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We prove that the covering radius of an N -point subset XN of the unit sphere Sd ⊂
Rd+1 is bounded above by a power of the worst-case error for equal weight cubature 
1
N

∑
x∈XN

f(x) ≈
∫
Sd

f dσd for functions in the Sobolev space Ws
p(Sd), where σd

denotes normalized area measure on Sd. These bounds are close to optimal when s
is close to d/p. Our study of the worst-case error along with results of Brandolini 
et al. motivate the definition of Quasi-Monte Carlo (QMC) design sequences for 
Ws

p(Sd), which have previously been introduced only in the Hilbert space setting 
p = 2. We say that a sequence (XN ) of N -point configurations is a QMC-design 
sequence for Ws

p(Sd) with s > d/p provided the worst-case equal weight cubature 
error for XN has order N−s/d as N → ∞, a property that holds, in particular, for 
a sequence of spherical t-designs in which each design has order td points. For the 
case p = 1, we deduce that any QMC-design sequence (XN ) for Ws

1(Sd) with s > d
has the optimal covering property; i.e., the covering radius of XN has order N−1/d

as N → ∞. A significant portion of our effort is devoted to the formulation of the 
worst-case error in terms of a Bessel kernel, and showing that this kernel satisfies 
a Bernstein type inequality involving the mesh ratio of XN . As a consequence we 
prove that any QMC-design sequence for Ws

p(Sd) is also a QMC-design sequence 
for Ws

p′ (Sd) for all 1 ≤ p < p′ ≤ ∞ and, furthermore, if (XN ) is a quasi-uniform 
QMC-design sequence for Ws

p(Sd), then it is also a QMC-design sequence for Ws′
p (Sd)

for all s > s′ > d/p.
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1. Introduction

In this paper we consider covering the unit sphere Sd in Rd+1, d ≥ 1, with equal sized spherical caps, 
and establish a connection to equal weight cubature formulas that use the centers of those caps as sampling 
points for the function. As a corollary, we will show that the optimal order of convergence of the worst-case 
equal weight cubature error for functions in a suitable Sobolev space implies asymptotically an optimal 
covering property by spherical caps.

Equal-weight numerical integration In the literature equal weight cubature is often given the name Quasi-
Monte Carlo (see Niederreiter [24] for the case of the unit cube). Thus a Quasi-Monte Carlo (QMC) method
is an equal weight numerical integration formula with deterministic node set in contrast to Monte Carlo 
methods: for a node set XN = {x1, . . . , xN} ⊂ Sd, the QMC method

Q[XN ](f) := 1
N

N∑
k=1

f(xk)

is a natural approximation of the integral

I(f) :=
∫
Sd

f(x)dσd(x)

of a given continuous real-valued function f on Sd with respect to the normalized surface area measure 
on Sd. A node set XN is deterministically chosen in a sensible way so as to guarantee “small” error of 
numerical integration for functions in suitable subfamilies of the class of continuous functions C(Sd).

A fundamental example of such node sets are spherical t-designs1 ZNt
⊂ Sd, t ≥ 1, introduced in [10]. 

They define QMC methods that integrate exactly all spherical polynomials of degree ≤ t:

Q[ZNt
](P ) = I(P ), degP ≤ t. (1.1)

Thus, spherical t-designs yield zero error on polynomial subfamilies of C(Sd). The definition of spherical 
t-designs says nothing about the number of points Nt that might be needed. A lower bound on Nt of order 
td was given in [10]. Recently, Bondarenko et al. [4] proved:

Proposition 1.1. There exists cd > 0 such that to every N ≥ cd t
d and t ≥ 1 there exists an N -point spherical 

t-design on Sd.

This key result ensures that spherical t-designs with Nt points of exactly the optimal order td exist for 
every t ≥ 1 (we write Nt � td). A sequence (ZNt

) of such designs with optimal order for the number of 
points has the remarkable property, see [8,14], that

|Q[ZNt
](f) − I(f)| ≤ cN

−s/d
t ‖f‖Hs

for all functions f in a Sobolev space Hs with smoothness index s > d/2 and norm ‖ · ‖Hs in the Hilbert 
space setting. The order of Nt cannot be improved, see [12,13]. This observation motivated the introduction 
of QMC-design sequences for Sobolev spaces Hs in [9]: these are sequences of N -point sets that have the 
same error behavior as spherical t-designs, but with no polynomial exactness requirement. One purpose of 
this paper is to provide the extension to general Sobolev spaces.

1 The symbol XN is used for general sets of N points on Sd, while ZNt
always refers to a spherical t-design with Nt points.
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Covering for the sphere For a finite set XN = {x1, x2, . . . , xN} ⊂ Sd the covering radius (or mesh norm, 
or fill radius) is defined by

ρ(XN ) := max
x∈Sd

min
1≤k≤N

arccos(x · xk). (1.2)

Thus the covering radius is the geodesic radius of the largest hole in the mesh formed by the point set XN . 
Equivalently, it is the minimal radius of equal-sized spherical caps centered at the points of XN that cover Sd. 
There is a trivial lower bound on ρ(XN ) arising from the fact that a spherical cap of geodesic radius ρ(XN)
has a surface area of exact order [ρ(XN )]d: it follows that there exists cd > 0 such that

ρ(XN ) ≥ cd N
−1/d for all N.

We will therefore say that a sequence (XN ) of point sets on Sd has the optimal covering property if

ρ(XN ) = O(N−1/d) as N → ∞. (1.3)

Yudin [30] showed that if ZNt
is a spherical t-design, then ZNt

gives a covering of the sphere Sd with 
radius ηt,d, where cos(ηt,d) is the largest zero of a certain Jacobi polynomial. Reimer [25,26] extended Yudin’s 
result to any positive weight cubature rule that is exact for polynomials of degree at most t, and used results 
relating the largest zero of Gegenbauer polynomials to the first positive zero of a Bessel function, to show 
that such point sets, which include spherical t-designs, have covering radius ρ(ZNt

) = Od(1/t), where the 
order notation Od means that the implied constant depends only on d.

Yudin’s result implies that a sequence of spherical t-designs with Nt � td points has the optimal covering 
property (1.3). Reimer’s result also shows that the node sets of positive weight cubature rules that are exact 
for polynomials of degree at most t and have N = Od(td) points form a sequence that has the optimal 
covering property. The present paper extends Yudin’s result in a different direction, replacing the condition 
that polynomials of degree up to t be integrated exactly by a condition on the rate of convergence of the 
QMC error.

The results In this paper the worst-case error will play an important role. For a Banach space B of 
continuous functions on Sd with norm ‖ · ‖B , the worst-case error for the QMC method Q[XN ] with node 
set XN ⊂ Sd approximating the integral I(f) is defined by

wce(Q[XN ];B) := sup
{∣∣Q[XN ](f) − I(f)

∣∣ : f ∈ B, ‖f‖B ≤ 1
}
. (1.4)

That is, the worst-case error is the largest error (for the supremum is indeed a maximum) for all functions 
in the unit ball of B.

We shall be interested in particular in the Sobolev spaces Ws
p(Sd) for p ≥ 1 and s ≥ 0 consisting of 

functions f ∈ Lp(Sd) for which (1 − Δ∗
d)s/2f ∈ Lp(Sd), where Δ∗

d is the Laplace–Beltrami operator on Sd. 
The Sobolev norm ‖f‖Ws

p(Sd) of f is defined to be the Lp(Sd)-norm ‖(1 − Δ∗
d)s/2f‖p. For a full description 

of the Sobolev space setting, see Section 3. We show in Section 4 that the worst-case error of Q[XN ] for 
Ws

p(Sd) is equal to the Lq(Sd)-norm (with 1/p + 1/q = 1) of a function that is related to the Bessel kernel 
for Ws

p(Sd).
A principal result of the paper is that the covering radius of a point set XN on Sd is upper bounded by 

a power of the worst-case error in a Sobolev space:
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Theorem 1.2. Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and s > d/p. For a positive integer N , let XN be 
an N -point set on Sd. Then

ρ(XN ) ≤ cs,d
[
wce(Q[XN ];Ws

p(Sd))
]1/(s+d/q)

, (1.5)

where the constant cs,d depends on s and d but not on p, q or N .

The theorem will be proved in Section 2. Note that the condition s > d/p is natural, in that it ensures 
that the generalized Sobolev space is continuously embedded in the space of continuous functions on Sd. 
The significance of (1.5) is that results on the order of decay of worst-case cubature errors on Sd as N → ∞
translate directly into bounds for the decay of the covering radius. See Corollary 1.7 below for a concrete 
instance that ensures optimal order convergence of the covering radius.

The fact that spherical t-designs with Nt � td points have optimal order of decay for the worst-case error 
in Sobolev spaces is a consequence of results due to Brandolini et al. [6], generalizing earlier results for p = 2
of [14] and [8]:

Proposition 1.3. (Cf. [6, Lemma 2.10].) Let 1 ≤ p ≤ ∞. Given s > d/p, there exists Cp,s,d > 0 such that for 
every N -point spherical t-design XN on Sd there holds

wce(Q[XN ];Ws
p(Sd)) ≤

Cp,s,d

ts
, (1.6)

where the constant Cp,s,d does not depend on t, N , or the particular spherical design XN .

Motivated by Propositions 1.1 and 1.3, we extend the definition of QMC-design sequences as given in [9]
from p = 2 to general p:

Definition 1.4. Let 1 ≤ p ≤ ∞. Given s > d/p, a sequence (XN ) of N -point configurations on Sd with 
N → ∞ is a QMC-design sequence for Ws

p(Sd) if there exists cp,s,d > 0, independent of N , such that

wce(Q[XN ];Ws
p(Sd)) ≤

cp,s,d
Ns/d

. (1.7)

In this definition it is sufficient that XN exists for each N in an infinite subset of the natural numbers.
The existence of spherical t-design sequences with Nt � td points (Proposition 1.1) and Proposition 1.3

imply the existence of QMC-design sequences for Ws
p(Sd):

Theorem 1.5 (Existence of QMC-design sequences for Ws
p(Sd)). For any 1 ≤ p ≤ ∞ and s > d/p, there 

exists a QMC-design sequence for Ws
p(Sd).

In particular, any sequence of minimizers of wce(Q[XN ]; Ws
p(Sd)) for a fixed s > d/p and an infinite 

number of values of N is a QMC-design sequence for Ws
p(Sd).

