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1. Introduction and the nonlinear degenerate model

Let T > 0 be a fixed time and © be an open bounded subset of R, d = 2,3. We set Q7 := Q x (0,T)
and X7 = 9Q x (0,T). We consider the following nonlinear degenerate parabolic equation

Opu — div (a (u)Vu — f (u) V) = g (u)div (V) +a (w)Vu -V =0, in Qr. (1)
The boundary condition is defined by
u(x,t) =0, on Xr. (2)
The initial condition is given by

u(x,0) = ug (x), in Q. (3)
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Models for chemotaxis lead to such kind of degenerate nonlinear parabolic equation (1), where u represents
the cell density and V represents the gradient of the chemical concentration (see e.g. [13,1,8,16,7,17]), and in
the case of swimming bacteria, V represents the velocity of the fluid which transports the cell density and the
chemical concentration; in [16,7,17] the authors consider V as the Navier-Stokes velocity. In the chemotaxis
modeling, the functions a and f represent respectively the diffusivity of the cells and the chemosensitivity
of the cells to the chemicals. In the specific model in [13], the authors consider the case where the function a
degenerates at one side and consider also a relationship between the degeneracy of the functions a and f to
establish the existence and uniqueness of weak solutions. Here, we treat the case of two-sidedly degenerate
diffusion terms and consider a general model.

Many physical models lead also to degenerate nonlinear parabolic problem. For instance, in [10] the
authors analyzed a model of a degenerate nonlinear system arising from compressible two-phase flows
in porous media. The described system coupled the saturation (denoted by u) and the global pressure
(denoted by p). The global velocity (denoted by V) is taken to be proportional to the gradient of the global
pressure. In addition, the functions a and f represent respectively the capillary term and the fractional
flow and the velocity V is considered to be V = vV where v is a nonnegative parameter representing
the compressibility factor. Several papers are devoted to the mathematical analysis of nonlinear degenerate
parabolic diffusion—convection equations arising in compressible, immiscible displacement models in porous
media (see e.g. [12,18]). Here, we consider a generalization of the saturation equation where we assume that
the velocity field is given and fixed.

In the paper of Bresch et al. [2], the authors studied the existence of strong and weak solutions for
multiphase incompressible fluids models; indeed, they consider the Kazhikhov—-Smagulov system where the
density equation contains a degenerate diffusion term and first order term.

In [11], the main interest is a nonlinear degenerate parabolic equation where the flux function depends
explicitly on the spatial location for which they study the uniqueness and stability of entropy solutions;
the studied equation do not contain first and Oth order term. The type of equation (1) arising also in
sedimentation—consolidation processes [5,6,4] where the sought u is considered to be the local volume fraction
of solids, many constitutive equations imply that there exists a critical number w. such that a(u) = 0 for
u < u, which corresponds to the sedimentation step and a(u) > 0 in the consolidation step (see eq. (42)
in [5]). Consequently, partial differential equations of type (1) model a wide variety of phenomena, ranging
from porous media flow, via chemotaxis model, to traffic flow [20].

Our basic requirements on system (1)—(3) are:

(H1) a € €*([0,1],R), a(u) >0 for 0 <u <1,a(0) =0, a(l)=0.
Furthermore, there exist r; > 0, r9 > 0, my, My > 0, and 0 < u, < 1 such that

miru™ Tt < (u) < Myrpu™ Y, for all 0 < u < u,

—raMy(1 —u)™ " < (u) < —rema(1—w)™ 7", for all u, <u < 1.

(H2) f is a differentiable function in [0, 1] and g € € ([0, 1]) verifying

g(0)=f(0)=0, f(1)=g(1)=1, and ¢’ (u) >Cy >0 Yuecl0,1].

In addition, there exists ¢, ¢; > 0 such that |f (u) — g (u)] < couforall 0 < u < u, and ¢; (1 —u) ™' <
(f(w)—g@) ' <ea(1—u)™" forall u, <u< 1.
(H3) The velocities V and V are two measurable functions lying into (L (€2)).
(H4) The initial condition wug satisfies: 0 < ug (x) < 1 for a.e. x € Q.
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A major difficulty of system (1)—(3) is the possible degeneracy of the diffusion term. In assumption (H1), we
give the degeneracy assumption for the dissipation function ¢ and we determine the behavior of this degen-
eracy around 0 and 1. In what follows, we introduce the existence result of weak solutions to system (1)—(3)
(verifying a weighted weak formulation) under assumptions (H1)—(H4) and for a particular choice of the
initial data. However, for the specific case where the dissipation function a vanishes at only one point (i.e.
a(0) = 0 or a(1) = 0), we give the existence of weak solutions to system (1)—(3) in Remark 1.

