension theory, Pesin and Pitskel’ [28] defined the topological pressure on non-
compact sets which is a generalization of Bowen’s definition of topological entropy on noncompact sets [5], 
and they proved the variational principle under some supplementary conditions. The notions of the topolog-
ical pressure, variational principle and equilibrium states play a fundamental role in statistical mechanics, 
ergodic theory and dynamical systems (see the books [6,34]).

Motivated by Feng and Huang’s recent work [13], where the authors studied the variational principle 
between Bowen topological entropy on an arbitrary subset and measure theoretic entropy for Borel prob-
ability measures (not necessarily invariant), recently, Wang and Chen generalized Feng–Huang’s result to 
BS-dimension [35]. As a natural generalization of topological entropy, topological pressure is a quantity 
which belongs to one of the concepts in the thermodynamic formalism. This study defines measure theo-
retic pressure for a Borel probability measure and investigates its variational relation with the Pesin–Pitskel 
topological pressure. Moreover, it is proved that Pesin–Pitskel topological pressure is determined by measure 
theoretic pressure of Borel probability measures. The outline of the paper is as follows. The main results, as 
well as those definitions of the measure theoretic pressure and topological pressures, are given in Section 2. 
The proof of the main results and related propositions are given in Section 3.

2. Definitions and the statement of main results

This section first gives the definition of measure theoretic pressure for any Borel probability measure, 
and then recalls different kinds of definitions of the topological pressure. The main results of this paper is 
given in the end of this section.

We first give some necessary notations. For any n ∈ N and ε > 0, let dn(x, y) = max{d(T i(x), T i(y)) :
0 ≤ i < n} for any x, y ∈ X and Bn(x, ε) = {y ∈ X : dn(x, y) < ε}. A set E ⊆ X is said to be an 
(n, ε)-separated subset of X with respect to T if x, y ∈ E, x �= y, implies dn(x, y) > ε. A set F ⊆ X is said 
to be an (n, ε)-spanning subset of X with respect to T if ∀x ∈ X, ∃y ∈ F with dn(x, y) ≤ ε. Let C(X)
denote the Banach space of all continuous functions on X equipped with the supremum norm ‖ · ‖.

2.1. Measure theoretic pressure

Let μ ∈ M(X) and f ∈ C(X), the measure theoretic pressure of μ for T (w.r.t. f) is defined by

Pμ(T, f) :=
∫

Pμ(T, f, x) dμ(x)

where Pμ(T, f, x) := limε→0 lim infn→∞( 1
n log[efn(x) · μ(Bn(x, ε))−1]) and fn(x) :=

∑n−1
i=0 f(T ix).

For any μ ∈ MT , using Birkhoff’s ergodic theorem (e.g. see [34]) and Brin–Katok’s entropy formula [7], 
for μ-almost every x ∈ X we have that

Pμ(T, f, x) = hμ(T, x) + f∗(x),
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moreover, we know that f∗ ◦ T = f∗, 
∫
f∗ dμ =

∫
f dμ and 

∫
hμ(T, x) dμ = hμ(T ). Particularly, if μ ∈ ET

we have that Pμ(T, f, x) = hμ(T ) +
∫
f dμ for μ-almost every x ∈ X. We refer the reader to [9,10,14,37,38]

for more details on the measure theoretic pressure of invariant measures for a large class of potentials.
In the following subsections, we turn to recall definitions of upper capacity topological pressure, Pesin–

Pitskel topological pressure and weighted topological pressure.

2.2. Upper capacity topological pressure

Recall that the upper capacity topological pressure of T on a subset Z ⊆ X with respect to a continuous 
function f is given by

P (T, f, Z) = lim
ε→0

P (T, f, Z, ε)

where

P (T, f, Z, ε) = lim sup
n→∞

1
n

logPn(T, f, Z, ε),

Pn(T, f, Z, ε) = sup
{ ∑

x∈E

efn(x) : E is an (n, ε)-separated subset of Z
}
.