By a special case of [6, Theorem 2.16], which generalizes the earlier p = 2 lower bounds of [13] and [12], 
the exponent of N in (1.7) cannot be larger than s/d:

Proposition 1.6. Let 1 ≤ p ≤ ∞. Given s > d/p, there exists c′p,s,d > 0 such that for any N -point configura-
tion XN on Sd,

wce(Q[XN ];Ws
p(Sd)) ≥

c′p,s,d
Ns/d

. (1.8)

Thus a QMC-design sequence for Ws
p(Sd) yields error bounds of optimal order of convergence N−s/d for 

the worst-case error in Ws
p(Sd) as N → ∞.
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As a consequence of Theorem 1.2, we obtain the following estimate for the covering radius for QMC-design 
sequences for Ws

p(Sd), which is sharp when p = 1.

Corollary 1.7. Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1. For a fixed s > d/p, let (XN ) with N → ∞ be a 
QMC-design sequence for Ws

p(Sd). Then there exists a constant c > 0 depending on d, s, p and the sequence 
(XN ) but not on N such that for all XN

ρ(XN ) ≤ cN−β/d, β := s/(s + d/q).

In particular, if p = 1 (and thus β = 1 and s > d), then the sequence (XN ) has the optimal covering 
property.

When p = 2, an alternative approach to generating QMC-design sequences is to maximize the generalized 
sum of distances 

∑N
i=1

∑N
j=i |xi − xj |2s−d. Theorem 14 of [9] shows that such point sets minimize the 

worst-case error in Ws
2(Sd), s ∈ (d/2, d/2 + 1), and thus form a QMC-design sequence for this Sobolev 

space.

Example 1.8. Let d ≥ 1, and for α ∈ (0, 2) let (XN ) be a sequence of N -point sets such that XN ⊂ Sd is a 
maximizing set for the generalized sum of distances,

N∑
i=1

N∑
j=1

|xi − xj |α, x1,x2, . . . ,xN ∈ Sd,

where | · | denotes Euclidean distance in Rd+1. Then setting p = 2 in Corollary 1.7, there exists c > 0 such 
that

ρ(XN ) ≤ cN−β/d with β = (d + α)/(2d + α).

Note that for d = 2 the rate approaches N−1/3 as α → 2− and N−1/4 as α → 0+. Further observe, that the 
bounds obtained here for any d ≥ 2 are much better than those derived from using an area bound for the 
largest spherical cap that contains no points of XN . The estimates obtained in [21] for α ∈ (0, 1) and [7] as 
α → 0+ yield that the coefficient β above becomes β′ = (d + α)/[d(d + 2)].

We also obtain the following lower bound on the covering radius:

Theorem 1.9. Let d ≥ 1, 1 < p ≤ ∞ with 1/p + 1/q = 1. For every fixed s ∈ (d/p, d) there exists a 
QMC-design sequence (XN ) for Ws

p(Sd) such that

ρ(XN ) ≥ c′p,s,d N−s/d2
for all XN , (1.9)

where the constant c′s,d depends on p, s and d but not on N .

For values of p larger than 1 and s a fixed number in (d/p, d), Theorem 1.9 shows that there exists a 
QMC-design sequence (XN ) for Ws

p(Sd) that does not have the optimal covering property (1.3) because 
s/d2 < 1/d.

The next two theorems assert conditions under which a QMC-design sequence for Ws
p(Sd) retains the 

QMC-design property if the parameters p and s are changed. These results are proved in Section 4.2 using 
lemmas from Sections 5 and 6.



J.S. Brauchart et al. / J. Math. Anal. Appl. 431 (2015) 782–811 787
Theorem 1.10. Let d ≥ 1, 1 ≤ p < ∞ and s > d/p. A QMC-design sequence (XN ) for Ws
p(Sd) is also a 

QMC-design sequence for Ws
p′(Sd) for all p′ satisfying p < p′ ≤ ∞.

The second theorem makes use of the mesh ratio

γ(XN ) := ρ(XN )/δ(XN ) (1.10)

of an N -point configuration XN = {x1, . . . , xN} ⊂ Sd, where the separation distance of XN is given by

δ(XN ) := min
1≤j,k≤N

j �=k

arccos(xj · xk). (1.11)

A sequence (XN ) of N -point sets on Sd is well-separated if there is a positive constant c such that δ(XN ) ≥
c N−1/d and quasi-uniform provided γ(XN ) is uniformly bounded in N .

Theorem 1.11. Let d ≥ 1, 1 ≤ p, q ≤ ∞ satisfying 1/p + 1/q = 1 and s > s′ > d/p. Then there exists a 
constant c > 0, depending on p, s′, s, and d but independent of N , such that for every N -point node set 
XN ⊂ Sd,

wce(Q[XN ];Ws′

p (Sd)) ≤ c [γ(XN )]d/p N (s−s′)/d wce(Q[XN ];Ws
p(Sd)). (1.12)

Consequently, a quasi-uniform QMC-design sequence (XN ) for Ws
p(Sd) is also a QMC-design sequence 

for Ws′
p (Sd) for all s′ satisfying s > s′ > d/p.

A substantial part of the paper is devoted to establishing the estimate (1.12). (Although needed for our 
argument, it is plausible that the quasi-uniformity assumption in the second assertion of Theorem 1.11 can 
be removed.)

The structure of the paper is as follows. In the next section we prove Theorems 1.2 and 1.9 and we extend 
Theorem 1.2 to take into account the radii of several caps excluding points of XN . In Section 3, we discuss 
the function space setting and introduce the Bessel kernel for Ws

p(Sd). In Section 4, we present a worst-case 
error formula in terms of a Bessel kernel, which is used to prove embedding type results for QMC-design 
sequences for Ws

p(Sd) when p and s vary. In Section 5, we introduce a special filtered kernel that enables us 
to prove a boundedness result for the Bessel kernel. In Section 6, such filtered kernels are further used to 
prove a Bernstein type inequality for the Bessel kernel which is needed for the proof of the inequality (1.12). 
Section 7 considers the special case of the unit circle (i.e., the sphere S1).

2. Bounds for the covering radius

In this section we give the proofs of Theorems 1.2, and 1.9.

2.1. Upper bound

For the proof of Theorem 1.2 we shall make use of the following interpolation inequality (of Gagliardo–
Nirenberg type) on the sphere (see [3]).

Lemma 2.1. Let d ≥ 1, 1 ≤ p ≤ ∞ and 0 ≤ s0 < s < s1 < ∞. Then there exists a constant c depending only 
on s, p, and d such that for any 0 ≤ θ ≤ 1 and s = (1 − θ)s0 + θs1, we have

‖f‖
Ws

p(Sd) ≤ c ‖f‖1−θ
W

s0
p (Sd) ‖f‖

θ
W

s1
p (Sd) . (2.1)
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Proof of Theorem 1.2. For a node set XN = {x1, . . . , xN} on Sd, we construct a “fooling function” made up 
of a bump that is supported on a “spherical collar” contained in the largest hole of XN . The outer radius 
of this collar is chosen to be ρ = ρ(XN ). The function fρ is defined so that it is zero at every point of XN , 
thus providing a lower bound for the worst-case error (cf. (1.4)):

wce(Q[XN ];Ws
p(Sd)) ≥

| I(fρ)|
‖fρ‖Ws

p(Sd)
. (2.2)

We shall show that the right-hand side can be lower bounded in terms of ρ.
For the precise definition of fρ, we appeal to results of Hesse [12] by starting with the symmetric C∞(R)

function with support [−1, 1],

Φ(t) :=
{

exp
(
1 − 1

1 − t2

)
if − 1 < t < 1,

0 otherwise.
(2.3)

We rescale this function to have new support [cosρ, cos(ρ/2)] using the linear bijection gρ that maps this 
interval onto [−1, 1] giving Φρ(t) := Φ(gρ(t)) and then lift it to the sphere to get the zonal function

fρ(x) := Φρ(y0 · x) = Φ(gρ(y0 · x)), x,y0 ∈ Sd. (2.4)

The point y0 is chosen to be the center of a largest hole and thus achieves the maximum in (1.2). It is easily 
seen that fρ ∈ C∞(Sd) and that fρ(x) vanishes unless cos(ρ/2) ≥ y0 · x ≥ cos ρ, so that the support of fρ
is a collar within the spherical cap

S(y0; ρ) := {x ∈ Sd : y0 · x ≥ cos ρ}.

We now estimate the quantities on the right-hand side of (2.2). For I(fρ), the Funk–Hecke formula and 
a change of variable gives (also cf. [12, Eq. (32)])

|I(fρ)| =
∫
Sd

fρ(x) dσd(x) = ωd−1

ωd

ρ∫
ρ/2

Φ(gρ(cos θ)) (sin θ)d−1 dθ ≥ cd ρ
d, (2.5)

where ωd is the surface area of Sd. The Sobolev norm of fρ, computed as ‖fρ‖Ws
p(Sd) = ‖(1 − Δ∗

d)s/2fρ‖p, 
is first estimated for even s. The result for other s is then obtained from the even case using Lemma 2.1. 
Let s be a non-negative even integer. Since fρ is zonal, use of spherical cylinder coordinates (cf. [18]) gives 
for d ≥ 1:

(1 − Δ∗
d)

s/2
fρ(x) =

(
1 + d tDt −

(
1 − t2

)
D2

t

)s/2 Φρ(t), t = y0 · x, (2.6)

where Dt := d/dt. Expansion of the differential operator and term-wise estimation gives

∣∣∣(1 − Δ∗
d)

s/2
fρ(x)

∣∣∣ ≤ cs,d

(
cos ρ2 − cos ρ

)−s/2
≤ c′s,d ρ

−s, x ∈ Sd.

The details involve a slight modification of the arguments in [12], where a different constant is used in the 
differential operator (1 −Δ∗

d)s/2. The computations can also then be extended to include d = 1, a case not 
considered in [12]. Thus for p = ∞,

‖fρ‖Ws
∞(Sd) = sup

∣∣∣(1 − Δ∗
d)

s/2
fρ(x)

∣∣∣ ≤ c′s,d ρ
−s,
x∈Sd
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while for 1 ≤ p < ∞, since fρ is supported in S(y0; ρ),

‖fρ‖pWs
p(Sd) =

∫
Sd

∣∣ (1 − Δ∗
d)

s/2
fρ(x)

∣∣pdσd(x) ≤ (c′s,d)p ρ−p s σd(S(y0; ρ)) ≤ (c′′s,d)p ρ−p s+d.