In the sequel and for the simplicity, we assume that V =V (the same analysis is possible for the case
where V # V).

We give now the definition of weak solutions to system (1)—(3) when assumptions (H1)—(H4) are satisfied.

Let 0, A > 0, then we denote by jg.» the continuous function defined by

N B (u) = ur 10, if 0 <u < wu,
]9,)\ u) = _,__/_ T_/_
Bo(u) (1—u)' " 221 —w)2 " fu, <u<l,

(4)
where, for the fixed two constants r1 and ro, we have

r+2, ifr <1
r:{ ! P and 7’ > max (2,7). (5)

r1, ifry >1

We denote by Jp » the primitive of the function jg », that is

u

Jon = /ja,,\ (y) dy. (6)

0

Finally, we denote by 3, j, and J, the functions defined by

u

ﬂw:i/ﬂwdu (7)

0

url H0<u<u,
e« (1 f’u)%’1 ifu, <u<l,

B(u) = ur717 j(u) = {

where ¢, = u7 ' (1 — u,)'~ 7. In addition, we consider the continuous functions x and G, defined by

?wm—ﬁm» 0<u<u,
W () = (f (u) — g ()¢ (W) p(u), ue<u<l.

G is the primitive of p, that is G (u) = /u (y) dy.
0

Definition 1.1. For 6 > 7ri +6 —r, A > Tro + 6 — %/, and under assumptions (H1)-(H4) and assuming that
G(ug) € L' (Q), we say that u is a degenerate weak solution of system (1)—(3) if

0<u(x,t) <1forae. (x,t)€Qr=Qx(0,T),
J(u) € L2(0.T:Hy (9). v/a(u) i () Vu € (2 (Qr))”.

and such that, the function F' defined by

F(’LL7X):—/J9’)\ (u)thdxdt—/Jgﬁ)\ (uo(x))x(x,O)dx—l—/a(u)Vu-V(jg’)\ (u) x)dxdt
Qr Q Qr



948 M. Ibrahim, M. Saad / J. Math. Anal. Appl. 446 (2017) 945-969

+ / 0 (u) V - Vujon (u) x dxdt — / (f () — g () V-V (o.r () x) dx

Qr Qr
+ / § (W) V - Vo (u) x dxdi — / (f () — g () V - T fiox ()
Qr Qr
verifies
F(u,x) <0, VYxe% ([0,T);Hy () with x(-,7) =0and x >0, (9)

and furthermore,

Ve > 0,3Q° C Qr such that meas (Q°) < e, and

(10)
F(u,x) =0, Vxe%'([0,T);Hj (), suppx C ([0,7) x ) \Q°.

Theorem 1.1. Under assumptions (H1)-(H4), there exists at least one degenerate weak solution to sys-
tem (1)—=(3) in the sense of Definition 1.1.

Remark 1 (Classical weak solutions). Consider the specific case where a (u) ~ (1 —u)"™, 0 < ry < 2. Then,
a weak solution of system (1)—(3) can be characterized by a classical weak solution verifying

0<u(x,t)<lae inQp, uweL®(0,T;H;(Q) duel?(0,T;H " (Q)),

and such that, for all p € L2(0,T; Hj (Q))

T
/ (Oru; 0) jr-1(02), 12 () At + / a(u) Vu - Vedxdt — / fu) V- -Vedxdt
0 Qr Qr

+/g(u)V~chdxdt+/g'(u)V~Vucpdxdt+/a(u)V'Vugodxdt:O.
Qr Qr QT

Unless stated otherwise, C represents a “generic” nonnegative quantity which need not have the same
value through the proofs. Furthermore, C, represents a nonnegative constant depending only on the sub-
script a.

In what follows, we give an essential compactness result for degenerate problems, then we introduce and
give the existence of at least one solution for the nondegenerate problem associated with the degenerate
system (1)—(3). Finally, we prove the existence of solutions for the degenerate problem, and show that they
verify a weighted weak formulation.

2. Compactness result

Classical compactness results [19,14,15] for nondegenerate problems cannot be applied in a straightfor-
ward way for degenerate problems and they should be adapted to the nature of the degeneracy. Here, we
introduce a general preliminary compactness result on the gradient of a degenerate function.

Lemma 2.1. Consider the differentiable function a : [0,1] — R satisfying:

e a(0) =0.
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e there exist 1 > 0, my and My > 0 such that:

myru™ ™t <al (u) < Myru™ ™Y, for all 0 <u < 1.

