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Let T be the singular integral operator with variable kernel defined by

To f(x) :p-V-/wf(y)dy,

R

y|”

where Q(z, y) is homogeneous of degree zero in the second variable y, and
fswl Q(z, 2’)do(z’) = 0 for any = € R™. In this paper, the authors prove that if
Q€ L°(R™) x LI(S™~1) for some q > 2(n — 1)/n, then the commutator generated
by a CMO(R™) function and Tq, and the associated lacunary maximal operator,
are compact on L?(R™). The associated continuous maximal commutator is also
considered.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

We will work on R™, n > 2. Let Q(z, z) be a function on R™ x R™, which is homogeneous of degree
zero with respect to the variable z. Throughout this paper, for such a function Q(x, z), we assume that {2

satisfies the vanishing condition that
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for any 2 € R™, here and in what follows, S™~! denotes the unit sphere in R", and for z € R", 2’ = z/|z|.
For a fixed ¢ € [1, o], we say that Q(z, 2/) € L=°(R") x LI(S"~1), if

1/q
19 Loo (R x La(sn-1) = suﬂg ( / 1Q(z, z’)|qda(z’)) < o0.
reR™
S’n—l

The singular integral operator with variable kernel, associated with €, is defined by

Q(ZE, T — y)
|z —y|"

Tof(z) = p.v. / F@)dy
RTL

initially for f € S(R™). These operators were introduced by Calderén and Zygmund in their celebrated
works [5,6], and are relevant in second order linear elliptic equations with variable coefficients. Calderén
and Zygmund [5,6] proved that if Q € L®°(R") x L4(S"~ 1) for some q > 2(n — 1)/n, then Ty is bounded
on L*(R") and the condition ¢ > 2(n — 1)/n is optimal in the sense that the L?*(R") boundedness of T
may fail if ¢ < 2(n — 1)/n. Moreover, Calderén and Zygmund [7] showed that T is bounded on LP(R™) for
p € (2, 00)if @ € L=®(R") x LU(S"™) with £ < 2227 + (1 - 2).

The maximal singular integral operator associated with T, is given by

T =sw| [ I gay).
e>0 |£C - y|
lo—y|=>e

This operator plays an important role in studying the almost everywhere convergence of the singular integral.
Aguilera and Harboure [1] proved that if Q € L>°(R™) x L4(S™" 1) for some ¢ > 4(n — 1)/(2n — 1), then
T¢ is bounded on L?(R™). Cowling and Mauceri [15], Christ, Duoandikoetxea and Rubio de Francia [13],
proved that if Q € L>°(R") x LI(S™~!) for some ¢ > 2(n — 1)/n, then T§ is bounded on L?(R™).

Now let b € BMO(R"™), the space of functions of bounded mean oscillation which was introduced by John
and Nirenberg. The commutator generated by b and T is defined by

Tauf(z) =b(@)Ta f(x) — To(bf)(x), (1.2)
initially for f € S(R™). We define the maximal operator T¢, ;, corresponding to Tq, p, by

Q(IE, xr— y)
|z —y|™

T3 o f(z) = sup / (b(z) — b(y))

e>0
lz—y|>€

f(y)dy|. (1.3)

Chiarenza et al. [12] proved that if Q € L°(R") x C°°(S™~!), then Tq,; is bounded on L?(R™) with bound
C||b[emo(rn)- Di Fazio and Ragusa [17] considered the boundedness of Tq,;, on Morrey spaces. By subtle
Fourier transform estimates and Littlewood—Paley theory, Chen and Ding [8] proved that € L>®(R") x
L1(S"~1) for some ¢ > 2(n—1)/n is sufficient for Tq,, to be bounded on L*(R™) with bound C'|b||gmo®n)-
Furthermore, Chen, Ding and Li [9] showed that Q € L>®(R") x LI(S"~!) for some ¢ > 2(n — 1)/n also
implies that T¢; 4, is bounded on L?(R™) with bound C|lbllBmo®n)-

Uchiyama [20] considered the compactness of the commutator of singular integral operators. Let
CMO(R™) be the closure of C§°(R™) in the BMO(R™) topology, which coincides with VMO(R™), the space
of functions of vanishing mean oscillation introduced by Coifman and Weiss in [14], see also [4]. Uchiyama
proved that if S is a Calderén-Zygmund operator, and b € BMO(R™), then [b, S], the commutator of .S and
b, as in (1.2), is a compact operator on LP(R™) (p € (1, 00)) if and only if b € CMO(R™). This shows that
for CMO(R™) functions b, the properties of [b, S] maybe better than that of the operator S. Since then,
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many authors have considered the compactness of commutators of classical operators on various function
spaces, among them, we mention the papers [10,2,18,19,3] and the references therein.

The purpose of this paper is to consider the compactness on L?(R") for Tq,» and the associated maximal
operators. To formulate our main result, we first recall the definition of compact operator.

Definition 1.1. Let X', ) be two Banach spaces and T be a bounded operator from X to ). Suppose that
for each bounded set G C X, TG = {Tx : z € G} is a strongly pre-compact set in ), then T is called a
compact operator from X to ).

Our first result can be stated as follows.

Theorem 1.2. Let Q(x, 2') satisfy (1.1) and Q € L>®(R™) x L1(S"~ ) for some q¢ > 2(n — 1)/n. Then for
b € CMO(R"™), the operator T and the lacunary mazimal operator 55 defined by

Q((E, T — y)
|z —y|™

Ty, f(z) = sup / (b() — b(y))

UEZ

f(y)dy
|o—y|>2v

are compact on L*(R™).