2.3. Pesin–Pitskel topological pressure

Let Z ⊆ X be a subset of X, which does not have to be compact nor T -invariant. Fix ε > 0, we call 
Γ = {Bni

(xi, ε)}i a cover of Z if Z ⊆
⋃

i Bni
(xi, ε). For Γ = {Bni

(xi, ε)}i, set n(Γ ) = mini{ni}.
Let f ∈ C(X) and s ∈ R, put

M(Z, f, s,N, ε) = inf
Γ

∑
i

exp
(
−sni + sup

y∈Bni
(xi,ε)

fni
(y)

)
,

where the infimum is taken over all covers Γ of Z with n(Γ ) ≥ N . The quantity M(Z, f, s, N, ε) is monotone 
in N and hence, we let

m(Z, f, s, ε) = lim
N→∞

M(Z, f, s,N, ε).

It is easy to show that there is a critical value

PB(T, f, Z, ε) = inf
{
s : m(Z, f, s, ε) = 0

}
= sup

{
s : m(Z, f, s, ε) = +∞

}
.

Definition 2.1. We call the quantity

PB(T, f, Z) = lim
ε→0

PB(T, f,K, ε)

the Pesin–Pitskel topological pressure of T on the set Z (w.r.t. f).

The Pesin–Pitskel topological pressure can be defined in the following alternative way, see [2] or [27] for 
more details.

Suppose U is a finite open cover of X. Denote the diameter of the open cover by |U| := max{diam(U) :
U ∈ U}. For n ≥ 1 we denote by Wn(U) the collection of strings U = U1...Un with Ui ∈ U . For U ∈ Wn(U)
we call the integer m(U) = n the length of U and define

X(U) = U1 ∩ T−1U2 ∩ ... ∩ T−(n−1)Un =
{
x ∈ X : T j−1x ∈ Uj for j = 1, ..., n

}
.
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Given a subset Z ⊆ X. We say that Λ ⊂
⋃

n≥1 Wn(U) covers Z if 
⋃

U∈Λ X(U) ⊃ Z. For s ∈ R, define

Ms
N (U , f, Z) = inf

Λ

∑
U∈Λ

exp
(
−sm(U) + sup

y∈X(U)
fm(U)(y)

)

where the infimum is taken over all Λ ⊂
⋃

n≥N Wn(U) that cover Z and supy∈X(U) fm(U)(y) = −∞ if 
X(U) = ∅. Clearly Ms

N (U , f, ·) is a finite outer measure on X, and

Ms
N (U , f, Z) = inf

{
Ms

N (U , f,G) : G ⊃ Z,G is open
}
.

Clearly, Ms
N (U , f, Z) increases as N increases, define

Ms(U , f, Z) := lim
N→∞

Ms
N (U , f, Z)

and

PB(T, f,U , Z) := inf
{
s : Ms(U , f, Z) = 0

}
= sup

{
s : Ms(U , f, Z) = +∞

}
,

set

PB(T, f, Z) := sup
U

PB(T, f,U , Z)

and it is not difficult to prove that supU PB(T, f, U , Z) = lim|U|→0 PB(T, f, U , Z).

2.4. Weighted topological pressure

For any bounded function g : X → R, f ∈ C(X), ε > 0 and N ∈ N, define

W (g, f, s,N, ε) = inf
∑
i

ci exp
(
−sni + sup

y∈Bni
(xi,ε)

fni
(y)

)

where the infimum is taken over all finite or countable families {Bni
(xi, ε), ci} such that 0 < ci < ∞, xi ∈

X, ni ≥ N and

∑
i

ciχBi
≥ g,

where Bi := Bni
(xi, ε) and χA denotes the characteristic function on a subset A ⊆ X. For K ⊆ X and 

g = χK we set

W (K, f, s,N, ε) := W (χK , f, s,N, ε).

The quantity W (K, f, s, N, ε) does not decrease as N increases, hence the following limit exists:

w(K, f, s, ε) = lim
N→∞

W (K, f, s,N, ε).

Clearly, there exists a critical value of the parameter s. Hence, we define

PW (T, f,K, ε) = inf
{
s : w(K, f, s, ε) = 0

}
= sup

{
s : w(K, f, s, ε) = ∞

}
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Since the quantity PW (T, f, K, ε) is monotone with respect to ε, the following limit exists:

PW (T, f,K) = lim
ε→0

PW (T, f,K, ε).

The term PW (T, f, K) is called a weighted topological pressure of T on the set K (with respect to f).