Let us denote by A, B, and b the continuous functions defined by

Au) = /a(T) dr, B(u) = A2(u), b(u) =B (u) =24 (u)a(u). (1)

We denote finally by A, v = A(uy) — A(u,y) and By ,» = B(uy,) — B(u,y), for all n,n’ € N.
For every u > 0, define the truncation function T, by

T, (u) = min (u, max (—p,u)), YueR. (12)
Consider a sequence (uy), satisfying

(A1) 0 <, <1 almost everywhere in Q.
(A2) (uy), is strongly convergent in L*(Qr).
(A3) (a(uy)Vuy), is bounded in (L2(Qr))?.

(A4) / VA, - V(b(uy)T,(By,y))dxdt — 0, as p,n,n" — 0.
Qr

Then, the sequence (u% a (uy,) V“n)n 1s a Cauchy sequence in measure where ¢ = 3ry + 2.

n
up to extract a subsequence, that ud a (u,) Vu, — u?a (u) Vu for almost everywhere (x,t) in 2 x (0,T).

To do this, it suffices to prove that, for the two sequences (uy), and (u,),, we have

Proof. We want to show that the sequence (uq a(uy) Vu,,)n is a Cauchy sequence in measure; this yields,

meas{ IV A (1) = uf, VA (uy)| = 5} <e Ve (13)
First, remark that the sequences
(VA(uy)), , (VB (uy)), , (Vb (uy)), are uniformly bounded in (L? (QT))d. (14)

Indeed, we have the following estimates

IV A ()2t = lla (un) Vi [Epag e <
IVB (UW)H(QLZ(QT))d =24 (uy) VA (un)H?m(QT))d < (2M1)2 VA (Un)||(2L2(QT))d :

We have, from the definition of b, that Vb (u,) = 2a (uy,) VA (uy) + 2a’ (uy,) A (u,) Vu,. One can get the
result using the following statement

2 2
0 () A ()] < ME—"yri=tyri+t < ppzgzr < MEmg g,y < ME (15)
n ”_1r1+1" n —1n—m1n =y n):

Now, let s be the continuous function defined by

s(u) = /b(z) A(z)a(z) dz, Yu€eR. (16)
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Let us prove that the sequence (Vs(uy))y is a Cauchy sequence in measure, that is

meas {|Vs (uy) — Vs (uy)| > 0} —— 0.
n,n —0

Remark that {|Vs (u,;) — Vs (u, )| > 0} C o N e N afs N oy, where
 ={|VA(up)| =k}, oo ={|VA(uy)| 2k}, o ={|Byy|>p},
Ay = {|[Vs (uy) = Vs (uy)| 2 6} N {|[VA (ug)| <k} O H{[VA (uy)| <k} O] By | < i
Thanks to statement (14), and to the continuous embedding of L? (Qr) into L' (Qr), we have
kmeas (24) < / VA (u,)|dxdt < C.
oy

An analogous estimate holds for . Therefore, by choosing k large enough, one gets meas (<7 ) + meas (%)

is arbitrarily small. In the same manner, one gets

meas () < — || Byl 110, »

T

which, for a fixed u > 0, tends to zero as n,n" — 0.
It remains to show that meas (7)) is small enough. Indeed, we have

Vs (uy) = Vs (un/)‘z = [b(uy) A (uy) VA (uy) = b(uy) A(uy) VA (un/)‘z
= [b(up) A (un) VAyy + (b (uy) A(uy) — b (uy) A(uy)) VA (un’)|27
and therefore, one gets
dmeas () < [ |[Vs(u,) — Vs (u77/)|2 dxdt <2 [ |b(uy) A (uy) VA, ? dx dt
/ /

oy
+2/|b(un)A(un) — b () A () [PV A () |* dx dt
2y

<4017 [ B(y) (4 )+ A4 1)) VA - VA
oy
20 [ 1) A ) = b ) A )t
Qr

The parameter k is chosen to be fixed and large enough; then the last term that we denote Wy, (n,7’) goes
to zero as n,n" — 0. Consequently,

Smeas (y) < Wy, (1,1') + 4M7 / b(uy) (A(un) + A(uy)) VA, - VAnm'l{\Bn,n'K#} dx dt. (17)
Qr