Hence

‖fρ‖Ws
p(Sd) ≤ c′′′s,d ρ

−s+d/p, 1 ≤ p ≤ ∞, s ≥ 0 even. (2.7)

For general s, write s = 2L + 2θ with 0 ≤ θ ≤ 1 and L a non-negative integer. Then we can apply the 
interpolation inequality (2.1) with s0 = 2L and s1 = 2L + 2 to obtain again

‖fρ‖Ws
p(Sd) ≤ civs,d ρ

−s+d/p, 1 ≤ p ≤ ∞, s ≥ 0. (2.8)

Finally, using the estimates (2.5) and (2.8) in (2.2), we get

wce(Q[XN ];Ws
p(Sd)) ≥ cvs,d ρ

s+d/q,

where 1 ≤ q ≤ ∞ is such that 1/p + 1/q = 1. The proof is now complete. �
2.2. A generalization of the upper bound

We now provide a generalization of Theorem 1.2. Another way of describing the covering radius ρ(XN )
is as the largest hole radius – more precisely, as the geodesic radius of the largest open spherical cap on Sd

that does not contain a point of XN . A (spherical cap shaped) hole of XN can be any open spherical cap 
on Sd that does not contain points of XN . Of particular interest are maximal holes, which are ones that 
lie “above” the facets of the convex hull of XN . They are said to be maximal as they cannot be enlarged. 
Indeed, the supporting plane of a facet divides the sphere into an open spherical cap that contains no points 
of XN and a closed one that contains all the points of XN . These maximal holes provide a natural covering 
of the sphere with, in general, differently sized spherical caps of maximal radii. Among these maximal holes 
one can select a sequence of pairwise disjoint holes ordered with respect to non-increasing radii. This is a 
particular example of what we will call an “ordered XN -avoiding packing on Sd.”

Definition 2.2. Given an N -point set XN = {x1, . . . , xN} on Sd, a sequence (sn)n≥1 of open pairwise disjoint 
spherical caps with cap radii ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · such that no sn contains points of XN is called an ordered 
XN -avoiding packing on Sd.

The next theorem gives an upper bound of the nth-largest spherical cap radius in an ordered XN -avoiding 
packing of Sd.

Theorem 2.3. Let d ≥ 1, 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1 and s > d/p. Given an N -point set XN on 
Sd and an ordered XN -avoiding packing on Sd with spherical cap radii ρ1 ≥ ρ2 ≥ ρ3 ≥ · · · , then

ρn ≤ cs,d n
−1/(qs+d) [wce(Q[XN ];Ws

p(Sd))
]1/(s+d/q)

,

where the constant cs,d depends on s and d but not on p or q or the packing.

Proof. We proceed along the same lines as the proof of Theorem 1.2 but use now a fooling function of the 
form

Fn(x) :=
n∑

fρk
(x), x ∈ Sd,
k=1
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that is the sum of all the contributions of functions fρk
(x) := Φρk

(yk ·x) of type (2.4) fitted to holes centered 
at yk ∈ Sd, 1 ≤ k ≤ n, in the ordered XN -avoiding packing on Sd.

From (2.5) we obtain that

|I(Fn)| =
n∑

k=1

|I(fρk
)| ≥ cd

n∑
k=1

ρdk ≥ n cd ρ
d
n. (2.9)

Observe that the supports of any two of fρ1 , . . . , fρn
intersect at most on their boundaries. It follows that 

for even s ≥ 0 this property also holds for any two of J−s[fρ1 ], . . . , J−s[fρn
], where J−s[fρ] = (1 − Δ∗

d)
s/2

fρ
(see (2.6)). The estimate (2.7) gives for p = ∞,

‖Fn‖Ws
p(Sd) = max

1≤m≤n
‖fρm

‖
Ws

p(Sd) ≤ max
1≤m≤n

c′′′s,d ρ
−s
m = c′′′s,d ρ

−s
n ,

while for 1 ≤ p < ∞,

‖Fn‖pWs
p(Sd) =

n∑
m=1

‖fρm
‖p
Ws

p(Sd) ≤
n∑

m=1

(
c′′′s,d ρ

−s+d/p
m

)p
≤ n

(
c′′′s,d ρ

−s+d/p
n

)p
.

Hence

‖Fn‖Ws
p(Sd) ≤ n1/p c′′′s,d ρ

−s+d/p, 1 ≤ p ≤ ∞, s ≥ 0 even. (2.10)

The result for other s is then obtained using the interpolation inequality (2.1):

‖Fn‖Ws
p(Sd) ≤ n1/p civs,d ρ

−s+d/p, 1 ≤ p ≤ ∞, s ≥ 0 not even. (2.11)

Substituting the estimates (2.9), (2.10) and (2.11) into (2.2), we get

wce(Q[XN ];Ws
p(Sd)) ≥ n1/q cvs,d ρ

s+d/q
n ,

where 1 ≤ q ≤ ∞ is such that 1/p + 1/q = 1. This completes the proof. �
2.3. Lower bound

Proof of Theorem 1.9. Let (ZNt
) be a sequence of well-separated spherical t-designs on Sd with Nt � td. 

The existence of such a sequence is established in [5]. Fix ε ∈ (0, 1] and c > 0. For each ZNt
we select a 

spherical cap with radius αt = c N−(1−ε)/d
t and an arbitrary center, and remove all the points in this cap. 

This gives a new set XNt−Mt
with Nt−Mt points, where Mt depends on the cap and on αt and thus on Nt. 

It follows from the well-separation property of (ZNt
) that δ(XNt−Mt

) ≥ c′N
−1/d
t for some c′ > 0, thus for 

some c′′ > 0, we have

Mt ≤ c′′ Nε
t for all ZNt

.

The removal of the Mt points generates a hole of radius αt, so that the covering radius of XNt−Mt
satisfies

ρ(XNt−Mt
) ≥ αt = cN

−(1−ε)/d
t . (2.12)

Next, we quantify the quality of XNt−Mt
as a set of cubature points by estimating the worst-case error 

for the QMC method Q[XNt−Mt
]. Let f ∈ Ws

p(Sd), s > d/p, with ‖f‖Ws
p(Sd) = 1. The error of numerical 

integration, R[XNt−Mt
](f) := Q[XNt−Mt

](f) − I[XNt−Mt
](f), can be written as
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R[XNt−Mt
](f) = Nt

Nt −Mt
R[ZNt

](f) − Mt

Nt −Mt
R[ZNt

\XNt−Mt
](f).

Since (ZNt
) is a sequence of spherical t-designs with Nt � td and Nt/(Nt −M) → 1 as Nt → ∞, it follows 

from Proposition 1.3 that for some C > 0 we have

Nt

Nt −Mt
|R[ZNt

](f)| ≤ C N
−s/d
t .

Furthermore, the fact that Ws
p(Sd) can be continuously embedded into C(Sd) for s > d/p (Proposition 3.6) 

gives that for some cp,s,d > 0 (embedding constant)

|R[ZNt
\XNt−Mt

](f)| ≤ 2 sup
x∈Sd

|f(x)| ≤ 2 cp,s,d ‖f‖Ws
p(Sd) = 2 cp,s,d.

Since Mt/(Nt −Mt) = O(N−(1−ε)
t ), we get

Mt

Nt −Mt
|R[ZNt

\XNt−Mt
](f)| ≤ 2 cp,s,d

Mt

Nt −Mt
≤ C ′ N

−(1−ε)
t .

We conclude that

wce(Q[XNt−Mt
];Ws

p(Sd)) ≤ C N
−s/d
t + C ′ N

−(1−ε)
t . (2.13)

Until now we have allowed ε ∈ (0, 1] to be arbitrary. If we now force ε := 1 − s/d, then (XNt−Mt
) is a 

well-separated QMC-design sequence for Ws
p(Sd). From (2.12) we have ρ(XNt−Mt

) ≥ c N−s/d2

t , completing 
the proof. �

A more precise analysis of the effects on the worst-case error when one or more points are removed from 
a circular design (i.e., a spherical design on S1) is given in Section 7.

3. The function space setting and embedding theorems

In this section we set up the machinery needed to prove the worst-case error results. Let d be a positive 
integer. Our manifold is the unit sphere Sd in the Euclidean space Rd+1 provided with the normalized 
surface area measure σd. For future reference we record that

ωd−1

ωd
= Γ((d + 1)/2)√

π Γ(d/2)
, 2d−1ωd−1

ωd

1∫
−1

(
1 − t2

)d/2−1 dt = 1, (3.1)

where Γ(z) denotes the gamma function, and ωd is the surface area of Sd.

3.1. Spherical harmonics

The restriction to Sd of a homogeneous and harmonic polynomial of total degree 
 defined on Rd+1 is 
called a spherical harmonic of degree 
 on Sd. The family Hd

� = Hd
� (Sd) of all spherical harmonics of exact 

degree 
 on Sd has dimension

Z(d, 
) := (2
 + d− 1) Γ(
 + d− 1)
.
Γ(d)Γ(
 + 1)
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Each spherical harmonic Y� of exact degree 
 is an eigenfunction of the negative Laplace–Beltrami operator
−Δ∗

d for Sd, with eigenvalue

λ� := 
 (
 + d− 1) , 
 = 0, 1, 2, . . . . (3.2)

As usual, let {Y�,k : k = 1, . . . , Z(d, 
)} denote an L2-orthonormal basis of Hd
� . Then the basis functions Y�,k

satisfy the following identity known as the addition theorem:

Z(d,�)∑
k=1

Y�,k(x)Y�,k(y) = Z(d, 
)P (d)
� (x · y), x,y ∈ Sd, (3.3)

where P (d)
� is the normalized Gegenbauer (or Legendre) polynomial, orthogonal on the interval [−1, 1] with 

respect to the weight function (1 − t2)d/2−1, and normalized by P (d)
� (1) = 1.

The collection {Y�,k : k = 1, . . . , Z(d, 
); 
 = 0, 1, . . .} forms a complete orthonormal (with respect to σd) 
system for the Hilbert space L2(Sd) of square-integrable functions on Sd endowed with the usual inner 
product

(f, g)L2(Sd) :=
∫
Sd

f(x)g(x)dσd(x),

as well as a complete system for all the Banach spaces Lp(Sd) of pth power integrable functions on Sd with 
1 ≤ p < ∞ provided with the usual p-norm

‖f‖p := ‖f‖
Lp(Sd) :=

⎛⎝∫
Sd

|f(x)|p dσd(x)

⎞⎠1/p

,

and for the Banach space C(Sd) of continuous functions on Sd endowed with the maximum norm

‖f‖C := max
x∈Sd

|f(x)| .

(For more details, we refer the reader to [2,18].)
The Funk–Hecke formula states that for every spherical harmonic Y� of degree 
 (see [18]),∫

Sd

g(y · z)Y�(y) dσd(y) = ĝ(
)Y�(z), z ∈ Sd, (3.4)

where

ĝ(
) = ωd−1

ωd

1∫
−1

g(t)P (d)
� (t)

(
1 − t2

)d/2−1 dt. (3.5)

(This formula holds, in particular, for the spherical harmonic Y�(y) = P
(d)
� (a · y), a ∈ Sd.)