Remark 2.1. The weighted topological pressure is a generalization of Feng–Huang’s weighted entropy [13]. 
Indeed, let f ≡ 0, then the quantity PW (T, 0, K) is the same as Feng–Huang’s weighted entropy [13].

Now we collect some properties of the pressures which will be used in the proof of the main results, see 
[2] or [27] for their proofs.

Proposition 2.1. Let f be a continuous function on X, then the following statements hold:

(i) For Z1 ⊆ Z2, P(T, f, Z1) ≤ P(T, f, Z2), where P is P, PB or PW ;
(ii) For Z =

⋃∞
i=1 Zi, we have PB(T, f, Z) = supi≥1 PB(T, f, Zi) and P (T, f, Z) ≤ supi≥1 P (T, f, Zi);

(iii) For any Z ⊆ X, PB(T, f, Z) ≤ P (T, f, Z). Moreover, we have PB(T, f, Z) = P (T, f, Z) if Z is 
T -invariant and compact.

2.5. Statement of main results

The following variational relation of the Pesin–Pitskel topological pressure and the measure theoretic 
pressure is the main finding of this paper. We give the statements first and postpone the proof to the next 
section. To give the statements of our results, we recall the definition of analytic set. A set in a metric space 
is analytic if it is a continuous image of the set N of infinite sequences of natural numbers (with its product 
topology). In a Polish space, the analytic subsets are closed under countable unions and intersections, and 
any Borel set is analytic (cf. [12, 2.2.10]).

The first theorem shows that the Pesin–Pitskel topological pressure is determined by measure theoretic 
pressure of Borel probability measures, which extends the result in [21] for Pesin–Pitskel topological pressure.

Theorem A. Let f be a continuous function on X, μ a Borel probability measure on X and E ⊂ X a Borel 
subset. For s ∈ R, the following properties hold:

(1) If Pμ(T, f, x) ≤ s for all x ∈ E, then PB(T, f, E) ≤ s;
(2) If Pμ(T, f, x) ≥ s for all x ∈ E and μ(E) > 0, then PB(T, f, E) ≥ s.

The next theorem gives the variational relation between Pesin–Pitskel topological pressure on arbitrary 
subsets and measure theoretic pressure of Borel probability measures, and studies the Pesin–Pitskel topo-
logical pressure on an analytic subset.

Theorem B. Let f be a continuous function on X, the following statements hold:

(1) If K ⊆ X is non-empty and compact, then

PB(T, f,K) = sup
{
Pμ(T, f) : μ ∈ M(X), μ(K) = 1

}
;

(2) If the topological entropy of the system is finite, i.e., htop(T ) < ∞, and Z ⊆ X is analytic, then

PB(T, f, Z) = sup
{
PB(T, f,K) : K ⊆ Z,K is compact

}
.
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3. Proof of the main result

This section gives the proof of Theorem A and Theorem B.
We first give the proof of Theorem A.

Proof of Theorem A. Modifying Ma and Wen’s arguments for entropy [21], we give the proof.
(1) For a fixed r > 0, let

Ek =
{
x ∈ E : lim inf

n→∞
1
n

log
[
efn(x).μ

(
Bn(x, ε)

)−1]
< s + r,∀ε ∈

(
0, 1

k

)}
.

Then we have E =
⋃∞

k=1 Ek, since Pμ(T, f, x) ≤ s for all x ∈ E.
Now fix k ≥ 1 and 0 < ε < 1

5k . For each x ∈ Ek, there exists a strictly increasing sequence {nj}∞j=1 (for 
simplicity of notations, we omit the dependence on x if there is no confusion caused) such that

μ
(
Bnj

(x, ε)
)
≥ exp

(
−nj(s + r) + fnj

(x)
)
, ∀j ≥ 1.

For any N ≥ 1, the set Ek is contained in the union of the sets in the family

F =
{
Bnj

(x, ε) : x ∈ Ek, nj ≥ N
}
.

Using Lemma 1 in [21], there exists a finite or countable subfamily G = {Bni
(xi, ε)}i∈I ⊂ F of pairwise 

disjoint balls such that

Ek ⊂
⋃
i∈I

Bni
(xi, 5ε).

Note that

μ
(
Bni

(xi, ε)
)
≥ exp

(
−ni(s + r) + fni

(xi)
)
, ∀i ∈ I.