We want to show that the second term on the right-hand side of inequality (17) is small enough. For that,
we compute
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VApy -V (b(“n)Tu(Bn,n’)) =b (“17) V Ay - VI, (Bn,n’) + VA, Vb (Un’) Ty (an’)
= b(up) (A (uy) + A(uy)) VAyy - VA1, 1<uy (18)
+ (b (un) Anay V (A (uy) + A (uy)) LB, i<uy + Vb (uy) Ty, (Bn,n’)) VA

Using the fact that |7),(-)] < p, and thanks to estimate (14) and to the Cauchy-Schwarz inequality, we get
the following estimate

Vb (uyr) Ty (B,ay) - VAn,n’H(Ll(QT))d < Cu,

and since |4, /| < Cu, where | B, /| < p, one deduces that

< Cp,

Hb (un) VAyy -V (A (un) + A(uy)) Ay 1B, 1<y H(Ll(QT))d

where C' is a generic constant independent of n and 7’. Consequently, from equation (18), one has

/ b (“n) (A (uy) + Auy)) VA, - VAnyn’l{lB,,,,,/\Su} dxdt < / VAV (b(uy)Tu(Byay))| + Cu,
Qr Qr

and thanks to assumption (A4), then inequality (17) gives
dmeas (1) < Wy, (n,1') + W, (n,1') + Cp.

Using the above results, one can deduce that for all € > 0, for all § > 0, there exists 19 > 0 such that for all
7, 77/ < Mo, We have

meas {|Vs (u,) — Vs (u,y)| >0} <e. (19)
Now, we can prove statement (13) with the help of inequality (19). Indeed, we have

WAV A () = VA () = ufV Ay + (=l ) VA ().

2
Since ¢ = 3r1 + 2, then ul = ud" 2 < C,., 1, b (uy) A (uy) where C,., 1, = (732#31)
my
We write
‘UZVAW]/ < Cry im0 (ug) A(uy) VA |
< Cryomy [V (ug) = Vs () 4 Cry o,y [0 (uy) A () = (usy) A () VA ()]
Consequently,

WAV A () =, VA ()| < |(uh = ) VA ()| + Copm [V5 () = T (1)

+ Cryma [0 (un) A (un) = b () A () VA ()],

which converges to zero as 1,7’ — 0. The result is due either to the convergence in L! (Qr) for the first and
the last terms on the right-hand side, or either by the help of (19). This ends the proof of Lemma 2.1.

The rest of the paper is devoted to the proof of the main theorem. In the next section, we introduce a
nondegenerate problem by adding an artificial diffusion operator.
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3. Existence for the nondegenerate case

In this section, we prove the existence of solutions to the nondegenerate problem. To avoid the degeneracy
of the dissipation function a, we introduce the modified problem where the dissipation a is replaced by
ap (u) = a(u) + 1 in equation (1), with 0 < n < 1 being a small parameter strictly positive.

Therefore, we consider the nondegenerate system

Opuy — div (ay (un) Vuy — f(un)V) — g (“n) div (V) +ay (uy) Vuy -V =0, in Qr, (20)
uy (x,t) = on Xr, (21)
Uy (%,0) = ug (x), in Q. (22)

We will show (using the Schauder fixed-point theorem) that the nondegenerate problem (20)—(22) has at
least one solution.

3.1. Weak nondegenerate solutions

For the existence of a solution to the nondegenerate system, we have the following theorem.

Theorem 3.1 (Nondegenerate system). For any fized n > 0 and under the assumptions (H1)—(H4), there
exists at least one weak solution u, to system (20)—(22) satisfying

0<u,(x,t) <1 forae (xt)€Qr, (23)

uy € L? (0,75 Hy (),  dyuy € L*(0,T; HH (),

and such that for all ¢ € L? (0,T; H§ (Q))

T
/ (Orury, ) H-1(9), HY(Q )dT—l—/cu7 (uy) Vu, - Vodx dt — /f uy) V- Vedxdt
0 Qr Qr (24)
+/g’(un)VoVung0dxdt+/g(un)V~Vgpdxdt+/an(un)VoVungodxdt:O.
Qr Qr Qr

Proof. The solutions to system (20)—(22) depend on the parameter 7. To simplify the notations and for
simplicity, we omit the dependence of solutions on the parameter 7 and we use u instead of u, in this section.
We will apply the Schauder fixed-point theorem to prove the existence of weak solutions to system (20)—(22).