3.2. Convolution

We shall frequently use the convolution of a zonal kernel, i.e. one that depends only on the inner product 
of the arguments, “against” a function f on Sd. With abuse of notation we write G(x, y) = G(x · y) for 
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x, y ∈ Sd. For 1 ≤ p < ∞, let Lp,d([−1, 1]) consists of all functions of the form gz(x) := G(z · x), x, z ∈ Sd, 
with finite norm ‖G‖p,d := ‖gz‖p. Of course, this norm does not depend on the choice of z ∈ Sd since, by 
the Funk–Hecke formula with 
 = 0 (see (3.4) and (3.5)),

‖G‖p,d = ‖gz‖p =

⎛⎝ωd−1

ωd

1∫
−1

|G(t)|p
(
1 − t2

)d/2−1 dt

⎞⎠1/p

. (3.6)

Definition 3.1. The convolution of the zonal kernel G ∈ L1,d([−1, 1]) against f ∈ Lp(Sd) is the function G ∗f
given by

(G ∗ f)(x) :=
∫
Sd

G(z · x) f(z) dσd(z), x ∈ Sd.

The convolution of the zonal kernel K ∈ L1,d([−1, 1]) against G ∈ L1,d([−1, 1]) is the kernel K ∗G given by

(K ∗G)(x · y) :=
∫
Sd

K(z · x)G(z · y) dσd(z), x,y ∈ Sd.

If g ∈ Lq,d([−1, 1]), 1 ≤ p, q ≤ ∞ and f ∈ Lp(Sd), then the convolution g ∗ f exists σd-almost everywhere 
on Sd and Young’s inequality holds; i.e.,

‖g ∗ f‖r ≤ ‖g‖q,d ‖f‖p for all r with 1
r

= 1
p

+ 1
q
− 1 ≥ 0. (3.7)

In particular, one has

‖g ∗ f‖p ≤ ‖g‖1,d ‖f‖p and ‖g ∗ f‖q ≤ ‖g‖q,d ‖f‖1 . (3.8)

3.3. Sobolev function space classes

The Laplace–Fourier series (in terms of spherical harmonics) of a function f ∈ L1(Sd) is given by the 
formal expansion

S[f ](x) ∼
∞∑
�=0

Y�[f ](x), x ∈ Sd, (3.9)

where Y�[f ] is the projection of f onto Hd
� . It can be obtained by the convolution

Y�[f ](x) :=
∫
Sd

Z(d, 
)P (d)
� (x · y) f(y) dσd(y), x ∈ Sd. (3.10)

Application of the addition theorem yields

Y�[f ](x) =
Z(d,�)∑
k=1

f̂�,k Y�,k(x), x ∈ Sd, (3.11)

and f̂�,k are the Laplace–Fourier coefficients of f defined by

f̂�,k :=
∫
Sd

f(x)Y�,k(x)dσd(x), k = 1, . . . , Z(d, 
), 
 = 0, 1, 2, . . . . (3.12)
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Definition 3.2. The generalized Sobolev space Ws
p(Sd) may be defined for s ≥ 0 and 1 ≤ p ≤ ∞ as the set 

of all functions f ∈ Lp(Sd) with

‖f‖
Ws

p(Sd) :=

∥∥∥∥∥
∞∑
�=0

(1 + λ�)s/2 Y�[f ]

∥∥∥∥∥
p

< ∞, (3.13)

where the λ� are given in (3.2) and formulas for Y�[f ] are provided in (3.10) and (3.11).

Remark. The definition implies that 
∑L

�=0 (1 + λ�)s/2 Y�[f ](x) converges pointwise as L → ∞ for almost all 
(in the sense of Lebesgue measure) points on Sd, since otherwise the sum is not in Lp(Sd).

We note that W0
p(Sd) = Lp(Sd). In the case of p = 2, Parseval’s identity yields the following equivalent 

characterization: a function f ∈ L2(Sd) is in Ws
2(Sd) if and only if the Laplace–Fourier coefficients f̂�,k of f

given in (3.12) satisfy the condition

∞∑
�=0

(1 + λ�)s
Z(d,�)∑
k=1

∣∣∣f̂�,k∣∣∣2 < ∞, (3.14)

but a characterization of this kind in terms of the Laplace–Fourier coefficients does not hold for general p.

3.4. The space Ws
p(Sd) as a Bessel potential space

The Bessel operator of order s,

J−s := (1 − Δ∗
d)

s/2
, s ∈ R, (3.15)

is a pseudodifferential operator of order s with symbol (b(s)� )�≥0 given by

b
(s)
� := (1 + λ�)s/2 � (1 + 
)s , 
 = 0, 1, 2, . . . . (3.16)

For s ≥ 0 it is an operator from Ws
p(Sd) to Lp(Sd) defined by

J−s[f ] :=
∞∑
�=0

b
(s)
� Y�[f ]. (3.17)

We shall also need the inverse operator Js : Lp(Sd) → Ws
p(Sd), which, in contrast to J−s for s ≥ 0, is a 

smoothing operator. The Bessel operator satisfies the following identities:

J−αJ−β = J−(α+β), (J−α)−1 = Jα, J0 = Id, α, β ∈ R. (3.18)

The generalized Sobolev space Ws
p(Sd) of Definition 3.2 can be interpreted as a Bessel potential space and 

we can use the following equivalent characterization.

Proposition 3.3. Let s ≥ 0 and 1 ≤ p ≤ ∞. Then Ws
p(Sd) is the set of all functions f ∈ Lp(Sd) for which 

J−s[f ] ∈ Lp(Sd), and ‖f‖Ws(Sd) = ‖J−s[f ]‖p.

p
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For s ≥ 0 we define the zonal Bessel kernel

B(s)(x · y) :=
∞∑
�=0

b
(−s)
� Z(d, 
)P (d)

� (x · y), x,y ∈ Sd. (3.19)

Then we can use the following characterization of Ws
p(Sd).

Proposition 3.4. Let s ≥ 0 and 1 ≤ p ≤ ∞. Then f ∈ Ws
p(Sd) if and only if f is a Bessel potential of a 

function g ∈ Lp(Sd); that is,

f(x) =
∫
Sd

B(s)(y · x) g(y) dσd(y) =
(
B(s) ∗ g

)
(x), x ∈ Sd. (3.20)

Moreover, we have J−s[f ] = g and ‖f‖Ws
p(Sd) = ‖g‖p.

Indeed, any convolution (3.20) is in Ws
p(Sd) by Young’s inequality together with the following boundedness 

result. (The proof will be postponed until the end of Section 5.)

Lemma 3.5 (Boundedness of the Lq(Sd)-norm of the Bessel kernel). Let d ≥ 1, 1 ≤ p, q ≤ ∞ such that 
1/p + 1/q = 1 and s > d/p. Then there exists a constant c > 0 such that

∥∥B(s)∥∥
q,d

≤ 1 + c

1 − 2d/p−s
. (3.21)

We remark that for p = 2, the generalized Sobolev space Ws
p(Sd) is a reproducing kernel Hilbert space 

with reproducing kernel B(2s) (cf. [9, Sec. 2.4]). For further reading on Bessel potential spaces, we refer to 
the classical paper [29] and the more recent paper [15]. For the spherical case, we rely on [6].

3.5. Embedding results

For the reader’s convenience, we briefly summarize some relevant embedding results (see, e.g., Aubin [1]).

Proposition 3.6 (Continuous embedding into C(Sd)). Let d ≥ 1. The Sobolev space Ws
p(Sd) is continuously 

embedded into C(Sd) if s > d/p.

For fixed p, smoother Sobolev spaces are included in coarser ones:

Proposition 3.7 (Continuous embedding, p fixed). Let d ≥ 1. For fixed p with 1 ≤ p ≤ ∞, Ws′
p (Sd) is 

continuously embedded into Ws
p(Sd) if 0 ≤ s < s′ < ∞.

The standard embedding results for Lp-spaces immediately yield the following embedding of Ws
p′(Sd)

into Ws
p(Sd), p < p′:

Proposition 3.8 (Continuous embedding, s fixed). Let d ≥ 1. For fixed s with 0 ≤ s < ∞, Ws
p′(Sd) is 

continuously embedded into Ws
p(Sd) if 1 ≤ p < p′ ≤ ∞.
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4. Worst-case error and QMC-design sequences for WWWs
p(SSSd)

4.1. Worst-case error

We recall that the definition of worst-case error is given in (1.4). Let νN := ν[XN ] be the atomic measure 
associated with XN = {x1, . . . , xN} that places the point mass 1/N at each point in XN ; i.e.,

νN = ν[XN ] = 1
N

N∑
j=1

δxj
.

Then the error of integration of a continuous function f on Sd can be written as

Q[XN ](f) − I(f) =
∫
Sd

f(x) dμN (x),

with the signed measure μN defined by μN = νN − σd. For the Sobolev space Ws
p(Sd) with s > d/p, the 

worst-case error has the following form in terms of the Bessel kernel: let

B(s)(t) := B(s)(t) − 1 =
∞∑
�=1

b
(−s)
� Z(d, 
)P (d)

� (t), −1 ≤ t ≤ 1, (4.1)

then the worst-case error is equal to the Lq(Sd)-norm of the following function,

B(s)
N (y) := B(s)[XN ](y) := 1

N

N∑
j=1

B(s)(xj · y) − 1 = 1
N

N∑
j=1

B(s)(xj · y), y ∈ Sd. (4.2)

For each fixed y ∈ Sd, this function represents the error of numerical integration of the zonal function 
x 
→ B(s)(x · y), x ∈ Sd, of the QMC method based on the node set XN = {x1, . . . , xN} ⊂ Sd.