We are very interested in the compactness on L?(R"™) for the maximal operator T, 6. defined by (1.3).
Although we do not know if T4, 1s compact on L?(R"), we can prove that, in some sense, Tf*h , enjoys
the compactness on L?(R"™). As usual, for {fx} C LP(R") and f € LP(R"), fx — f means that for any

ge LV (R™) (p' =p/(p—1)),

lim | g(z)(fr(z) — f(z))dz = 0.

k—o0
RTL

Theorem 1.3. Let Q(z, 2') satisfy (1.1) and Q € L®(R") x LI(S"~1) for some ¢ > 2(n — 1)/n. Let b €
CMO(R™) and T¢; ,, be the operator defined by (1.3). Then for { fi} C L*(R™) and f € L*(R"),

[fe = f1 = 0= 1T&, o fx = To, o fll 2@y — 0.

Remark 1.4. In LP(R™), it is obvious that

Ifr = f| = 0= fr = f.

However, fp — f does not imply [fx — f| — 0. For example, let g(x) = x[,1(z) and g, (z) =
exp(2mmix)g(z). It is easy to verify that {g,, }mez is an orthonormal system of L?(R), and so in L?(R),
gm — 0 (Jm| = o0), but [gm| = x|, 1) 7 0. This shows that the statement of Theorem 1.3 is strictly weaker
than the compactness of T*,.

Remark 1.5. To prove our theorems, we will invoke the idea of approximating the operator T and the
corresponding lacunary maximal operator, by integral operators whose kernels enjoy appropriate regularity.
It should be pointed out that this idea can be dated back to the paper of Watson [21], and was used in [11]
to prove the compactness of the commutator of rough homogeneous singular integral operators on LP(R™).
However, the argument for the maximal commutator of singular integral operators with variable kernels is
more complicated.
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We make some conventions. In what follows, C always denotes a positive constant that is independent
of the main parameters involved but whose value may differ from line to line. We use the symbol A < B to
denote that there exists a positive constant C' such that A < CB. Also, we use the notation A ~ B to denote
that there exist two positive constant C, and Cy such that C1A < B < CyA. For a set E C R™, xg denotes
its characteristic function. For p € [1, oc], we use p’ to denote the dual exponent of p, namely, p’ = p/(p—1).
For suitable function f, ]? denotes the Fourier transform of f. Let M be the Hardy-Littlewood maximal
operator. For r € (0, o), we use M, to denote the operator M, f(x) = (M(|f|r)(a:))1/r.

2. Approximation

This section is to devoted to some approximations which will be used in the proof of theorems.
Let m € N, H,, be the space of surface spherical harmonic of degree m on S"~!, D,,, be the dimension
of H,,. Denote by {Y,,, j}j-D:””l the normalized complete system in #,,. As it was pointed out in [7], D,, ~ m?*

with A = (n —2)/2, and for fixed m € N and ¢ € S~ 1,

D Y s (€ mm® (2.1)

For a fixed m, j € Nwith 1 <j < D,,, set K,,, ;(y) = Ym,j(/y’) and

T, s u(Y) = K, j ()X {201 <[z <20} (¥)-

For each fixed m, j € Nwith 1 <j < D,,, set

Ym,' r—y '
T, j f(2) :p~V-/Ln))f(y)dy
|z =yl
RTL

It was proved in [8, Lemma 2.2] that for 8 € (0, 1) and u € Z,

|G u(€)] S m ™ A2 min{]24¢], [24¢)772} Vi, 5(€1)] (2.2)
and

[T sul©)] S M7 Yo 5(€1)]. (23)

Note that for each m, j € N with 1 < j < D,, and each £ € R"\{0},

D | Omial&)| SmT AR,
UEL

It follows from the Plancherel theorem that

[T, i fllL2@n S mflfH’B/szHLZ(Rn).

Let ¢ € C§°(R™) be a nonnegative function such that f]R” ¢(x)dz = 1, supp¢ C {z : |z| < 1/4}. For
1 €7Z,let ¢(y) =27 ™p(27y). It is easy to verify that for ¢ € R” and 0 < p < 1,

61(€)] = 162 S 1, [8i(&) — 1| S min{1, [2'¢]°}. (2.4)
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For a positive integer [, let

m il Zam,],u*¢u l( ) (25)
u€e”Z
and Ty, ;.1 be the operator given by
Tt (@) = p.v. [ Ko s =) f(0)d. (2.6)
R’n

Lemma 2.1. Let m, l € N, 1 < j < Dy, and K, j;; be the function defined by (2.5). Then
(i) for any R > 0, y € R™ with |y| < R/4,

Z / |0m7j;u*¢u—l(x*y)*Um,j;u*d)u_l(sc”dx

ueZ\wDR

< minfl, 2'|y|/R}; (2.7)

(ii) the operator T, ;.1 defined by (2.6), and its lacunary mazimal operator defined by

TT)::L —Sup’Z/Umju*¢u l(x_ )f(y)dy

VEZ

are bounded on L?(R™) with bound Cm~1=*8/2;
(iii) the mazimal singular integral operator T;Lj;l defined by

T3, 5.l (2) = sup /Kmﬂwf W/ (y)dy
|z—y|>e€

is bounded on LP(R™) with bound C.

Proof. Observe that ||V, jllzi(sn-1) S [Yim, jll2(sn-1) S 1, SUPP Oy, jiu ¥ Put C {2 2472 < |z < 2472}
and

[$u—i(- =) = Su—iC)[| 11 gy S min{L, 27Jyl}.
It follows that

Z / ’Um,j;u*¢u—l(x_y) _O'm,j;u*¢u—l(a:)|daj
UE€lok—1 R<|z|<2* R

= Z lom, j; ull Lr@m) [ @u—1(- = ¥) — du—1() || L1 (n)

u: 22k R

S; Z ||¢u—l( - y) - ¢u—l(')||L1(Rn)

u:2v 2k R
< min{1, 2" *|y|/R}.