It is necessary to use the continuous extension for the functions depending on u. For instance, we take
f(u)=g(u)=1forallu>1and f(u) =g (u) =0 for all u <0. Furthermore, we extend the dissipation a
outside [0, 1] by taking

a(u) =0, foru<0, and a(u)=a(l), foru>0.
For technical reason, we have that the velocity V to be more regular. However, we can regularize V by V.

such that divV. € L*(Qr) and V. — V in L?(Qr). Here, we omit this step and consider V € L*(Qr)
and divV € L*(Qr).
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8.1.1. Fized-point method
Let us introduce the closed subset # of L? (Qr) given by

H = {u € L*(Qr); llullfoe o112y + 77||U||2L2(0,T;H3(Q)) < A 0wl 20,7 m-1(0)) < B}-

The constants A and B will be fixed later. The set %" is a compact convex of L? (0,7 L* (2)) (the com-
pactness is due to the Aubin—-Simon theorem [19]).

Let 7 be a map from L? (0,7 L* (Q)) to L? (0,T; L? (Q)) defined by .7 (@) = u, where u is the unique
solution to the following linear parabolic equation

Oyu — div (ay (@) Vu — f(@)V) — g () div (V) + a, () Vu -V =0, (25)

with the associated initial and boundary conditions. The existence of a unique solution to problem (25)
is obtained using the Galerkin method [14,9]. Indeed, there exists a unique solution u to problem (25)
verifying: u € L? (0, T; H} (Q)), Oyu € L? (0, T;H™ ! (Q)) such that, we have the following weak formulation:
Vo € L*(0,T; Hj (),

T
/ (Ovu, 0) —1.(0), 13 (2 )dt—l—/an( ) Vu - V(pdxdt—/f YV - Vedxdt
0

Qr Qr (26)
+ / g (w)divVpdxdt+ / an (@) Vu - Vodxdt = 0.
Qr Qr

Lemma 3.2. .7 is an application from & to K .

Proof. Since u € L? (0,T; Hj (2)), one takes the solution u as a test function in the weak formulation (26),
and gets, for all ¢ € (0,T), that

Ei+ Ey; = E3 + E4 + Es, (27)
where
1 1 /
By = 4 Ju0)aey — 5 lolay, B2 = //a,, )V Vudxdr, Es— /g(u) div Vip dx dt,
0 Q Qr

E3—// ))Vu-Vdxdr, E;=-— //an ) Vu - Vudx dr.
0

We rely on the continuous extension of the functions f and g, the Cauchy—Schwarz, and the weighted Young

inequality, then one gets

t
Crg.Q
|E3|<//|f V- Vidxdr < 6]Vl g0 + 222 V]2 g0 (28)
0

where 0 is a constant to be specified later.
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In the same manner, we have the following estimate

t

C V
0

Now, we give an estimation for the last term on the right-hand side of equation (27). Indeed, we have

|E5|§/|g(ﬂ)divV<p\dxdt§C.
QT

Choosing the constant 6 = 7 and plugging estimate (29) into equation (27) one can conclude that

e (DN 720y + 7 IVl {r2iguye < Cr + Cz/HU(T)HiZ(Q) dt, (30)

where €y = €+ [Juol[Za(a) + *Z52% [ VI[{p g, s and Cs = .
From estimate (30), and thanks to Gronwall’s lemma, one can deduce that there exists a constant
C3 = C1exp (CoT) > 0 such that
HUHiQ(Qt) <Cs, Vte (O,T) . (31)
Plugging estimate (31) into estimate (30), one has

l (D72 + 1 Vullizzige < A, VE € (0,T),

where A = C 4+ C2C5. Consequently, one deduces that Hu||2Loo(0’T;L2(Q)) + 77Hu||2LQ(07T;H6(Q)) < A.
It remains to show the estimate on d,u. To do this, we take ¢ € L? (0,7 H} (€2)) as a test function into
the weak formulation (26), then one gets

T
/ (Opu, ) dt </|f )V - V<p|dxdt—|—/\an )| |V - (th+V<p)|dxdt—|—/|g )div V| dx dt
0 Qr Qr

< Crg IVIli2@rye IVOll 2@yt + Cam IVUll (12(07y)2 VOl (L2072 T Cov 1€l 1200

+ Cam,v IVUll(r2gryye 10l 120

Note that the Poincaré inequality implies the existence of a constant Cy > 0 (depending only on the
domain ) such that

el 2(qry < CallVell L2y

Therefore, one can deduce that

t
/ (Oru, @) dt| < BVl (12(0q))t-
0

This ends the proof of the lemma.
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Lemma 3.3. 7 is a continuous application.

Proof. Let (u,),, be a sequence of # and T € ¢ such that @, — U converges strongly in L? (0, T; L? ().
In order to prove the lemma, it suffices to show that

T (W,) = u, — 7 (W) = u converges strongly in L? (0,T; L* (Q)) .