Theorem 4.1. Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and s > d/p. Then, for a QMC method Q[XN ]
with node set XN = {x1, . . . , xN} ⊂ Sd,

wce(Q[XN ];Ws
p(Sd)) =

∥∥∥∥∥∥
∫
Sd

B(s)(x · ·)dμN (x)

∥∥∥∥∥∥
q

=
∥∥∥B(s)

N

∥∥∥
q
. (4.3)

Remark. In the Hilbert space setting p = q = 2, one has the closed form representation

∥∥∥B(s)
N

∥∥∥
2

=

⎛⎝ 1
N2

N∑
j=1

N∑
k=1

B(2s)(xj · xk)

⎞⎠1/2

, (4.4)

which follows from the relation∫
Sd

B(α)(x · z)B(β)(y · z) dσd(z) = B(α+β)(x · y), x,y ∈ Sd, α, β > 0. (4.5)
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Proof of Theorem 4.1. First, note that the last expression in (4.3) follows from substituting μN = νN − σd

into the middle expression in (4.3). Since s > d/p, the Sobolev space Ws
p(Sd) is continuously embedded into 

C(Sd) by Proposition 3.6, and every element in Ws
p(Sd) has a continuous representative. For f ∈ Ws

p(Sd)
the following inequality, due to [6, Corollary 2.4], can be derived from (3.20) together with Fubini’s theorem 
and Hölder’s inequality,

∣∣∣∣∣∣
∫
Sd

f(x)dμN (x)

∣∣∣∣∣∣ ≤
⎧⎨⎩
∫
Sd

∣∣∣∣∣∣
∫
Sd

B(s)(x · y)dμN (x)

∣∣∣∣∣∣
q

dσd(y)

⎫⎬⎭
1/q

‖f‖
Ws

p(Sd) . (4.6)

These integrals are well defined and finite. Therefore,

wce(Q[XN ];Ws
p(Sd)) ≤

∥∥∥∥∥∥
∫
Sd

B(s)(x · ·)dμN (x)

∥∥∥∥∥∥
q

=
∥∥∥B(s)

N

∥∥∥
q
. (4.7)

We complete the proof by constructing a bad function fbad with ‖fbad‖Ws
p(Sd) = 1 whose absolute 

integration error is equal to the right-hand side above when 1 ≤ q < ∞, and giving a lower estimate 
argument for wce(Q[XN ]; Ws

p(Sd)) in the case q = ∞. Let 1 ≤ q < ∞ and 1/p + 1/q = 1. Consider the 

function B(s)
N from (4.2). As B(s)

N ∈ Lq(Sd), there exists a function u ∈ Lp(Sd) such that

‖u‖p = 1 and

∣∣∣∣∣∣
∫
Sd

B(s)
N (y)u(y)dσd(y)

∣∣∣∣∣∣ =
∥∥∥B(s)

N

∥∥∥
q

:

one can choose

u(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣∣∣B(s)
N (y)

∣∣∣q−1

∥∥∥B(s)
N

∥∥∥q−1

q

∣∣∣B(s)
N (y)

∣∣∣
B(s)
N (y)

if B(s)
N (y) �= 0,

0 if B(s)
N (y) = 0,

y ∈ Sd.

Now, set v = Js[u]. Then v ∈ Ws
p(Sd). In fact, by definition of u,

‖v‖
Ws

p(Sd) = ‖J−s[v]‖p = ‖J−s[Js[u]]‖p = ‖u‖p = 1.

The bad function fbad with ‖fbad‖Ws
p(Sd) = 1 is now the continuous representative of v in Ws

p(Sd). Because 

of the convolution formula Js[u] = B(s) ∗u, we obtain for the absolute error of numerical integration by the 
QMC method Q[XN ], ∣∣∣∣∣∣

∫
Sd

fbad(x) dμN (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Sd

∫
Sd

B(s)(x · y)u(y) dσd(y)dμN (x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Sd

u(y)B(s)
N (y) dσd(y)

∣∣∣∣∣∣ =
∥∥∥B(s)

N

∥∥∥
q
.

This lower bound of wce(Q[XN ]; Ws
p(Sd)) matches the upper bound in (4.7).
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Let q = ∞ (i.e., p = 1). By the definition of the L∞(Sd)-norm, to every ε > 0 there exists a subset 
Eε ⊂ Sd of positive σd-measure such that |B(s)

N (y)| ≥ ‖B(s)
N ‖∞ − ε on Eε and a function uε ∈ L1(Sd)

satisfying

‖uε‖1 = 1 and

∣∣∣∣∣∣
∫
Sd

B(s)
N (y)uε(y)dσd(y)

∣∣∣∣∣∣ ≥
∥∥∥B(s)

N

∥∥∥
∞

− ε.

One can choose

uε(y) =

⎧⎪⎪⎨⎪⎪⎩
χε(y)
σd(Eε)

∣∣∣B(s)
N (y)

∣∣∣
B(s)
N (y)

if B(s)
N (y) �= 0,

0 if B(s)
N (y) = 0,

y ∈ Sd,

where χε := χEε
is the characteristic function of the set Eε. Similarly as before, one shows that vε = Js[uε]

is in Ws
1(Sd) and ‖vε‖Ws

1(Sd) = 1. Taking fbad,ε to be the continuous representative of vε in Ws
1(Sd), we 

arrive at

wce(Q[XN ];Ws
1(Sd)) ≥

∣∣∣∣∣∣
∫
Sd

fbad,ε(x) dμN (x)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Sd

B(s)
N (y)uε(y)dσd(y)

∣∣∣∣∣∣ ≥
∥∥∥B(s)

N

∥∥∥
∞

− ε.

Since ε > 0 is arbitrary, we have

wce(Q[XN ];Ws
1(Sd)) ≥

∥∥∥B(s)
N

∥∥∥
∞

.

The result follows. �
4.2. WCE inequalities

The following property holds for the worst-case error of a QMC method for generalized Sobolev spaces 
with the same s but different p.

Theorem 4.2. Let d ≥ 1, 1 ≤ p < p′ ≤ ∞ and s > d/p. For every N -point set XN ⊂ Sd,

wce(Q[XN ];Ws
p′(Sd)) ≤ wce(Q[XN ];Ws

p(Sd)). (4.8)

Proof. Let 1 ≤ p < p′ ≤ ∞ and s > d/p. Then one has the continuous embedding inclusions 
Ws

p′(Sd) ⊂ Ws
p(Sd) ⊂ C(Sd) and, in particular, ‖f‖Ws

p(Sd) ≤ c ‖f‖Ws
p′ (S

d) with c = 1 because of 
∫
Sd

dσd = 1
(Proposition 3.3 and Jensen’s inequality). Thus, the unit ball in Ws

p(Sd) is larger than the one in Ws
p′(Sd)

and the result follows from (1.4). �
As a consequence of Theorem 4.2 we provide the following proof.

Proof of Theorem 1.10. Let (XN ) be a QMC-design sequence for Ws
p(Sd), where 1 ≤ p < ∞ and s >

d/p. Then, there exists a constant c > 0 such that wce(Q[XN ]; Ws
p(Sd)) ≤ c N−s/d for all XN . Suppose 

p < p′ ≤ ∞. Then by Theorem 4.2,

wce(Q[XN ];Ws
p′(Sd)) ≤ wce(Q[XN ];Ws

p(Sd)) ≤ cN−s/d for all XN .

Hence by Definition 1.4, (XN ) is a QMC-design sequence for Ws
p′(Sd). �
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Next, we consider worst-case error interrelations for generalized Sobolev spaces with the same p but 
different s. In the Hilbert space setting p = 2 the reproducing kernel Hilbert space method gives a heat 
kernel representation of the worst-case error which leads to the following result.

Proposition 4.3. (See [9, Lemma 26].) Let d ≥ 1 and s > d/2. If wce(Q[XN ]; Ws
2(Sd)) < 1, then

wce(Q[XN ];Ws′

2 (Sd)) < cd,s,s′
[
wce(Q[XN ];Ws

2(Sd))
]s′/s

, d/2 < s′ < s, (4.9)

where cd,s,s′ > 0 depends on the norms for Ws
2(Sd) and Ws′

2 (Sd), but is independent of N .

The proof of Theorem 1.11 is based on the following Lq(Sd)-Bernstein type inequality.

Lemma 4.4. Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and s − d/p > τ > 0. Then the function B(s)
N for 

an N -point set XN = {x1, . . . , xN} ⊂ Sd with mesh ratio γ(XN ) satisfies∥∥∥B(s)
N

∥∥∥
Wτ

q (Sd)
≤ c [γ(XN )]d/p Nτ/d

∥∥∥B(s)
N

∥∥∥
q
, (4.10)

where c ≥ 1 depends only on d, p or q, s and τ .

We will provide a proof of (4.10) in Section 6.

Remark. Mhaskar et al. [17, Theorem 6.1, p. 1669] prove (4.10) for quasi-uniform XN . Our estimate holds 
for general sequences (XN ) but is specific to the kernel B(s)

N . An essential feature of (4.10) is the explicit 
dependence on the mesh ratio of the point set. This is of importance for determining the stability and error 
estimates, and thus is of independent interest.

Proof of Theorem 1.11. First, we note that for fixed x ∈ Sd the function φ(s′)(y) := B(s′)(x · y), y ∈ Sd, is 
in Lq(Sd) for s′ > d/p by Lemma 3.5. Then the identity (4.5) (with α = s′ and β = s − s′) gives

φ(s)(y) =
∫
Sd

B(s−s′)(z · y)φ(s′)(z) dσd(z), y ∈ Sd.

Consequently, B(s)
N given in (4.2) is the Bessel potential of B(s′)

N ∈ Lq(Sd) in the sense of Proposition 3.4. 
Hence, by Theorem 4.1, Proposition 3.4 and Lemma 4.4 (with τ = s − s′),

wce(Q[XN ];Ws′

p (Sd)) =
∥∥∥B(s′)

N

∥∥∥
q

=
∥∥∥B(s)

N

∥∥∥
W

s−s′
q (Sd)

≤ c [γ(XN )]d/p N (s−s′)/d
∥∥∥B(s)

N

∥∥∥
q

= c [γ(XN )]d/p N (s−s′)/d wce(Q[XN ];Ws
p(Sd)), (4.11)

where the constant c depends on d, s, s′, p. This completes the proof. �
5. Filtered Bessel kernel and proof of Lemma 3.5

In this section we use a filtered Bessel kernel to prove Lemma 3.5. Let d ≥ 1, s ∈ R. Given a filter h (i.e., 
a smooth function on R+ with compact support), we define the filtered Bessel kernel

B
(s)
h (T ;x · y) :=

∞∑
h
( 

T

)
b
(−s)
� Z(d, 
)P (d)

� (x · y), T ≥ 1, x,y ∈ Sd. (5.1)

�=0
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In the special case s = 0, so b(−s)
� = 1, the following results are known from [20]. The more general 

filtered Bessel kernel in (5.1) satisfies the following localization estimate.

Proposition 5.1 (Localized upper bound; cf. [6, Lemma 2.8]). Let h be a filter with support [1/2, 2]. For every 
positive integer n, there exists a constant cn > 0 such that for every T > 1 and s ≥ 0,

∣∣∣B(s)
h (T ;x · y)

∣∣∣ ≤ cn
T d−s(

1 + T 2 |x − y|2
)n/2 , x,y ∈ Sd. (5.2)

Note that the upper bound is a zonal function, since |x − y|2 = 2 − 2x · y for x, y ∈ Sd. The localized 
upper bound gives the following estimate in which s > d/p to ensure that we are dealing with continuous 
functions.

Lemma 5.2 (Lq(Sd)-norm of filtered Bessel kernel). Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p +1/q = 1 and s > d/p. 
Suppose h is a filter with support [1/2, 2]. Then there exists a constant c > 0 such that∥∥B(s)

h (T ; ·)
∥∥
q,d

≤ c T d/p−s, T ≥ 1. (5.3)

The constant c depends only on h, d, s and q.