The conclusion (i) now follows directly.
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We now prove (ii). For each £ € R™\{0}, we have by the Fourier transform estimates (2.2) and (2.4) that

Y G 5k Okt (O S D |G 51 (©)] S m A, (€],

keZ kEZ
This, via (2.1) and the Plancherel theorem, tells us that

< - 1-A+B/2

[T, js 1f 1 L2 ) £l 22 -

To estimate || T, ;. [/ L2(rn)—£2(rn), We employ the idea from [16]. Let ¢ € C§°(R™) such that [|¢)|| e @n) = 1,
and

supp® C {z € R": |z| <2}, ¢(x)=1if |z| < 1.

For each integer v, let U, € S(R") such that W, (&) = 1(2°€). Write

Zam,j;u *¢u—l * f(l‘)

U=v

v—1

=, * (Tm’j;lf)(x)—\llv*( Z am,j;u*q[)u,l*f)(x)

U=—00

+ Z(‘S = Wy) % O, jsu * u—t * f(2)
= IUm,j;lf(‘r) + an,j; f (@) + Iva,j; f (),
with § the Dirac distribution. For each fixed v € Z, it is obvious that

L, i f @) S M (T, jiif) ().

By the boundedness of operators M, T}, ; and T, ;.; on L*(R"),

I vez 15 saf 5oy S 1 Tnisitf = T any S m7> 2N 2 -

For the term sup, ¢y [IL, ;.. f(2)|, write

0o v—1 /
516112)|11217j;lf(w)| ,S( Z ‘\Ilv* Z amyj;u*qsu_l*f(x)‘?)l 2

V=—00 U=—00

For all £ € R™"\{0}, it follows from (2.2) and (2.4) that

[w2¢) > G ()32 79)|

v—1
SmTITIRpE] S 2 Yo, 5(€)

SmTIAE2 1 (20€) |12°€] Yo, 5 (€1)].
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We thus have by the Plancherel theorem that

00 v—1
Z H\Ilv* Z J7n,j;u*¢u—l*f’2

L2(Rn)

-y [ S ameseo[ el

v=—oCp, U=—00

DW‘L
§m7272A+B/Z|Ym] )2 Z (2°€)|?|2¢ |2 |f |2d§.
Re J=1 =

The fact that || <1 and supp+ C {z : |z| < 2} now tell us that for each £ € R™,

lew“ P W P

V=—00 vEL: |2v¢[<2

Therefore, using (2.1),
Isup [1L5, ;. ey S 7222 1 g

As for the term sup,ey |1}, 5., f|, write

sup’IHmJlf <Zsup\ (0 = Uy) % O, js uth * Puti—t * f()|
k=0"

52(2‘6 Wy k) * Om, jiu * Gu—i * f(2 )‘)

k=0 u€Z

Invoking the Fourier transform estimates (2.2) and (2.3), we deduce that

[P |

=y L2(Rn)
=Y [-ve el @ PIFe P
uEZRn
S/ —2—-2)\+3 Z‘l 2u k | |2u£| ﬁ’Ym J )’2d§

R UEZ

Sm2 2 [y, (€ PIFE) P
Rn
since for each £ € R™\{0},
D e A T P I N P T B
U=—00 u: |2u €| >2k

This, together with (2.1), implies that

SmTE PR £ e

m, j; lf|||L2 (Rm) ~

1117, .
Isup| )
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The estimates for sup, ez I3, ;. f|, sup,ez [T, ;. f| and sup,cz [II}, 5, f| give the desired L?(R™) bound
for T %

m,j;l°
It remains to prove conclusion (iii). As in [16], we can verify that

T, i () T30 50 f () + M, i M f ().

Here and in what follows, M, ; is the operator defined by
m jf - Sup/|0m g u x_ )f(y)|dy

By the fact that ||Y,, j[|z2(s»-1) = 1 and method of rotation of Calderén-Zygmund, we know that M, ;
is bounded on LP(R") with bound independent of m and j. This via conclusion (ii) tells us that 77, ; is
bounded on L?(R™) with bound independent of m and j. O

It was pointed out in [7] that

V=SS g (1) Vo s ().

m>0j=1
The vanishing moment (1.1) implies that ag ; = 0 for any 1 < j < D,,. Let

(ZWMJ )1/27 dm, j(x) = M

am ()

It then follows that .77 @2, - =1, and

Jj=1"m.j
D’VTL
Qw, 2) =D am(@) D di ()Y (7).
m>1 j=1
Define the operator T ; by
D’VVL
Tof(@) =Y am(®) Y dmj(2)Tm, j.1f (@), (2.8)

m>1 j=1

with T,,, ;.1 the operator defined by (2.6).
The following result plays an important role in the proof of our theorems.

Theorem 2.2. Let 8 € (0, 1), Q(x, 2') satisfy (1.1) and Q € L (R™) x LI(S™~1) for some q > 2(n —1)/n,
Tq, 1 be the operator defined by (2.8). Then there exist constants y1, vz, 3 € (0, 1), such that

||Tgf — TQ, lf”LZ(Rn) 5 27Fyll||fHL2(]R”)a (29)

SmTEP2TR £ 7 gy (2.10)

Sup‘zvm],lv fH

UEZ LZ(]RTL

and
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m

sup Vi st S| S m P (2.11)

UE L2 Rn

where and in the following, for v € Z and l € N, Vi, j 1.4 15 defined by

Vin, g 1;0(Y) = Om, g0 % Go—t(y) = Tm, ji o (Y)-

Proof. Note that

D

Taof(x) = Z am () de,j(x)Tm’jf(az).

m>1 j=1

A straightforward computation involving the Holder inequality, leads to that

Do,
Taf(z) = Taif(@)| < Y lam (@)Y |dm (@) T, f (@) = T g f ()]
j=1

m>1

Dm

< {1a@) 3o o [Tt 0) ~ Tt}

m=1

=

<.