For all ¢ € L? (0,7 Hg (2)), the sequence (uy,),, satisfies

T
/ (Opun, p) dt + / ay () Vuy, - Vodx dt — / f(un) V- -Vedxdt
0 Qr Qr (32)

+ /g(ﬂ) divVpdxdt + /“n (W) V- Vuypdxdt = 0.
Qr Qr

Let us denote v, by v, = u, — u. Then, we subtract equation (26) from equation (32), and take ¢ = v, as
a test function, and a parameter § > 0 that will be defined later, we get the following equation

> Hi=0, (33)

1<i<7

where

t
1
Hy = / (O, vn) dr = 2 on (Ol 20y Ha = /a,, () Vo - Vo drdx > 1 [Vou]22 0,01
0 Q:

H; = /(an (Tn) — ay (1)) Vu - Vo, drdx| < 0 ||an|| 2t t 45 | (an (Tn) — ay (@) Vu||?L2(Qt))d ,

Qt
1
Ha = | [ (@) = £ (@) Vo Vidrdx| £ 590alFyz 0 + 35 106 () = £ @) VI
Qt
1 .
s = | [ (9.@n) — 9 @) div Vo drax| < 81702 guppe + 35 16 () = 9 () div VI g0

Qt

_ C
Hy = /an (1) Vo - Vo drd| < 6 VenlZpa gyyy0 + 2 lonl 3o
Q:

Hy — /(a?7 () — ay (@) V- Vo, drdx| < 8[| VoalFpa gyt + Camv 1@y (@) — ay (@) Vaul? 2 -
Qt

Plugging these estimates into equation (33) and choosing § = {5, one can deduce that

_ 6C, i
o (1) < Ty (222 )

where C,, tends to zero as n — oo, which implies that
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u, — u strongly in L? (O,T; L? (Q))
This ends the proof of this lemma.

Using previous results and the Schauder’s fixed-point theorem, one can deduce that there exists at least
one solution to the nondegenerate problem (20)—(22) in the sense of Theorem 3.1. It remains to show that
the solution verifies the maximum principle.

3.2. Mazimum principle on the saturation

In this section, we aim to prove that the solution of the nondegenerate problem (20)—(22) is stable in the
sense of verifying the maximum principle. Specifically, we have the following lemma.

Lemma 3.4. Let u be a solution to the nondegenerate system (20)—(22) under the assumptions (H1)-(H}).
Then, the solution u satisfies

0<u(x,t)<1, forae (x,t)€Qr.

Proof. Let u~ be the function defined by v~ = max (—u,0) = ‘“‘Q_u > 0. Stampacchia’s Theorem ensures

that w= € L? (0,T; Hg (Q)) since u € L? (0, T; H} (€2)). Therefore, one can consider —u~ as a test function
into the weak formulation (26) to get

1
5l (t)||i2(ﬂ) +/an (u) Vu~ - Vu~ dxdt+/f(u)V~Vu’ dx dt
Q+ Qt
(34)
+ /g (u) div (V) u™ dxdt + /an (u) Vu™ - Vu~ dxdt = 0.
Qt Qt
We use the definition of the function a, and the degeneracy of the dissipation a to conclude that
[an ) Vum - um axde = [V Vardxde =g [ Tu g, (35)

Qt Qt

Furthermore, we rely on the continuous extension by zero of the functions f(u) and g (u) for v < 0, to
deduce that the third and the fourth terms in equation (34) are equal to zero.

Let us now focus on the last term of equation (34). Indeed, by the Cauchy—Schwarz inequality as well as
the weighted Young inequality, one has

t
Ca _
/a,, (1) Vu™ - Vu~ dxdt < g V7 [[F o g+~ / = ()| 97 (36)
Qt 0

Substituting estimates (35)—(36) into equation (34), this yields

t
™ O z2(0 + 1907 iz gy < C"’"*V/ ™ @llzage) dr
0

applying, the Gronwall lemma, one can deduce that u™ (x,t) = 0, for a.e. (x,t) € Qr, i.e. u(x,t) > 0, for
almost everywhere (x,t) € Qr.
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It remains to show that u (x,t) < 1, for a.e. (x,t) € Q7. To do this, it suffices to prove that (u — 1)+ =0.
Thus, we multiply the saturation equation (20) by the regular function (u —1)" € L2 (0,7 Hj (Q)) and
integrate the resulting equation over €2 x (0,t); this yields

sla-v o], + [awve-"vu-1" o
Q1
—/f(u)v.V(u—1)+dxdt—/g(u)div(V)(u—1)+dxdt+/a,,(u)vu-\f(u—1)+dxdt=o.
Q1 Q1 Qt