The disjointness of {Bni
(xi, ε)}i∈I yields that

M(Ek, f, s + r,N, 5ε) ≤
∑
i∈I

exp
(
−ni(s + r) + fni

(xi)
)
≤

∑
i∈I

μ
(
Bni

(xi, ε)
)
≤ 1

where

M(K, f, s,N, ε) := inf
Γ

∑
i

exp
(
−sni + fni

(xi)
)

(3.1)

and the infimum is taken over all covers Γ = {Bni
(xi, ε)} of K with n(Γ ) ≥ N . It follows that

M(Ek, f, s + r, 5ε) = lim
N→∞

M(Ek, f, s + r,N, 5ε) ≤ 1.

Since Pesin–Pitskel pressure does not change if we replace M(·) by M(·) in the definition of pressure [27], 
we have that PB(T, f, Ek, 5ε) ≤ s + r for any 0 < ε < 1

5k . The arbitrariness of ε implies that

PB(T, f, Ek) ≤ s + r, ∀k ≥ 1.
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Hence,

PB(T, f, E) = PB

(
T, f,

∞⋃
k=1

Ek

)
= sup

k≥1
PB(T, f, Ek) ≤ s + r.

The arbitrariness of r implies that PB(T, f, E) ≤ s.
(2) Fix r > 0. For each k ≥ 1, put

Ek =
{
x ∈ E : lim inf

n→∞
1
n

log
[
efn(x).μ

(
Bn(x, ε)

)−1]
> s− r,∀ε ∈

(
0, 1

k

)}
.

Since Pμ(T, f, x) ≥ s for all x ∈ E, we have that Ek ⊂ Ek+1 and 
⋃∞

k=1 Ek = E. Fix a sufficiently large 
k ≥ 1 with μ(Ek) > 1

2μ(E) > 0. For each N ≥ 1, put

Ek,N =
{
x ∈ Ek : lim inf

n→∞
1
n

log
[
efn(x).μ

(
Bn(x, ε)

)−1]
> s− r,∀n ≥ N, ε ∈

(
0, 1

k

)}
.

It is easy to see that Ek,N ⊂ Ek,N+1 and 
⋃∞

N=1 Ek,N = Ek. Thus we can pick N∗ ≥ 1 such that μ(Ek,N∗) >
1
2μ(Ek) > 0. For simplicity of notation, let E∗ = Ek,N∗ and ε∗ = 1

k . By the choice of E∗, we have that

μ
(
Bn(x, ε)

)
≤ exp

(
−n(s− r) + fn(x)

)
, ∀x ∈ E∗, 0 < ε < ε∗, n ≥ N.

Fix a sufficiently large N > N∗. For each cover F = {Bni
(yi, ε2 )}i≥1 of E∗ with 0 < ε < ε∗ and ni ≥ N ≥ N∗

for each i ≥ 1. Without loss of generality, assume that E∗ ∩Bni
(yi, ε2 ) �= ∅, ∀i. Thus, for each i ≥ 1 there 

exists xi ∈ E∗ ∩Bni
(yi, ε2 ). Hence,

Bni

(
yi,

ε

2

)
⊂ Bni

(xi, ε).

It follows that

∑
i≥1

exp
(
−n(s− r) + sup

y∈Bni
(yi,

ε
2 )
fni

(y)
)
≥

∑
i≥1

exp
(
−n(s− r) + fni

(xi)
)
≥

∑
i≥1

μ
(
Bni

(xi, ε)
)
≥ μ

(
E∗).

Therefore,

M

(
E∗, f, s− r,N,

ε

2

)
≥ μ

(
E∗) > 0.

Consequently

M

(
E∗, f, s− r,

ε

2

)
= lim

N→∞
M

(
E∗, f, s− r,N,

ε

2

)
≥ μ

(
E∗) > 0,

which implies that PB(T, f, E∗, ε2 ) ≥ s − r. Letting ε → 0, we have that PB(T, f, E∗) ≥ s − r. It follows that 
PB(T, f, E) ≥ PB(T, f, E∗) ≥ s − r. The arbitrariness of r implies that PB(T, f, E) ≥ s. This completes the 
proof of the theorem. �
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We now recall the Vitali covering lemma which is useful in the proof of the main results.