Proof. First, let 1 ≤ q < ∞. Then

∥∥B(s)
h (T ; ·)

∥∥q
q,d

= ωd−1

ωd

1∫
−1

∣∣B(s)
h (T ; t)

∣∣q (1 − t2
)d/2−1 dt.

The change of variable 2u = 1 + t and the localized estimate (5.2) give

∥∥B(s)
h (T ; ·)

∥∥q
q,d

≤ G(T ) := 2d−1ωd−1

ωd

1∫
0

cqn T
q(d−s)

(1 + 4T 2 − 4T 2 u)qn/2
ud/2−1 (1 − u)d/2−1 du

for T > 1 and positive integers n. Rewriting the integral as

G(T ) =
[

cn T
d−s

(1 + 4T 2)n/2

]q
2d−1ωd−1

ωd

1∫
0

ud/2−1 (1 − u)d/2−1(
1 − 4T 2

1+4T 2 u
)qn/2 du,

we express G(T ) in terms of a Gauss hypergeometric function (cf. [22, Eq. 15.6.1])

G(T ) =
[

cn T
d−s

(1 + 4T 2)n/2

]q
2F1

(
qn/2, d/2

d
; 4T 2

1 + 4T 2

)
.

A linear transformation of hypergeometric functions [22, last of Eq. 15.8.1] yields

G(T ) =
[

cn T
d−s

(1 + 4T 2)n/2

]q (
1

1 + 4T 2

)d/2−qn/2

2F1

(
qn/2, d/2

d
; 4T 2

1 + 4T 2

)
.

Now choose n to be a fixed integer satisfying n > 2d/q. Because d − qn/2 < 0, the hypergeometric function 
part is strictly monotonically decreasing on [0, ∞) as a function of T . This can be seen from the integral 
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representation (cf. [22, Eq. 15.6.1]) of the hypergeometric function and the fact that 4T 2/(1 +4T 2) is strictly 
increasing on [0, ∞). Then

2F1

(
qn/2, d/2

d
; 4T 2

1 + 4T 2

)
≤ 2F1

(
qn/2, d/2

d
; 0
)

= 1.

We arrive at

∥∥B(s)
h (T ; ·)

∥∥
q,d

≤ cn
T d−s

(1 + 4T 2)d/(2q)
≤ cn

2d/q
T d(1−1/q)−s for T ≥ 1.

The result follows for 1 ≤ q < ∞.
Let q = ∞. Using the localized estimate (5.2), we get for any fixed positive integer n,

∥∥B(s)
h (T ; ·)

∥∥
∞,d

= max
−1≤t≤1

∣∣∣B(s)
h (T ; t)

∣∣∣ ≤ max
−1≤t≤1

cn T
d−s

(1 + 2T 2 − 2T 2 t)n/2
= cn T

d−s

for T ≥ 1. This completes the proof. �
In order to show that the Lq(Sd)-norm of the zonal Bessel kernel is bounded, we now strengthen the 

requirement on the filter h with support [1/2, 2] occurring in the filtered Bessel kernel (5.1), by assuming 
that

h(2t) + h(t) = 1 on [1/2, 1]. (5.4)

This condition is equivalent to saying that h has the partition of unity property (see [19]), namely

∞∑
m=0

h
( x

2m
)

= 1 for all x ≥ 1. (5.5)

Proof of Lemma 3.5. Let h be a filter with support [1/2, 2] and the partition of unity property. Then using 
(5.1) and (5.5), we get

∞∑
m=1

B
(s)
h (2m−1; t) =

∞∑
�=1

( ∞∑
m=1

h
( 


2m−1

))
b
(−s)
� Z(d, 
)P (d)

� (t) = B(s)(t) − 1, −1 ≤ t ≤ 1.

Then for s > d/p the triangle inequality and the filtered Bessel kernel estimate (5.3) yield

∥∥∥B(s) − 1
∥∥∥
q,d

=
∥∥∥ ∞∑

m=1
B

(s)
h (2m−1; ·)

∥∥∥
q,d

≤
∞∑

m=0

∥∥∥B(s)
h (2m; ·)

∥∥∥
q,d

≤ c

∞∑
m=0

(2m)d/p−s = c

1 − 2d/p−s
,

where c is the constant in Lemma 5.2. On observing that ‖1‖q,d = 1, we get

∥∥B(s)∥∥
q,d

≤
∥∥∥B(s) − 1

∥∥∥
q,d

+ ‖1‖q,d ≤ 1 + c

1 − 2d/p−s
.

This completes the proof. �
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6. Proof of Lemma 4.4

In this section, we prove the Bernstein type inequality (4.10) for the function

B(s)
N (y) = 1

N

N∑
j=1

B(s)(xj · y), y ∈ Sd,

which is central to the computation of the worst-case error (see Theorem 4.1).
In order to establish this result, we make use of the well-known Bernstein inequality for spherical poly-

nomials (see [16, Proposition 4.3] and [27, Theorem 2]).

Proposition 6.1. For d ≥ 1, 1 ≤ q ≤ ∞ and τ ≥ 0, there holds

‖P‖
Wτ

q (Sd) ≤ cq,τ,d n
τ ‖P‖q , P ∈ Πd

n, (6.1)

where Πd
n denotes the family of spherical polynomials on Sd of degree at most n.

We follow the general approach of [17], but with the crucial difference that we are able to replace a 
positive-definite assumption in [17] by the precise lower bound

∥∥∥B(s)
N

∥∥∥
q

= wce(Q[XN ];Ws
p(Sd)) ≥

c′p,s,d
Ns/d

> 0, s >
d

p
,

1
p

+ 1
q

= 1, (6.2)

which follows from Theorem 4.1 and the lower bound of Proposition 1.6. Our strategy is to approximate 
B(s)
N by spherical polynomials on Sd of degree 2m � N1/d that are convolution approximations of B(s)

N with 
filtered Bessel kernels. For a smooth filter h̃ with support [0, 2], to be specified below, we define (see (5.1)
and (3.16))

η0 ≡ 1, ηm := ηm,h̃ :=B
(0)
h̃

(2m−1; ·), m ≥ 1.

Then it can be readily seen that ηm ∗ B(s)
N is a spherical polynomial of degree 2m − 1. By (4.5), B(s)

N is the 
Bessel potential of B(s−τ)

N ∈ Lq(Sd) for s − d/p > τ > 0, so B(s)
N ∈ Wτ

q (Sd). The triangle inequality then 
gives

∥∥∥B(s)
N

∥∥∥
Wτ

q (Sd)
≤
∥∥∥ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)
+
∥∥∥B(s)

N − ηm ∗ B(s)
N

∥∥∥
Wτ

q (Sd)
. (6.3)

From (6.1) and (3.8) we deduce the following bound for the polynomial part:

∥∥∥ηm ∗ B(s)
N

∥∥∥
Wτ

q (Sd)
≤ cq,τ,d 2mτ

∥∥∥ηm ∗ B(s)
N

∥∥∥
q
≤ cq,τ,d 2mτ ‖ηm‖1,d

∥∥∥B(s)
N

∥∥∥
q
. (6.4)

The challenging part is to control the error of approximation ‖B(s)
N − ηm ∗ B(s)

N ‖Wτ
q (Sd). For this purpose 

we decompose the convolution of ηm against a function f ∈ Lq(Sd),

ηm ∗ f =
m∑

ψk ∗ f, ψ0 ≡ 1, ψk := ψk,h :=B
(0)
h (2k−1; ·), k ≥ 1, (6.5)
k=0
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where h is a filter with support [1/2, 2] and range [0, 1] that also has the property (5.4). We now specify h̃
in terms of h as follows2

h̃(t) :=
{

1 if t ∈ [0, 1],
h(t) if t ≥ 1.

Then it can be readily verified that

h̃
( 


2m−1

)
=

m∑
k=1

h
( 


2k−1

)
, 
,m ≥ 1,

which in turn implies (6.5). Furthermore, we note that by [19, Lemma 2.11]

m∑
k=0

ψk ∗ f → f as m → ∞ in Lq(Sd). (6.6)

Now, let s − d/p > τ > 0 and for x ∈ Sd set φ(s)(y) := B(s)(x · y). First, observe that

J−τ [φ(s)] = φ(s−τ), J−τ [ηm ∗ φ(s)] = ηm ∗ J−τ [φ(s)] = ηm ∗ φ(s−τ).

By linearity, these relations also hold for B(s)
N . Hence, by Proposition 3.3,∥∥∥B(s)

N − ηm ∗ B(s)
N

∥∥∥
Wτ

q (Sd)
=
∥∥∥J−τ [B(s)

N ] − J−τ [ηm ∗ B(s)
N ]
∥∥∥
q

=
∥∥∥B(s−τ)

N − ηm ∗ B(s−τ)
N

∥∥∥
q
.

Application of the decomposition relations (6.5) and (6.6) and the triangle inequality gives

∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)
=

∥∥∥∥∥
∞∑

k=m+1

ψk ∗ B(s−τ)
N

∥∥∥∥∥
q

≤
∞∑

k=m+1

∥∥∥ψk ∗ B(s−τ)
N

∥∥∥
q
. (6.7)

Defining

ψ
(s)
k := ψk ∗ φ(s) = B

(s)
h (2k−1; ·), k ≥ 1, (6.8)

we deduce

∥∥∥ψk ∗ B(s−τ)
N

∥∥∥
q

=

∥∥∥∥∥∥ 1
N

N∑
j=1

ψ
(s−τ)
k (xj · ·)

∥∥∥∥∥∥
q

≤ 1
N

N∑
j=1

∥∥∥ψ(s−τ)
k (xj · ·)

∥∥∥
q

=
∥∥∥B(s−τ)

h (2k−1; ·)
∥∥∥
q,d

.

Lemma 5.2 then yields (since s − τ > d/p and 2m � N1/d)

∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)
≤ c′

∞∑
k=m+1

(2k)d/p−(s−τ)

≤ c′′ (2m)d/p−(s−τ) ≤ c′′′ N1/p−(s−τ)/d. (6.9)

2 The partition of unity property implies smoothness at the transition point t = 1. The requirement that h̃ is 1 on [0, 1] implies 
that convolution with ηm reproduces a spherical polynomial of degree ≤ 2m−1.
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The upper bound in (6.9) is not strong enough to give the result in Lemma 4.4 except in the case q = 1. 
The following result will enable us to settle the other extremal case q = ∞; however, it requires geometric 
information about the point set.