(37)

Now, we proceed as before and get the estimates for each term of equation (37).
For the third and the fourth terms of equation (37), by using the fact that f (u) = g (u) =1 for all u > 1,
one has

—/f(u)V~V(u—1)+dxdt—/g(u)div(V)(u—1)+dxdt:—/(u—1)+V-ndadt=O.
Qt Q1 S

For the last term of equation (37), we use again the extension by a (1) of the dissipation function a for
u > 1, the Cauchy—Schwarz inequality and the weighted Young inequality, and get the following estimate

/an(u)Vu-V(u—1)+dxdt:/an(u)V(u—l)'V(u—1)+dxdt

Qt Qt
2 C t 2
37 =07 5 [0t o)
<ZIVu-1 ~am,V 1
~2 (w=1) (L?(Qt>>2+ 2 (w=17(7) L2(Q)
0
Plugging the previous estimates into equation (37), one has
t
=07 @, #7007 g < o [ =070
-1 — ' — .
(= DO oy TV CICATR A N Pz 7
0

One can conclude, using the Gronwall lemma, that v (x,t) < 1, for a.e. (x,t) € Qr. This ends the proof of

Lemma 3.4.
The proof of Theorem 3.1 is now completed.

4. Proof of Theorem 1.1

In the previous section, we have shown that the nondegenerate system (20)—(22) admits at least one weak
solution. Here, we are going to prove Theorem 1.1, the proof is based on the establishment of estimates on
the solutions independent of the parameter 7, and next on the passage to the limit as 1 goes to zero.

From the definition (8) of the continuous function p, we have

Un

() = p (us) exp /(f (1) =g (r)"'g (7) | dr, for all uy > u..

U
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As a consequence of assumption (H2), there exist two nonnegative constants ¢z and ¢4 depending only on
/5 g, 1, and u, such that

es(1— un)_l < p(uy) < ea(1— u,,)_l7 Vs, < uy < 1 (38)

Indeed, we have

Uy Uy
1

p(us)exp | c1Cy / - TdT < p(uy) < p(uy)exp | c2 ||g/||oo/

U 5 U s

1
d
1—7 T

That is

e1Cy () (1~ w)
1—u,

€2 19"l oo (1) (1 — )
< < 0 .
= M(“n) = 1—u,
Denote c3 = ¢1Cy pu(us)(1 — uy) and ¢4 = 2|¢’||oopt(us)(1 — uy), then one obtains the confinement (38).
Now, using the confinement (38) of the function y and denoting by c5 = c1c3Cy and ¢ = caca |9 || o,
one can easily obtain that

Cs ’ Ce
— < < ———. 39
(1 . UW)Z S p (u"]) — (1 _ un)Q ( )
Lemma 4.1. Under the assumptions (H1)—-(H4), assume that G (ugp) fo y) dy belongs to L' (Q). Then
the solutions of the saturation equation (20) verify
(1) 0 <wy,(x,t) <1, for almost everywhere (x,t) € Q.
(i) The sequences (\/ (uy) a (un Vun> and (a (uy) Vu,7)77 are uniformly bounded in (L? (QT))d,
(iii) The sequences («/nu U Vun) and (VJ (uy)), are uniformly bounded in (L? (QT))d.
(iv) The sequence (G (uy)), is umformly bounded in L> (0,T; L' (Q)).
(v) The sequence (OrJ (uy)), is uniformly bounded in L (0, ;W14 (Q))
(vi) The sequences (J (uy)), and (uy), are relatively compact in L?(0,T; L* ().
Proof. The first part, (i), is obtained in section 3.3.
Now, we multiply the saturation equation (20) by p (u,) and integrate it over 2, then one gets
[ 6 uy)a (uy) |Vu,[*d " (uy) |Vu,[*d
T (up) dx + [ a(uy) p' (un) [Vup["dx +n [ 1 (uy) [Vuy|"dx
Q Q Q
= / (F () = 9 ) 1 () Vit - Vil = [ () 1) Vit - Vidx (10)
Q
/a w(uy) Vu,, - Vdx — n/ﬂ(un)Vun - Vdx.
Q Q

We denote 1 = QN {u, < u,} and Qo = QN {u, > u,}; then we can split the whole integral appearing in
equation (40) into two parts, so we write / = / + /