Lemma 3.1. Let (X, d) be a compact metric space and B = {B(xi, ri)}i∈I a family of closed (or open) balls 
in X. Then there exists a finite or countable subfamily B′ = {B(xi, ri)}i∈I′ of pairwise disjoint balls in B
such that

⋃
B∈B

B ⊆
⋃
i∈I′

B(xi, 5ri)

Proof. See [22, Theorem 2.1]. �
The following proposition gives the relations of the Pesin–Pitskel topological pressure with the weighted 

topological pressure. The argument of the proof is similar as Feng and Huang’s [13, Proposition 3.2].

Proposition 3.2. Let K ⊆ X. Then for any s ∈ R and ε, δ > 0, we have

M(K, f, s + δ,N, 6ε) ≤ W (K, f, s,N, ε) ≤ M(K, f, s,N, ε)

for all sufficiently large N , where M(·) is defined as (3.1). Consequently, we have PB(T, f, K, 6ε) ≤
PW (T, f, K, ε) ≤ PB(T, f, K, ε) and PB(T, f, K) = PW (T, f, K).

Proof. Let K ⊆ X, s ∈ R, ε, δ > 0, taking ci = 1 in the definition of weighted topological pressure, we see 
that W (K, f, s, N, ε) ≤ M(K, f, s, N, ε) for each N ∈ N. In the following, we show that

M(K, f, s + δ,N, 6ε) ≤ W (K, f, s,N, ε) (3.2)

for all sufficiently large N .
Assume that N ≥ 2 is such that n2e−nδ ≤ 1 for n ≥ N . Let {Bni

(xi, ε), ci}i∈I be a family so that I ⊆ N, 
xi ∈ X, 0 < ci < ∞, ni ≥ N and

∑
i

ciχBi
≥ χK

where Bi := Bni
(xi, ε). To prove (3.2), it suffices to prove that

M(K, f, s + δ,N, 6ε) ≤
∑
i∈I

ci exp
(
−sni + sup

y∈Bni
(xi,ε)

fni
(y)

)
. (3.3)

Denote In := {i ∈ I : ni = n} and In,k = {i ∈ In : i ≤ k} for n ≥ N and k ∈ N. For the simplicity of 
notations, set Bi := Bni

(xi, ε) and 5Bi := Bni
(xi, 5ε) for i ∈ I. Without loss of generality, assume that 

Bi �= Bj for i �= j. For t > 0, set

Kn,t =
{
x ∈ K :

∑
i∈In

ciχBi
(x) > t

}
and Kn,k,t =

{
x ∈ K :

∑
i∈In,k

ciχBi
(x) > t

}
.

We divide the proof of (3.3) into the following three steps.
Step 1. For each n ≥ N, k ∈ N and t > 0, there exists a finite set Jn,k,t ⊆ In,k such that the balls 

Bi(i ∈ Jn,k,t) are pairwise disjoint, Kn,k,t ⊆
⋃

i∈Jn,k,t
5Bi and

∑
exp

(
−sn + sup

y∈Bi

fn(y)
)
≤ 1

t

∑
ci exp

(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
.

i∈Jn,k,t i∈In,k
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To prove the previous inequality, using Federer’s method [12, 2.10.24] (see also Mattila [22, Lemma 8.16]), 
we may assume that each ci is a positive integer (see [13] for details). Let m be the smallest integer satisfying 
m ≥ t. Let B = {Bi : i ∈ In,k}, and define u : B → Z by u(Bi) = ci. We can inductively define integer-valued 
functions v0, v1, ..., vm on B and subfamilies B1, ..., Bm of B with v0 = u. Using Lemma 3.1 (use the metric 
dn instead of d), there exists a pairwise disjoint subfamily B1 of B such that 

⋃
B∈B B ⊆

⋃
B∈B1

5B, and 
hence Kn,k,t ⊆

⋃
B∈B1

5B. Using Lemma 3.1 repeatedly, for j = 1, ..., m, we can obtain disjoint subfamilies 
Bj of B such that

Bj ⊆
{
B ∈ B : vj−1(B) ≥ 1

}
, Kn,k,t ⊆

⋃
B∈Bj

5B

and the function vj such that

vj(B) =
{
vj−1(B) − 1 for B ∈ Bj ,

vj−1(B) for B ∈ B \ Bj .