Lemma 6.2. Let s′ > d ≥ 1. Then there is a constant c such that for every point set XN = {x1, . . . , xN} ⊂ Sd,∣∣∣∣∣∣ 1
N

N∑
j=1

ψ
(s′)
k (xj · y)

∣∣∣∣∣∣ ≤ c [γ(XN )]d N−1 2−k(s′−d), y ∈ Sd; k = m,m + 1,m + 2, . . . ,

where m := � 1
d log2 N� and ψ(s′)

k is given in (6.8).

Proof. The point set XN uniquely determines a Voronoi cell decomposition {R1, . . . , RN} of Sd with xj ∈ Rj . 
It has the property that min1≤j≤N σd(Rj) ≥ βd [δ(XN )]d for some constant βd depending only on d. Utilizing 
a Marcinkiewicz–Zygmund type inequality from [17, Corollary 4.6],∣∣∣∣∣∣

∥∥∥ψ(s′)
k

∥∥∥
1,d

−
N∑
j=1

σd(Rj)
∣∣∣ψ(s′)

k (xj · y)
∣∣∣
∣∣∣∣∣∣ ≤ c′

[
2kρ(XN )

]d
E2k−1(B(s′)), y ∈ Sd,

where En(f) := infP∈Πd
n
‖f − P‖1 is the error of best L1(Sd)-approximation by spherical polynomials on Sd

of degree at most n, we obtain∣∣∣∣∣∣
N∑
j=1

ψ
(s′)
k (xj · y)

∣∣∣∣∣∣ ≤ 1
min1≤j≤N σd(Rj)

N∑
j=1

σd(Rj)
∣∣∣ψ(s′)

k (xj · y)
∣∣∣

≤ 1
min1≤j≤N σd(Rj)

(∥∥∥ψ(s′)
k

∥∥∥
1,d

+ c′
[
2kρ(XN )

]d
E2k−1(B(s′))

)
.

Now, by Lemma 5.2, ∥∥∥ψ(s′)
k

∥∥∥
1,d

=
∥∥∥B(s′)

h (2k−1; ·)
∥∥∥

1,d
≤ c′′ 2−ks′

and proceeding similarly to the derivation of (6.9), we get

E2k−1(B(s′)) ≤
∥∥∥B(s′) − ηk−1 ∗ B(s′)

∥∥∥
1,d

≤ c′′′ 2−ks′ .

Hence ∣∣∣∣∣∣
N∑
j=1

ψ
(s′)
k (xj · y)

∣∣∣∣∣∣ ≤ c′′ 2−ks′ + c′
[
2kρ(XN )

]d
c′′′ 2−ks′

βd [δ(XN )]d

= 1
βd

[
ρ(XN )
δ(XN )

]d(
c′′

[2kρ(XN )]d
+ c′ c′′′

)
2−k(s′−d).

The parenthetical expression is bounded because (recalling k ≥ m) 2−k ≤ 2−m � N−1/d ≤ civρ(XN ). �
Lemma 6.3. Let d ≥ 1, 1 ≤ p, q ≤ ∞ with 1/p + 1/q = 1 and s − d/p > τ > 0, and XN an N -point set 
on Sd. Let m = � 1 log2 N�. Then we have
d
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∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)
≤ c [γ(XN )]d/p N−(s−τ)/d, (6.10)

where the constant c depends only on d, p, s and τ .

Proof. The case q = 1 is given by (6.9). It suffices to consider the case q = ∞, for then the case 1 < q < ∞
follows from the Riesz–Thorin theorem. By Lemma 6.2,

∥∥∥ψk ∗ B(s−τ)
N

∥∥∥
∞

= sup
y∈Sd

∣∣∣∣∣∣ 1
N

N∑
j=1

ψ
(s−τ)
k (xj · y)

∣∣∣∣∣∣ ≤ c [γ(XN )]d N−1 2−k(s−τ−d), k ≥ m,

and substitution into (6.7) gives as before

∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

∞(Sd)
≤

∞∑
k=m+1

∥∥∥ψk ∗ B(s−τ)
N

∥∥∥
∞

≤ c [γ(XN )]d N−1
∞∑

k=m+1

(2k)d−(s−τ)

≤ civ [γ(XN )]d N−(s−τ)/d.

This completes the proof. �
We are now ready to prove Lemma 4.4.

Proof of Lemma 4.4. For N ≥ 1, let m = � 1
d log2 N�. First, observe from (6.2) that ‖B(s)

N ‖q is positive. 
Hence, by (6.3) and (6.4),

∥∥∥B(s)
N

∥∥∥
Wτ

q (Sd)
≤

⎛⎜⎝cq,τ,d ‖ηm‖1,d N
τ/d +

∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)∥∥∥B(s)
N

∥∥∥
q

⎞⎟⎠∥∥∥B(s)
N

∥∥∥
q
.

By Lemma 6.3 and (6.2), the ratio is upper bounded by

∥∥∥B(s)
N − ηm ∗ B(s)

N

∥∥∥
Wτ

q (Sd)

/∥∥∥B(s)
N

∥∥∥
q
≤ c [γ(XN )]d/p N (τ−s)/d

c′p,s,d N
−s/d

= c′′ [γ(XN )]d/p Nτ/d.

Therefore ∥∥∥B(s)
N

∥∥∥
Wτ

q (Sd)
≤
(
cq,s,d ‖ηm‖1,d + c′′ [γ(XN )]d/p

)
Nτ/d

∥∥∥B(s)
N

∥∥∥
q
.

The result follows by observing with the aid of Lemma 3.5 that ‖ηm‖1,d is bounded uniformly in m. �
7. Example: the unit circle

In order to gain more insight into the covering problem, we turn to the unit circle S := S1 and exploit 
the fact that this one-dimensional manifold is more accessible than its higher-dimensional counterparts and 
appeal at the same time to the general principle that certain fundamental features are shared across changing 
dimensions. Circular designs (i.e. equally spaced points) on S are exact for all trigonometric polynomials 
with degree strictly less than the number of points. They form QMC-design sequences, that is, give rise to 
optimal order worst-case error for QMC methods that integrate functions from the Sobolev space Ws

p(S) for 
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every p ≥ 1 and every s > 1/p. One question then is: How much of the QMC-design property is destroyed 
when just one point is removed from each configuration?

We interpret Ws
p(S) as a Bessel potential space (see Section 3).3 The Bessel kernel for S then reduces to 

the Fourier cosine series

B(s)(cosφ) = B(s)(cosφ) − 1 = 2
∞∑
�=1

cos(
φ)
(1 + 
2)s/2

. (7.1)

The Lq(S)-norm of B(s) is bounded if s > 1/p with 1/q + 1/p = 1 (Lemma 3.5). The worst-case error of 
Q[XN ] of a node set XN ⊂ S can then be expressed in terms of an appropriate Bessel kernel (see Theorem 4.1
and the remark following this theorem). For the asymptotic analysis of the worst-case error we express the 
Bessel kernel in terms of generalized Clausen functions; i.e.,4

B(s)(cosφ) = 2 Cis(φ) + 2
∞∑

m=1
(−1)m

(s/2)m
m! Cis+2m(φ), (7.2)

where for Re z > 1 the generalized Clausen cosine and sine functions are defined as

Ciz(φ) :=
∞∑
�=1

cos(
 φ)

z

, Siz(φ) :=
∞∑
�=1

sin(
 φ)

z

which may be extended to the complex z-plane by analytic continuation.

Remark. By mapping the unit circle to the interval [0, 1), the functions in Ws
p(S) become Fourier series

f(x) =
∑
k∈Z

f̂(k) e2πikx.

In the Hilbert space setting (p = 2), a slight modification of the coefficients in (7.1) ((1 + 
2)−s/2 is changed 
to rs(0) := 1 and rs(
) := |
|−s for 
 ≥ 1), gives the standard Korobov space [28], which is a reproducing 
kernel Hilbert space with reproducing kernel

Ks(x, y) =
∑
�∈Z

rs(
) e2πi�(x−y) = 1 + 2
∞∑
�=1

cos(2π
(x− y))

s

.

Since 
s ≤ (1 + 
2)s/2 ≤ 2s/2
s for 
 ≥ 1, we have that the change of coefficients yields a space with 
equivalent norm. Numerical integration in (tensor-product) Korobov spaces is discussed in many papers, 
see [11, Section 5].

It is natural to study the Hilbert space setting (when p = 2) and the general non-Hilbert space setting 
(when p ≥ 1), separately.

7.1. Hilbert space setting

As described in [9], the strength (more precisely, the 2-strength) of a sequence (XN) of N -point sets on S
is the supremum of the indices s ≥ 1/2 for which (XN ) is a QMC-design sequence for Ws

2(S). In particular, 
the 2-strength of a sequence of circular designs XN with N equally spaced points as N → ∞ is infinite.

3 Alternatively, for p = 2 one can use the approach in [9].
4 We use the Pochhammer symbol to denote rising factorials: (a)0 := 1, (a)n+1 := (n + a)(a)n.
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Theorem 7.1. Let s > 1/2. A sequence of configurations of N equally spaced points after one point is removed 
(or a uniformly bounded number of points are removed) from each configuration is a QMC-design sequence 
for Ws

2(S) for every 1/2 < s ≤ 1 but not for s > 1; i.e., such a sequence has 2-strength 1.

Proof. Let s > 1/2. Then the Bessel kernel B(2s) is a reproducing kernel for the Bessel potential space 
Ws

2(S) and by the reproducing kernel Hilbert space approach the squared worst-case error of Q[XN ] of a 
node set XN = {(cosφj , sinφj)}N−1

j=0 ⊂ S has the form

[wce(Q[XN ];Ws
2(S))]2 = 1

N2

N−1∑
j=0

N−1∑
k=0

B(2s)(cos(φj − φk)). (7.3)

Let the points in XN be the equally spaced Nth roots of unity so that φj = 2πj/N , j = 0, . . . , N − 1. 
Such points are circular (N − 1)-designs and satisfy the following identities: let 
 = 0, 1, 2, . . . , then

N−1∑
k=0

sin 2π
k
N

= 0,
N−1∑
k=0

cos 2π
k
N

=
{
N if N | 
,
0 if N � 
,

(7.4)

where N | 
 means that 
 is an integer multiple of N (“N divides 
”) and N � 
 means that 
 is not 
divisible by N . Substituting (7.2) into the worst-case error formula (7.3) and using (7.4), straightforward 
computation gives

wce(Q[XN ];Ws
2(S)) = 1

Ns

(
2ζ(2s) +

∞∑
m=1

(−1)m
(s)m
m!