with a € (0, 1) and I, (z) = 3.7, a2 (z)m~*. We know from [7, p. 230] that for z € R",

m=1"m

1/2
{Ta(2)} / S 1| oo (mryx La(sn-1) (2.12)

provided that ¢ > 2(n — 1)/n and « € (0, 1) sufficiently close to 1. If we can prove that for any m, [ € N,

Z ||Tm,jf - Tm,j;lin?(R") S m_2+ﬁ2_71l”f||i2(]1§")7 (2.13)

Jj=1

we then deduce the inequality (2.9) by taking 5 € (0, 1) in (2.13) small enough such that 5+ a < 1.
The proof of (2.13) is fairly standard. In fact, for each fixed £ € R™\{0}, we have by the estimates (2.2)
that

S Fm @1 = 6@ e S mT RN (2ug]|Y,, 5(€)

u€e”Z w: [24E|<W
FmT A2 ST g Rl ()]
u: [24€|>W

<2l MR, ()

b

if we choose W = 2718/(4+8) and ~, = B/(4+ B). This, via the Plancherel theorem, leads to that

Trou—l 2 a2
Tt = T F ey = [ | @1 = 216 1)
Rn UEZ
S 27 m T £ 12

The inequality (2.9) now follows from the last inequality and (2.1).
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We now turn our attention to the estimate (2.10). Let ¢ € C§°(R™), ¥,, € S(R™) with v € Z be the same
as in the proof of Lemma 2.1. Write

va,j,l;v*f(x):\Iju*(Tm,j;lf Tm ]f) ( Z Vm J,lv*f)( )

V=—00

_,_Z((S—\I/u)*vm,j,l;u*f(ﬂc)

Vv=Uu

=T b f@) T2 f @) + T f (=),

with § the Dirac distribution. We deduce from (2.9) that

D D,
Dl 755 oy S D IM (Tt = Tons i) 2y
j=1 " j=1

SmTHP2T £1172 -

~

For all £ € R™\{0}, it follows from (2.2) and (2.4) that

u—1
| S a©@eo - D Dl 3 (]
v=—00 v=—00

S mTIMPR 2|, (€],

We thus have by the Plancherel theorem that

D,

Z |sup |Jm,,l lf|HiQ(Rn)

<ZZH@ ) Z -y

Jj=luezZ

L2 (R"'

—ZZ/) Z T (&) (6(2°71€) —1]{¢2“5 BIKS

Jj=1 uGZRn V=—00

D, e}
ol ol u we12] B en |2
< 9222 / S Vo @F S [p@uePuel|fo)) de
R™ j=1 U=—00
S 2721W7272/\+B\|f||%2(w)-

Therefore, using (2.1),
o 2
D 5w 355 i gy S 72027 L2y

3 .
For the term su Jw write
UEL s )




J. Chen et al. / J. Math. Anal. Appl. 431 (2015) 597-621 607

sup [T % f(@)] < sup [(6 = o) * Vin 1 ugk * f(2)]
u€eZ k=0 ¥ Z

2\1/2
<Z (Z) = \pu_k)*vm,j,l;u*f(m)‘ )
k=0 wucZ
Invoking the Fourier transform estimates (2.2) and (2.3), we deduce that

O R T C IO |

L2(R")

=Y [-ve ol |mm@ @e o - )| Ifere
uEZgn

< 2Bk 29152 / Y3 (€17 () e,

R

since by (2.4), for each £ € R™\{0},

p(2071e) — 1] < |2t P/

and so
—~ 2
S - v P la @) (62t — 1)
UuEZ
D N A P e e

u: [2u€]>2k

This, together with (2.1), implies that
2 -2 —-18/2 2
§ : lsup 19558 2y S > P27 1 -

Combining the estimates for the terms sup,, 5, \JZ;,lj; 1 supyer ‘Jru,{,Qj; f|and sup,,c; |J77jl’73j; f yields (2.10).
It remains to prove (2.11). By (2.4), for each & € R™\{0},

—_— 2 _9_ u
S Vajuw(© Sm 22N 2Py, (6
VEZL w:|2vE|<W

+m—2—2>\+[3 Z |2uf|_ﬁ|2u_lf|ﬂ/2|ym,j(f/)|2
w24 2W

S 27l Y, (€D,

This via the Plancherel theorem yields

\ A

2 <o 2\ 2
L2(R") 22: (ZW gt * ()] )

S m P2 f] Lo -

~

Dy,
5% st W » 70
j=1 VEZ

L2 (R”)

This completes the proof of Theorem 2.2. O
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3. Proof of theorems

Let 1 < p < oo, LP(1°°, R™) be the space of sequences of functions defined by

LP(1%°, R™) = {{fu}rez : I{fa}llrae, rmy < o0},

with

p(]oo ny — su N
1€, my = |suplfel [,

This vector linear space (with usual addition and scalar multiplication) is a Banach space.
Let E be a compact set in R, and

C(%®, E) = {f = {futvez : fx € C(E) for allk € Z}.

It is easy to see that C'(I*°, E) with the distance
d(f. §) = sup || f(x) = G(w)]~
z€E

is a metric space. Here

—

1f(2) = §(@)lliee = sup | fi(z) — gr(2)].
kez
Lemma 3.1. Let 1 < p < oo, G C LP(I*°, R™). Suppose that G satisfies the following four conditions:

(a) G is bounded, that is, there exists a constant C such that for all f = {fx}rez € G, ||JFHLp(loo’Rn) <C;
(b) for each fized € > 0, there exists a constant A > 0, such that for all {fx}rez € G,

| 216112)|fk‘x{\‘|>A}(')HLP(R") <€

(c) for each fized € > 0, there exists a constant o > 0, such that for all t € R™ with |t| < o and f=
{fetrez €G,

— —

1£(-+1) = FOllzrae, ) <6

(d) for each fized € > 0, there exists N € N such that for all {fx}rez € G,

sup sup | fi ()| <,
zER™ k>N

and
sup ||fx — f-Nlzr@n) <€
k<—N

Then G is strongly pre-compact in LP(1°°, R™).