This is possible since Kn,k,t ⊂ {x :
∑

B∈B:B�x vj(B) ≥ m − j} for j < m, whence every x ∈ Kn,k,t belongs 
to some ball B ∈ B with vj(B) ≥ 1. Hence,

m∑
j=1

∑
B∈Bj

exp
(
−sn + sup

y∈B
fn(y)

)
=

m∑
j=1

∑
B∈Bj

(
vj−1(B) − vj(B)

)
exp

(
−sn + sup

y∈B
fn(y)

)

≤
∑
B∈B

m∑
j=1

(
vj−1(B) − vj(B)

)
exp

(
−sn + sup

y∈B
fn(y)

)

≤
∑
B∈B

u(B) exp
(
−sn + sup

y∈B
fn(y)

)

=
∑

i∈In,k

ci exp
(
−sn + sup

y∈Bi

fn(y)
)
.

Choose j0 ∈ {1, ..., m} such that 
∑

B∈Bj0
exp(−sn + supy∈B fn(y)) is the smallest. Then

∑
B∈Bj0

exp
(
−sn + sup

y∈B
fn(y)

)
≤ 1

m

∑
i∈In,k

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)

≤ 1
t

∑
i∈In,k

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
.

Hence,

Jn,k,t = {i ∈ In,k : Bi ∈ Bj0}.

Step 2. For each n ≥ N and t > 0, we have

M(Kn,t, f, s + δ,N, 6ε) ≤ 1
n2t

∑
i∈In

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
. (3.4)

Without loss of generality, assume Kn,t �= ∅; otherwise there is nothing to prove. Since Kn,k,t → Kn,t as 
k → ∞, Kn,k,t �= ∅ for all sufficiently large k. Let Jn,k,t be the sets constructed in step 1, then Jn,k,t �= ∅ for 
sufficiently large k. Define En,k,t = {xi : i ∈ Jn,k,t}. Since the space of all non-empty compact subsets of X
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is compact with respect to the Hausdorff distance (cf. [12, 2.10.21]), there exists a subsequence {kj}j≥1 of 
positive integers and a non-empty compact set En,t ⊆ X such that En,kj ,t converges to En,t in the Hausdorff 
distance as j → ∞. Since the distance of any two points in En,k,t is not less than ε (with respect to dn), so 
do the points in En,t. Thus En,t is a finite set and �(En,kj ,t) = �(En,t) for sufficiently large j. Hence, the 
following holds

⋃
x∈En,t

Bn(x, 5.5ε) ⊇
⋃

x∈En,kj,t

Bn(x, 5ε) =
⋃

i∈Jn,kj,t

5Bi ⊇ Kn,kj ,t

for all sufficiently large j, and this yields that 
⋃

x∈En,t
Bn(x, 6ε) ⊇ Kn,t. Since �(En,kj ,t) = �(En,t) for 

sufficiently large j, using the result in step 1 we have

∑
x∈En,t

exp
(
−ns + fn(x)

)
≤

∑
x∈En,kj,t

exp
(
−ns + sup

y∈Bn(x,ε)
fn(y)

)

≤ 1
t

∑
i∈In

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
.

Hence,

M(Kn,t, f, s + δ,N, 6ε) ≤
∑

x∈En,t

exp
(
−n(s + δ) + fn(x)

)

≤ 1
enδt

∑
i∈In

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)

≤ 1
n2t

∑
i∈In

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
.

Step 3. For any t ∈ (0, 1), we have

M(K, f, s + δ,N, 6ε) ≤ 1
t

∑
i∈I

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)
.

Consequently, (3.3) holds.
To prove this, fix t ∈ (0, 1). Note that 

∑∞
n=N n−2 < 1 and K ⊆

⋃∞
n=N Kn,n−2t. By (3.4) we have

M(K, f, s + δ,N, 6ε) ≤
∞∑

n=N

M(Kn,t, f, s + δ,N, 6ε)

≤
∞∑

n=N

1
t

∑
i∈In

ci exp
(
−sn + sup

y∈Bn(xi,ε)
fn(y)

)

≤ 1
t

∑
i∈I

ci exp
(
−sni + sup

y∈Bni
(xi,ε)

fni
(y)

)
.