2ζ(2s + 2m)
N2m

)1/2

; (7.5)

i.e., we recover the fact that equally spaced points, indeed, form QMC-design sequences for Ws
2(S) for each 

s > 1/2.
Now, let ZN−M denote the collection of Nth roots of unity with the first M points omitted. Using (7.4), 

it is readily verified that

N−1∑
k=M

B(2s)( cos
(2πk
N

− φ
))

= 2N
∞∑
ν=1

cos(Nφ)
(1 + ν2 N2)s −

M−1∑
k=0

B(2s)( cos
(2πk
N

− φ
))
. (7.6)

Substituting into the worst-case error formula (7.3), we get

[wce(Q[ZN−M ];Ws
2(S))]2 = 1

(N −M)2
N−1∑
j=M

N−1∑
k=M

B(2s)( cos
(2πk
N

− 2πj
N

))

= 2N (N −M)
(N −M)2

∞∑
ν=1

1
(1 + ν2 N2)s − 1

(N −M)2
M−1∑
k=0

N−1∑
j=M

B(2s)( cos
(2πj
N

− 2πk
N

))
.

A second application of (7.6) gives

[wce(Q[ZN−M ];Ws
2(S))]2 = 2N (N − 2M)

(N −M)2
∞∑
ν=1

1
(1 + ν2 N2)s + M2

(N −M)2 B(2s)
N,M ,

where
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B(2s)
N,M := 1

M2

M−1∑
j=0

M−1∑
k=0

B(2s)( cos 2π(j − k)
N

)
= B(2s)(1) − 2

M2

M−1∑
ν=1

(M − ν)
[
B(2s)(1) − B(2s)( cos 2πν

N

)]

and

B(2s)(1) = 2
∞∑

m=0
(−1)m

(s)m
m! ζ(2s + 2m) = 2

∞∑
�=1

1
(1 + 
2)s/2

. (7.7)

Observe from (7.1) that the square-bracketed expression above is non-negative. Furthermore, one has

0 ≤ B(2s)(1) − B(2s)
N,M ≤

(
2

M2

M−1∑
ν=1

(M − ν)
)

max
0≤x≤2πM/N

[
B(2s)(1) − B(2s)( cos 2πν

N

)]
.

Since the parenthetical expression is bounded by 1 and the maximum tends to zero when M/N → 0, we 
arrive at

[wce(Q[ZN−M ];Ws
2(S))]2 = 2N (N − 2M)

(N −M)2
∞∑
ν=1

1
(1 + ν2 N2)s + M2

(N −M)2
{
B(2s)(1) + o(1)

}
.

Rewriting the infinite series, we finally arrive at

[wce(Q[ZN−M ];Ws
2(S))]2 = M2

(N −M)2
{
B(2s)(1) + · · ·

}
+ N(N − 2M)

(N −M)2

{
2ζ(2s)
N2s + · · ·

}
Let M = 1. Then for 1/2 < s < 1 we obtain the asymptotics

wce(Q[ZN−1];Ws
2(S)) =

√
2ζ(2s)

(N − 1)s

{
1 + B(2s)(1)

4ζ(2s) (N − 1)2s−2 + · · ·
}
,

whereas for s > 1 we have that

wce(Q[ZN−1];Ws
2(S)) =

√
B(2s)(1)
N − 1

{
1 + ζ(2s)

B(2s)(1)
(N − 1)2−2s + · · ·

}
.

We conclude that (ZN−1) is a QMC-design sequence for Ws
2(S) if and only if 1/2 < s ≤ 1; i.e., the 2-strength 

of (ZN−1) is 1. This completes the proof when one point is omitted. �
A similar but more tedious argument provides the leading term behavior of the asymptotics of the 

worst-case error when a finite number (uniformly upper bounded) of points are removed from a circular 
design.

Let ZN−M denote a configuration of N equally spaced points on S with M consecutive points removed. 
The hole thus generated in ZN−M has covering radius

ρ(ZN−M ) = π(M + 1)
N

. (7.8)

(Note that π/N is the packing radius of the N equally sized circular arcs making up S which is half of the 
minimal geodesic separation distance of points in ZN−M .) For our discussion we want to assume that the 
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hole size shrinks as N grows, so M/N → 0 as N → ∞. Theorem 7.1 covers the case when M is uniformly 
bounded. We now consider the case M → ∞ which is equivalent to Nρ(ZN−M ) → ∞ as N → ∞. Then the 
sequence (ZN−M ) does not have the optimal covering property. The next theorem shows that, despite bad 
covering, (ZN−M ) has 2-strength 1 if the artificially generated holes shrink rapidly enough. Interestingly, 
the sequence (ZN−M ) is not a QMC-design sequence for Ws

2(S) for s = 1. Moreover, if the hole size shrinks 
too slowly, then (ZN−M ) is not a QMC-design sequence for any s > 1/2. However, one can choose the 
asymptotic behavior of the covering radius to get as close as one likes to a QMC-design sequence for Ws

2(S)
for 1/2 < s < 1 (e.g., when the covering radius behaves like (log ◦ · · · ◦ logN)/Ns).

Theorem 7.2. Let s > 1/2 and (ZN−M ) be as above with M → ∞ and M/N → 0.

(a) If Nsρ(ZN−M ) → c for some real c ≥ 0, then (ZN−M ) has 2-strength 1 but is not a QMC-design 
sequence for s = 1.

(b) If Nsρ(ZN−M ) → ∞, then (ZN−M ) is not a QMC-design sequence for Ws
2(S) with s > 1/2. In partic-

ular, when 1/2 < s < 3/2,

wce(Q[ZN−M ];Ws
2(S)) =

√
B(2s)(1) ρ(ZN−M )

π
{1 + o(1)} as N → ∞,

where B(2s)(1) is the constant in (7.7).

Proof. We proceed along the same lines as the proof of Theorem 7.1 and determine the asymptotic (large N) 
behavior of the worst-case error for QMC methods based on node sets ZN−M for functions in Ws

2(S) with 
s > 1/2. Let ZN−M denote the collection of Nth roots of unity with the first M points omitted. For 
M/N → 0 as N → ∞, we obtained the following asymptotics in the proof of Theorem 7.1:

[wce(Q[ZN−M ];Ws
2(S))]2 = M2

(N −M)2
{
B(2s)(1) + · · ·

}
+ N(N − 2M)

(N −M)2

{
2ζ(2s)
N2s + · · ·

}
.

Now, let M grow with N such that M/N → 0 and M → ∞ as N → ∞. The unboundedness of M implies 
that Nρ(ZN−M ) = π(M + 1) → ∞ as N → ∞ and thus (ZN−M ) does not have the optimal covering 
property. However, for NsM/(N −M) → c as N → ∞ for some real c ≥ 0, we still have that

wce(Q[ZN−M ];Ws
2(S)) =

(
2ζ(2s) + c2B(2s)(1)

)1/2
Ns

{1 + o(1)} as N → ∞,

where B(2s)(1) is given in (7.7). Thus (ZN−M ) is a QMC-design sequence for Ws
2(S) for 1/2 < s < 1. (The 

upper bound on s is imposed by the unboundedness of M .) On the other hand, when NsM/(N −M) → ∞, 
then

wce(Q[ZN−M ];Ws
2(S)) =

√
B(2s)(1) M

N −M
{1 + o(1)} as N → ∞.

The last convergence relation for M is automatically satisfied for s ≥ 1 and gives a suboptimal convergence 
rate for the worst-case error when 1/2 < s < 3/2. The result follows by using the covering radius instead 
of M (see (7.8)). �
7.2. The general case p ≥ 1

We now leave the Hilbert space setting and consider Ws
p(S) for p ≥ 1. Let s > 1/p. By Theorem 4.1

the worst-case error for Q[ZN ] for a circular design consisting of the Nth roots of unity for Ws
p(S) is 
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given by the Lq(S)-norm of the function B(s)
N of (4.2). On the unit circle one can write with the help of 

(7.6),

B(s)
N (cosφ) = 1

N

N−1∑
k=0

B(s)( cos
(2πk
N

− φ
))

= 2
Ns

∞∑
ν=1

cos(Nφ)
(ν2 + 1/N2)s/2

.

Hence

wce(Q[ZN ];Ws
p(S)) =

∥∥∥B(s)
N

∥∥∥
q

= 2
Ns

⎛⎝ 1
2π

2π∫
0

∣∣∣∣∣
∞∑
ν=1

cos(Nφ)
(ν2 + 1/N2)s/2

∣∣∣∣∣
q

dφ

⎞⎠1/q

.

Dividing the integration domain into N parts and using the 2π-periodicity of the integrand, it follows 
that

wce(Q[ZN ];Ws
p(S)) = 2

Ns

⎛⎝ 1
2π

2π∫
0

∣∣∣∣∣
∞∑
ν=1

cosφ
(ν2 + 1/N2)s/2

∣∣∣∣∣
q

dφ

⎞⎠1/q

.

For large N , the series can be approximated by the generalized Clausen cosine function. A mean value 
argument ((x2 + ε)q/2 = |x|q + 1

2qε(x
2 + ε′)q/2−1 for 0 < ε′ < ε) gives that

wce(Q[ZN ];Ws
p(S)) = 2

Ns

⎛⎝ 1
2π

2π∫
0

|Cis(φ)|q dφ + O(N−2)

⎞⎠1/q

as N → ∞. (7.9)

Let ZN−M be the set of Nth roots of unity with M consecutive points omitted. Then (7.6) gives that

B(s)
N−M (cosφ) = 1

N −M

N−M∑
k=1

B(s)( cos
(2πk
N

− φ
))

= N

N −M

2
Ns

∞∑
ν=1

cos(Nφ)
(ν2 + 1/N2)s/2

− 1
N −M

M−1∑
k=0

B(s)( cos
(2πk
N

− φ
))
.

Similarly as before, we get

wce(Q[ZN−M ];Ws
p(S)) =

(
1
N

N−1∑
k=0

1∫
0

∣∣∣∣∣ N

N −M

2
Ns

∞∑
ν=1

cos(2πx)
(ν2 + 1/N2)s/2

− 1
N −M

M−1∑
j=0

B(s)( cos 2π(x + k − j)
N

)∣∣∣∣∣
q

dx
)1/q

.

Approximation with a generalized Clausen cosine function gives

wce(Q[ZN−M ];Ws
p(S)) =

(
1
N

N−1∑
k=0

1∫
0

∣∣∣∣∣ N

N −M

2 Cis(2πx) + O(N−2)
Ns

− M

N −M

1
M

M−1∑
B(s)( cos 2π(x + k − j)

N

)∣∣∣∣∣
q

dx
)1/q

.

j=0
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The asymptotic behavior of the worst-case error is determined by the limiting behavior of Nsρ(ZN−M ) as 
N → ∞. Similar results to the Hilbert space setting can be derived. We leave this to the reader. (Particular 
care is needed when both contributions between the absolute value signs are in “balance” for large N ; e.g., 
when M = 1 and s = 1.)
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