Proof. Since LP(I°°, R™) is a Banach space, it suffices to prove that G is a totally bounded set in L?({°>°, R™),
namely, for each € > 0, G has a finite e-net. To this aim, we employ the argument used in the proof of the
Fréchet-Kolmogorov theorem (see [22, p. 275]) with some suitable modifications.
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Let T} be the translation operator defined by

—

Ti(f)(x) = fla + 1)

for f = {fr}rez. The assumption (c) tells us that
iy 0| T2(F) = 1l ooy = 0 (3-1)

uniformly in f € G. For a > 0 and f = {fr}trez € LP(1°°, R™), let

—

M (f)(x) = {Mafr}rez,
with

1

Mafk(m):m / fr(z +y)dy.

lyl<a

An application of the Minkowski inequality gives us that

—

IMa(f) = fllrgee, wey < |S}1<P ITi(f) = fllor o, mny-
ti<a

For € > 0, we choose ag > 0 such that
2= €
sup [Mao (f) = fllLe e, mry < 1 (3.2)
feg

If we can prove that M, G = {Mu,(f) : f € G} has a finite ¢/3-net {My, (hD), ..., My, (h))} with
R ... B e L1, R™), we then know {f, ..., f)} is an e-net of G.

We first prove that for each a, A, > 0, there exist i_i(l), ce hG) € LP(1°°, R™), such that
{M,(hD), ..., M (RD)} is an e-net of {M,(f): f € G} in C(1°°, B(0, A)), and for each 1 < i < j,

1Mo (R (2) = D (@) |12 < IMa(F1 (@) = £ (@) 1o

for some f(9) € G. As in [22, p. 276], for f= {fr} € LP(I*°, R™), we have by the Holder inequality that

sup sup | Mo fi(@)] S 7| fllLoge, ), (3.3)
kEZ xzeR™
and
sup }Mafk(xl) - Mafk(x2)| S ain/pr(' + 21— 32) — f(')HLp(loo’Rn)' (3.4)

keZ

Also, we can verify that for each N € N and fe Lr(I>~, R™),

sup sup |Mq fr(z)] < sup sup |fi(y)l, (3.5)
zER" k>N yER™ k>N
and
sup sup ‘Mafk(x) - Maf_N(x)’ < a_"/prk — foNllzr@ny- (3.6)

zER™ k<—N



610 J. Chen et al. / J. Math. Anal. Appl. 431 (2015) 597-621

For fixed e > 0, the assumption (c) states that there exists a constant § > 0 such that for all ¢ € R™ with
t| <6 and f ={fr}rez €,

— —

1FC+8) = FO)l o, mry < a™/Pe/6;
Thus by (3.4), for all fe G and z1, 2 € B(0, A) with |21 — z2| < 0,

sup | M, fr(z1) — M, fr(2z2)] < €/6. (3.7)
kEZ

On the other hand, by (3.5), (3.6) and the assumption (d), we can choose N € N such that for all f € G

sup sup |Mq fi(x)] <e/3,

(3.8)
TERM k>N
and
sup sup |Mgfi(x) — Maf-n(z)] < /3. (3.9)
TER™ k<—N
Now let {z1, .

.., Tm} be a d-net of B(0, A) and

In = Hfet-~n<h<n : {frtrez € G}
It follows from assumption (a) and (3.3) that

H= {(Ma(f)($1), ceey Ma(f)(xm» : ]Fe gN}

is a bounded set in (R™)™. We choose {f,gl)}kez, e {flgj)}kez € G, such that

{{Mafzil) (1)} -N<k<Ny -y {Maf;ij)(l”m)}—NSng}

is the £/6-net of H. For 1 <i < j, set

y JN—1° J N

ﬁ(i):{...7f9v»~--,f£i1)va fSiZ)VJer"' N N 0""’0""}'

We claim that {Ma(i_i(l)), ey

Ma(l_i(j))} is the e-net of {M,(f) : f € G} in C(1°°, B(0, A)). In fact, for
fixed z € B(0, A) and f = {fi}rez € G, we take u with 1 < u < m such that |z — z,| < 8, and take i with
1 <1 < g, such that

Sup sup |Mafk<xv) - Mafki)(xv” <
—N<k<N 1<v<m

€
—. 3.10
- (310)
It then follows from (3.7) and (3.10) that,

sup [ Mo fiu(z) — Mo f (2)] <

sup ‘Mafk(xu) - Maflgl)(‘ru”
“N<k<N _N<k<N
+ sup  |Mafi(wu) — Mo fr(2)]
_N<k<N

+ sup ‘Maflgi) (Ty) — Mafki)(x)|
_N<k<N

<e/2. (3.11)
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We also deduce from (3.9) and (3.10) that

sup [Mafi(z) - Mo f ()| < sup |Mafi(x) — Myfn()]
k<— k<—N

+ | Maf-n(z) = MofU4 ()]
<e. (3.12)

The inequalities (3.11), (3.12), together with (3.8), lead to that
IMa(F)(@) = Ma(B)(@)]] o < 2,

and E(l), ceey hG) are our desired functions.
We are now ready to prove that {M,,f : f € G} has a finite ¢/3-net in LP(I°, R™). By assumption (b),
we can choose A large enough such that for all f = {fi}rez € G,

€

Hsup\fk|X{| >3 (- HLP ®n) < 24

Let { M, (hV),..., My, (R9D)} be an e/(12|B(0, A)['/P)-net of {M,(f) : f € G} in C(1°°, B(0, A)), with
R = {h;(:)}kez and for each 1 < < j, there exists §* € G such that

[Mao(RD) = B9 || oo, mny < [ Magd® — Dl oo, me)-

By (3.2), it is obvious that for each i with 1 <i < j,

My (BD) = Bl o1,y < =5

For each f = {fr}rez € G, we can choose i with 1 < ¢ < j such that

[ Mao(f) = Ma, (R Moo, 7oy

0 (rae)
< (] supMayfile) = Mohi (@) Pdz)
kEZ

|z|<A

+ ( / ilélz) ‘fk(x) — h}(j)(x)‘pdx)l/p

|z|>A
, 1/
+( / sup‘h —Maohfj)(x)‘pda:> :
kEZ
|z|>A

+ [[Mao (f) = fllorae, mey < €/3.