To finish the proof of this proposition, note that the Pesin–Pitskel topological pressure does not change 
if we replace supy∈Bn(x,ε) fn(y) by any number in the interval [infy∈Bn(x,ε) fn(y), supy∈Bn(x,ε) fn(y)] in the 
definition of the Pesin–Pitskel topological pressure, see [2, Corollary 1.2] or [27] for a proof of this fact. �

The following lemma is an analogue of Feng and Huang’s approximation and classical Frostman’s lemma, 
see [13, Lemma 3.4]. The argument is ultimately adapted from Howroyd’s elegant argument (cf. [15, 



1282 X. Tang et al. / J. Math. Anal. Appl. 424 (2015) 1272–1285
Theorem 2], [22, Theorem 8.17]). It can be proven by the same arguments as in [13] except adding a 
potential function, so we omit the detailed proof.

Lemma 3.3. Let K be a nonempty compact subset of X and f ∈ C(X). Let s ∈ R, N ∈ N and ε > 0. Suppose 
that c := W (K, f, s, N, ε) > 0. Then there is a Borel probability measure μ on X such that μ(K) = 1 and

μ
(
Bn(x, ε)

)
≤ 1

c
exp

[
−ns + sup

y∈Bn(x,ε)
fn(y)

]
, ∀x ∈ X, n ≥ N.

Now we are ready to prove the first statement in Theorem B.

Proof of Theorem B(1). Assume μ(K) = 1, since Pμ(T, f) =
∫
Pμ(T, f, x) dμ, it follows that the set

Kδ =
{
x ∈ K : Pμ(T, f, x) ≥ Pμ(T, f) − δ

}
has positive μ-measure for all δ > 0. Thus

PB(T, f,Kδ) ≥ Pμ(T, f) − δ

by (2) of Theorem A. Since Kδ ⊂ K for all δ > 0, we have PB(T, f, K) ≥ Pμ(T, f). Hence,

PB(T, f,K) ≥ sup
{
Pμ(T, f) : μ ∈ M(X), μ(K) = 1

}
.

We next show that

PB(T, f,K) ≤ sup
{
Pμ(T, f) : μ ∈ M(X), μ(K) = 1

}
. (3.5)

We can assume that PB(T, f, K) �= −∞, otherwise there is nothing to prove. By Proposition 3.2 we have 
PB(T, f, K) = PW (T, f, K). Fix a small number β > 0. Let s = PB(T, f, K) − β. Since

lim
ε→0

lim inf
n→∞

1
n

[
fn(x) − sup

y∈Bn(x,ε)
fn(y)

]
= 0

for all x ∈ X, we have that

lim inf
n→∞

1
n

[
fn(x) − sup

y∈Bn(x,ε)
fn(y)

]
> −β, ∀x ∈ X

for all sufficiently small ε > 0. Take such an ε > 0 and an N ∈ N such that c := W (K, f, s, N, ε) > 0. By 
Lemma 3.3, there exists μ ∈ M(X) with μ(K) = 1 such that

μ
(
Bn(x, ε)

)
≤ 1

c
exp

[
−ns + sup

y∈Bn(x,ε)
fn(y)

]

for any x ∈ X and n ≥ N . Therefore

Pμ(T, f, x) ≥ Pμ(T, f, x, ε) ≥ s + lim inf
n→∞

1
n

[
fn(x) − sup

y∈Bn(x,ε)
fn(y)

]
≥ PB(T, f,K) − 2β

for all x ∈ X. And hence

Pμ(T, f) =
∫

Pμ(T, f, x) dμ ≥ PB(T, f,K) − 2β.

Consequently, (3.5) immediately follows. �
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Next we turn to prove the second statement in Theorem B. We will first prove this result in the case of 
that X is zero-dimensional, and then prove it in general. The proof of the following useful lemma use the 
same construction as Feng–Huang’s method (cf. [13, Proposition 3.7]), so we omit the detailed proof.

Lemma 3.4. Assume that U is a closed-open partition of X. Let N ∈ N and f ∈ C(X). Then

(i) If Ei+1 ⊇ Ei and 
⋃

i Ei = E, then Ms
N (U , f, E) = limi→∞ Ms

N (U , f, Ei);
(ii) Assume Z ⊂ X is analytic. Then Ms

N (U , f, Z) = sup{Ms
N (U , f, K) : K ⊂ Z, K is compact}.