Therefore, { M,, (hM), ..., Mgy ( hf(J) )} is the €/3-net of {M,,(f): feG}in LP(1°°, R™). This completes

the proof of Lemma 3.1. O



612 J. Chen et al. / J. Math. Anal. Appl. 431 (2015) 597-621

Proof of Theorem 1.2. We only consider the compactness of Ts*z,*b- The argument for the commutator Tq,
is similar and fairly simpler than that of the operator T, éfb, and will be omitted. For m, 7,1 € N and
1 <7< Dy, set

oo

T, i, bf(2) = Z/ (b(a:) - b(y))amd;u * Pu—1(r — y) f(y)dy.

U=Vpn
We first claim that if b € C§°(R™) with suppb C B(0, R) for some R > 0, then
(i) for A > 4R,

R
H SU.p| m, j; l, bf’X{|-\>A}HL2(Rn) 5 ( )n/4||b||L°° Rn)Hf”LQ(R")? (313>

(ii) for each I, m, j € Nwith 1 < j < D,,, t € R™ with |¢| < 1,
||Sllp| Jlbf() m]lbf +t|HL2(]R"
S (1Bl poo gy + VBl oo ) )21 21 F 1| 2 e (3.14)

(iii) for each N, 1, m, j € Nwith 1 <j < D,,,

sup sup\ v nd @) S 27N 2] o ey | f | 22 () (3.15)
z€ER™ v >N

and

S 27V oo oy 1 f 1| 22 em) (3.16)

sup H T, jsunf = m],lbf’

v<—N L2(R™)

To prove (3.13), set Kp, . W) =30 Om, g u * Pu—i(y). For each v € Z, by the Holder inequality, we

have that for x € R™ with |:v| > 4R,

[ 18 e wsel < { [ 1K G-l
ly|<R ly|<R
x{ / |K:;l}j;l(:(:—y)|2dy}1/4R”/4.
lyl<R

Note that for z € R™ with |z| > 4R,

1/2
{/V%Jl |dy} SO lom s kllzz@ellor—ill @
lyl<R kEZ: 2k x| x|
< |72

Therefore, for |z| > 4R,

{sup (T3 oS @)} S R 2al /2 / sup K3, .1 = 0)lL£0) Py
ly|[<R
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On the other hand, since

dx
Z ‘Um,j;l * ¢k_l(x)|\x|—"/2

o[>A KEZ

Mg

(Q’UA) Z / |Jm,j;k *¢k_l($)|d$

= k€Zyu—1 AL z<2v A

SO @A7F D omgklle @ okl @

v=1 kEZ:2k~2v A
< A—n/Q,
we thus get when A > 4R,
2 R\n/2
[ (s ITz st @) e S ()10l oy 1

|z|>A

We turn our attention to the estimate (3.14). For each fixed ¢t € R™ with [¢| < 1, let A, = 4[¢|'/2. For
each fixed v € Z,

T2 0wl (2) = T2 50 o f (@ + 1)

Sh+0 =@l [ Kl - 0w

|z—y|>As
H [ U 060 - e+ 0) 50
lz—y|>As
H [ e = 000) - b)) 1w
lz—y|<At
H [ R = 00) - b+ 0) Sy
lz—y|<At

=Tt fa )+ 102 fa )+ 105 fa )+ I f, 1),

where

U#lvﬁl(x’ Y; t) :K;jl,j;l(m_y>_Km 73 l( +t— )

By the fact that supp oy, j; o * ¢1—, C {2972 < |z| < 2972}, a trivial computation gives us that

[ (Koo =) = Koo = )ty (5 = )| )l

|z—y|>As

v+2

S [ om0y

u:v72lm7y|>At

< sup (|Jm,j; ol ¥ Pypp * |f|)($)
VEZL
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Therefore,

[ Ko - 0wy

lz—y|>A¢
/ K, j:1(T = Y)X{|a—y|>20} (T — y)f(y)dy‘
|[z—y|>A¢
b [ [0 500 = 9) = Koo = DXty (2 = )] )y
R”L

Lo, g1 f(@) + Mo, ;M f(2).
This, together with (iii) of Lemma 2.1 and the L?(R™) boundedness of M,, ;, implies that

Hsup|I mogi 1t GO L2 gy S TINVOI oo ey (1T, 5o 1 | 2Ry + | Mo g M f || 2())

SNV Loo (mny

fllL2@ny-

The inequality (2.7) shows that

sup | K5, () = K a4 0|54, 0)

vEZL LY(R"™)

N Z H (Omgsu* Qu—i(- +1) = Om jiu * ¢u—l('))X{|-\>At}(')'

UEL

L1(Rm)

t
< 2l|
A

Therefore, by the Young inequality,
HSUP|IU mogitd (5 H|L2(Rn S 2H 2 1B]] poe ey | £ Nl 2 (R ) -
Let

K, j1(2) = |2l Y o, jiul * $ui(2).