Theorem 3.5. Assume that X is zero-dimensional, i.e., for any δ > 0, X has a closed-open partition with 
diameter less than δ. Then for any analytic set Z ⊆ X,

PB(T, f, Z) = sup
{
PB(T, f,K) : K ⊆ Z,K is compact

}
.

Proof. Let Z be an analytic subset of X with PB(T, f, Z) �= −∞, otherwise there is nothing to prove. 
Let s < PB(T, f, Z). Since PB(T, f, Z) = supU PB(T, f, U , Z) = lim|U|→0 PB(T, f, U , Z), there exists a 
closed-open partition U so that PB(T, U , f, Z) > s and thus Ms(U , f, Z) = ∞. Hence Ms

N (U , f, Z) > 0 for 
some N ∈ N. By Lemma 3.4, we can find a compact set K ⊆ Z such that Ms

N (U , f, K) > 0. This implies 
PB(T, f, K) ≥ PB(T, U , f, K) ≥ s. This is the result that we need. �
Proposition 3.6. Let (X, T ) be a TDS with htop(T ) < ∞ and f ∈ C(X), then there exists a factor π :
(Y, S) → (X, T ) such that (Y, S) is zero-dimensional and

sup
x∈X

P
(
S, 0, π−1(x)

)
= 0.

Proof. Assume that (X, T ) is a TDS with htop(T ) < ∞. We obtained the result immediately by Lemma 3.13 
in [13]. �
Proposition 3.7. If π : (Y, S) → (X, T ) is a factor map and f is a continuous function on X, then for each 
subset E ⊂ Y we have

PB

(
T, f, π(E)

)
≤ PB(S, f ◦ π,E) ≤ PB

(
T, f, π(E)

)
+ sup

x∈X
P
(
S, 0, π−1(x)

)
.

Proof. See [20, Theorem 2.1(ii)] for the proof of the second inequality. It is left to prove the first inequality. 
Fix ε > 0. By the uniform continuity of the map π, there exists δ > 0 such that

d(x, y) < δ =⇒ d
(
π(x), π(y)

)
< ε.

Fix a positive integer N , consider a cover of E with Bowen balls {Bni
(xi, δ)}, where ni ≥ N for each i. Then 

it is easy to see that {Bni
(π(xi), ε)} is a cover of π(E), so we have M(π(E), f, s, N, ε) ≤ M(E, f ◦π, s, N, δ). 

And this implies that

M
(
π(E), f, s, ε

)
≤ M(E, f ◦ π, s, δ).

Hence, PB(T, f, π(E), ε) ≤ PB(S, f ◦ π, E, δ). Since ε → 0 implies δ → 0, letting ε → 0 we have

PB

(
T, f, π(E)

)
≤ PB(S, f ◦ π,E).

This completes the proof of the proposition. �
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Proposition 3.8. Let (X, T ) be a TDS with htop(T ) < ∞, then there exists a factor π : (Y, S) → (X, T ) such 
that (Y, S) is zero-dimensional and

PB

(
T, f, π(E)

)
= PB(S, f ◦ π,E), ∀E ⊆ Y.

Proof. It is the direct combination of Proposition 3.6 and Proposition 3.7. �
Now we turn to prove the second result in Theorem B.

Proof of Theorem B(2). By Proposition 3.8, there exists a factor map π : (Y, S) → (X, T ) such that (Y, S)
is zero-dimensional and PB(T, f, π(E)) = PB(S, f ◦ π, E) for any f ∈ C(X) and E ⊆ Y .

Let Z be an analytic subset of X. Then π−1(Z) is also an analytic subset of Y . Using Proposition 3.5, 
we have

PB(T, f, Z) = PB

(
S, f ◦ π, π−1(Z)

)
= sup

{
PB(S, f ◦ π,E) : E ⊆ π−1(Z), E is compact

}
= sup

{
PB

(
T, f, π(E)

)
: E ⊆ π−1(Z), E is compact

}
≤ sup

{
PB(T, f,K) : K ⊆ Z,K is compact

}
By Proposition 2.1, the reverse inequality is trivial. Hence,

PB(T, f, Z) = sup
{
PB(T, f,K) : K ⊆ Z,K is compact

}
. �
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