UEZL

A trivial computation shows that

IKmjaxqizanlloey S Y. 2%omguloi@nléu—illo @ < A
uEZ:2v—2< Ay

Note that
sup 122 f (@, )] S IVBl| e @) (Kom, j:1X ()< a0}) * |£](2)-
It then follows that

| sup Lo 50 f G o gy S IVBl oo my 1f 2 oy | Ko a1 < 4t o2 ey

S IVl oo @y Al fll 22 )
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Similarly, we have that
,4
sup 151 0y © 9P+ D

Combining the estimates for sup, ¢y, |I;’r’1’kj; S, )] (k=1,2,3,4) yields (3.14).
We now verify claim (iii). Let N € N, it follows from the Young inequality that

3 / O i1 bui(@ — )| F (1) Idy

u>NRn

S llzz@ey D Nom, jiollze @ ldo—ill @)
v>N

S 27N £l L2y

This gives us (3.15) immediately. On the other hand, observe that for N € N and v < —N,

Th i @) = Tl @)

_N
< I9leeey 30 [ o= wllom, s bual = )|
u=—oop,

another application of the Young inequality gives us that

H mjlbf Tr;j,lbf'Lz(Rn

N
< |IVblle@nllfliz@ny D> 2%1om, jiullor @ léu-illzr @

U=—00

< 27N V| oo rey | £ 1| L2 (7

which gives (3.16).
We can now conclude the proof of Theorem 1.2. For v € Z, let

Q _
150w = [ (v - o) Y pa,
|z—y|>2v
and
Aq,of(z) = {14, ,f(7)}vez
Also, let
D,
ng,l,bf(x) = Z am () de,j(x)T:z,j;l,bf(x)7
m>1 Jj=1

and Ogq_;  be the operator given by

Oa,i,0f(x) ={T5, 1 vf(2)}vez

615

(3.17)
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Recall that T}, ., is bounded on L*(R™). Our claims (3.13) (3.16) and Lemma 3.1 show that for b € C3°(R™)
and [, m, j € Nwith 1 <j < D,,, the operator I'y, ;,; defined by

Lo joif(z) = {T::z,j; z,bf(l’)}vez

is compact from L?(R™) to L?(I°°, R"). Since |d,,, j(x)| < 1 and |a,,(x)] < m for € as in (2.12), the operator
I'y,, j;1 defined by

Co gt f (@) = {am(@)dm, j ()T, .1 o f () boez

is also compact from L?(R") to L?(I>°, R™). As it was shown in the proof of Theorem 2.2, for N1, No € N
with Ny > Nj, we can obtain from the conclusion (ii) in Lemma 2.1 and the Holder inequality that

Sup’ Z am dej TU7J,lbf H

vEZ

L2(R")

< (o S om0 ) 3% 0 3 e

n L2(R™)
y€ER m=N, (

2
My 35 o2t

m:N1

S 1Bl170 2y

Choosing « € (0, 1) sufficiently close to 1 and 8 € (0, 1) sufficient small such that a« + 8 < 1, we see
that { Zzzl A ven 18 a Cauchy sequence in the space of linear bounded operators from L*(R") to
L2(L%°, R™). Therefore, Oq ;. is also compact from L?(R™) to L?*(I>°, R"). On the other hand, applying
the Holder inequality twice, we can write

1©0,1,6f(x) = Mg, o f (@) ||,

D, %)
S blle ey 55 3 ()| Y e 5@ 3 Vi i1,/ )
j=1 v=u

m2>1

+SupZ|am |Z|dmg |’2ij,lvbf )’
j=1

m>1

Dm 2\ 1/2
S lell ey (0 Y (sup | ZVm s @)]))

m>1 =1 uEZ

H(Xm DS (SUP1ZVm nn@)])) "

m>1  j—1 u€Z

The conclusion (ii) in Theorem 2.2 now tells us that
100, 1,6f — AQ,beLz(looﬁRn) S 277 fll p2rn).-
Thus, for b € C°(R™), Ag , is compact from L%(R™) to L?(I°°, R™). Observe that for fi, fo € L?(R"),

17551 — Ta s fallee@ny < 1TG(f1 = f2)llzz@ny = [Aapfi — Aapfallz e mny-
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This shows that if {Aq »fk }ren is a Cauchy sequence in L?(1>°, R™), then {Téfbfk}keN is a Cauchy sequence
in L%(R™). We thus know that T4, is compact on L?(R™). Recalling that 1§y is bounded on L?(R™) with
bound C||bl[pmo(rn) (see [9]), we then know TH*, is compact on L*(R") for b € CMO(R™). O

For v € Z, let

QO _
Mauf@) = [ - s pay,
20 <o —y|<2v+1

Lemma 3.2. Let b € C§°(R™). Under the hypothesis of Theorem 1.2, the operator Aq , defined by

A v f(x) = {Mg f(2)}vez (3.18)
is compact from L*(1>°, R™) to L?(R").
Proof. For v € Z, let

Mg f@) = 3 an@) Y dns(@) [ 2) = D)0 Gumil = ) (),

m>1 7j=1

and define the operator Aq ;.5 defined by

Aq, i f(z) = {Mgz,l;bf(f)}veZ-

As the argument for Oq ; ; in the proof of Theorem 1.2, we can prove that Ag ;. is bounded from L?(R™)
to L2(1>°, R™). On the other hand, an argument involving the Holder inequality which is familiar to us,
yields

A, 0f (@) — A, i0f (@) L

< ||bH%°°(Rn)( ) m“ji: (ig \Vm,j;z,vf(w)DQ)

m>1

1/2

(S & (plisetobneo]))

m>1  j=1
D 2 1/2
Il (D me S (sup|Vin i o (FReB)@)]))
m>1 J=1 VEZL
D, 2\ 1/2
+ Hb”LOO(]Rn)( m (sup Vm’j;l,v(fImb)(x)’) ) ,
m>1 j=1 VEZL

which, via (2.11) in Theorem 2.2, show that

1Aq,0f — Aq, 162, wny < 27| Fll L2y

Therefore, Aq_p is compact from L?(I°°, R™) to L*(R"). O
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Lemma 3.3. Let p € (1, 00), b € C§°(R™). The operator Yy, defined by

Yo () = (T @)z, (3.19)
with
) — 2
L) = PEIZIE )y

2v< |z —y|<2vHt
is compact from LP(I>°, R™) to LP(R™).
Proof. For k € Z, let
To, 1 f(x) = {Xp f(2)}vez, vsk-
It is easy to verify that for b € C5°(R"),
I, 5 f (@) = Tof ()l < 22 M f(2).

Thus, it suffices to prove that for b € C§°(R™) and k € Z_, Ty, is compact from LP(I*°, R™) to LP(R"™).
Let b € C§°(R™) with suppb C B(0, R) for some R > 0. We claim that

(i) for A > 4R,

v R n/p’
Fsup [ T3 f x5 a3l o gny S ()7 100700 oy 1| o) (3.20)
vEZ
(ii) for each k € Z_, t € R™ with |t| < min{1, 2¥=2}, and each r € (1, p),

|| sup |T},’f(~)* gf('+t)|||LP(R”)

vEZ, v>k

< 2 2 [tl\ 1/

S (Bl 2o ny + IV o)) (7)™ (1l (3.21)
(iii) for each N € N,

sup sup | Yy f(x)| < 277 |b); 11l o @y (3.22)

up sup |1y J{T)| < Lee (Rm) 1 I1LP(R™)

zeR™ v >N

If these claims are true, then by Lemma 3.1, we know that Y is compact from LP({*>°, R™) to L?(R™).
For each v € Z, by the Holder inequality, we have that for x € R™ with |z| > 4R,

/

|f(y)] R/
A qQy < ey ———
|27 — y|n Yy ||fHLp(R ) |{17|n )
2v<Jr—y[<2vt, Jy|<R

since |x — y| = |z| when |y| < R and |z| > 4R. Thus, for A > 4R,

R ’
I sup Tng{\sz}HLp(Rn) S (Z)n/p 16117 o0 @y 1F 1| 2o ey -

This gives us (3.20).
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We turn our attention to the estimate (3.21). For each fixed v € Z, let

x — 2 xT) — 2
R B e [ T O
20< |zt —y|<2vH
Preo= [ (FERE - BRI )
20 <|z+t—y|<2vtt
and
) — 2
HY (o, 1) = IO .

{2v<lett—y[<2vF PA{2V <[z—y[<2v 1}
It then follows that
Ty f(z) = Yo f(z+t)| SE“f(2,t) + FU f(z,t) + H' f(, ).
It is obvious that
1B f (2, )] < 16 oo ) [V oo () M f (2 + ).
To estimate FV, we observe that 2¥ > 2|t| and 2V < |z +t — y| < 2v*HL,

I

b(z) = b(y)|*  [b(x) = bly)|?
x+t—y[ntt’

|z 4+t —y|" |z —y|"

S 1Bl 7 ey

and then obtain that when v > k,

4

[Ff(z, )] < ||bH2Loc(Rn)2—ka(x +1).

Let r € (1, p). A trivial computation shows that when v > k and [¢| < 2°72,

v 2 1 r yr
HY £ (2, 1) S 1Bl gy oy wlray)
2v<Jo—y|<2vt?

SO A

{2v<lz+t—y|<2v T }A{2v <[z —y|<2vT1}
[t[\1/r
S (2—k) ||b||2Loo(Rn)Mrf(fC)-

Combining the estimates for EV, F¥ and H" leads to (3.21).
Finally, the inequality (3.22) follows directly from the fact that for each v € Z and x € R",

X5 £ @) S Nl @m) 2P 1Bl n)-

This completes the proof of Lemma 3.3. O
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Proof of Theorem 1.3. Recall that T¢; , is bounded on L*(R™) with bound C||b|[gmon) (see [9]). Thus, it
suffices to prove that when b € C§° (R”) |fx — f| = 0 implies that

lim |74 5 fx — T8, ol 2eny = 0.
k— o0

Now let

2z, z — y)

Mo f(x) = sup 1)) dy.

vEZ | y|n

2v<|z—y|<2v+l
Uz, z—y
Mouf@) =swp| [ @) - )P ay
vEZL |l‘ - y|
2v<Jz—y|<2vt!

A trivial computation then leads to that for {f;} C L?(R") and f € L*(R"),

1
2

[T, 0e(@) = Ti S @)] < Ta% (e = H@) + (Mao(fe = @) (Malfi = (@)

Let

Oz, 2) = [, z>|—@ / 1z, ¥)|do ().
Sn—l

Obviously, ﬁ(x, z) is homogeneous of degree zero in the variable z,

Q(z, 2') € L®(R™) x LI(S"Y), / O, #)do(2') = 0,

S'n,—l
and
Mo, v fllz2®n) S 11Aq, ,(IfDlzzaee, mey + 1 To(|fD L2, RR)S
with Ag , Ty, defined by (3.18) and (3.19) respectively. Since Mg, is bounded on L?(R™) (see [9]), it follows
that

HTé,bfk - Té,bf“m(ﬂ{n) < HTS*ZTb(fk - f)||L2(R")

1/2

+ ||A§2,b(|f}€ - f|>‘|L2(lm7Rn f||2/22(R"n
1/2

101 fx = FDI oo oy 15 = £

In the proof of Theorem 1.2, we have shown that the operator A is compact from L?(R"™) to L?(I>°, R"),
thus fr, — f in L*(R™) implies that [|[A(fx — f)||r2(e, rn) — 0, and

khm 1755 (fr = F)llz2®ny = 0.
—00
On the other hand, Lemma 3.2 and Lemma 3.3, show that in L?(R"),

[f = f1 = 0= [1Ag ,(1fk = fDllz2qe, mey + 11 To (| fi = fDll 222, n) — 0.

This completes the proof of Theorem 1.3. O
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