Q QN{u, <us} QN{un>u.}
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e Into region €2y, recall that u = u"~! where r is defined in (5), and using assumption (H1), we obtain the

following estimates

|6 () = g ) (1) Vit Vidx = [ g () ) V- Vx|
Q Q

714 2)2
+(ea(r—1
- H %Un (o Vun +8||9 5 + (ea(r 2) ) VI L2,y
=1 (12(01))" (ma(r — 1))
and
e a () lall%,
/ (un) p (uy) Vu, - Vdx| < — H (un) a(uy Vun ] ) +4(m - 1) HVH?L2(Q1))’13
& (L2(Q1)) 1
1 2
uy) Vu, - Vdx| < = uy)Vu + — |V .
/ (un) Vuy H\/ e (un) Vy, | 20— 1) V12012

e Into region (9, and from the definition (8) of the function p, we have

/((f (un) = g (ug)) ' (ug) = g' (uy) p (uy)) Vi, - Vdx = 0.

Qo

Furthermore, thanks to estimate (39), we have the following estimates

/a(un)u(un)Vun-de < Hmm

Qo

2
(L2(2))¢ + OV @ae

and

| /\

n/y (uy) Vu,, - Vdx
Qo

H\/nu Uy Vu77

Plugging the previous estimates into equation (40), one has

/G Uy dx+H1/ (uy) a (uy Vun

2
T ClIVI(L2(0s))
L2 Qz

<C.

"1/77# Uy Vun

(L2@)? r2@)?

(41)

Now, we integrate inequality (41) with respect to the time over (0,t), ¢ € (0,7); one deduces that the
sequences (\/ W (uy)a (u,,)Vu,,) and ( nu’ (uy) Vu,]) are uniformly bounded in (L? (QT))d, and that
7 n

(G (uy)),, is uniformly bounded in L* (0,73 L' (2)).

Let us prove that (a (uy) Vuy), and (VJ (uy)), are uniformly bounded in (L? (QT))d. Indeed, since

r > 7y then for all 0 < u,, < u, <1, we have

a(up) ' (uy) >mq (r—1) uzluT72 >my(r—1)u 2>y (r—1) w22 > mq(r — 1)j2 (),

n
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where j is the function defined by (7) and for all u,, > u,, we have

a (ug) ' (un) = mu (1 =)™ (up) ' (uy) (f (un) = g (ug)) ™ = esma(l—uy)™

> % ((1 _ u*)15>2 ((1 . un)rz/l)2 > O (uy).

2

<C
L2Qr)*

Therefore, HVJ(UU)H?LQ(QT))d <C H\/,u/ (uy) a(un)VunH

For the sequence (a (u,) Vuy),, it is easy to see that

M,

a(uy) < My < My ™ < —

W o(uy), if 0 < uy <y,

. _ M
a(uy) < Mi(1—upy)? < Mi(1—uy) SR (up), if u, <wuy <1
Cs

As a consequence, the sequence (a (uy) Vuy), is uniformly bounded in (L? (QT))d.

Let us now focus on the fourth part (iv). We want to prove that
(0¢J (uy)), is uniformly bounded in L? (O, T; (H' (Q)),> + LY Q7).

We take a test function y € L? (O,T;H& (Q)) N L (Q7) and multiply the saturation equation (20) by
J (uy) x; this yields

(&J(u,ﬂ,x}:—/a(un)Vun-V(j(un)x)dxdt—n/Vun-V(j(un)x)dxdt

Qr Qr

+ / (f (up) = g (uy)) V-V (5 (uy) x) dx dt — / ' (uy) Vg - Vj (uy) x dx dt (42)
Qr Qr

- / a (uy) Vuy, - Vj (uy) xdxdt —n / Vu, - Vi (uy,) x dx dt.
Qr Qr

We will give estimates on each integral on the right-hand side of equation (42).
Into region Q7 N {u, < u.}, we have j(u,) = p(u,), thus we give estimates on each integral of the

form / on the right-hand side of equation (42) which we denote by I;, 1 < i < 6. To obtain the

QrN{uy<u.}
estimates, we use the Cauchy—Schwarz inequality. For the first term, we have

11 = [ o) Vg - (= 1) 02V 19| et
Qr

<Cra / |a (uy) u:szun . Vunx| dx dt + / |u;71Vu77 . Vxl dx dt
Qr Qr

2

va (uy) uy*Va,
(L2(Qr)

< Cr,a

r—1
o HXHLoc(QT) + Hun VUUH(L2(QT))d||VXH(L2(QT)){L
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In the same manner, we have the estimate on the second term

B < [ |n9u, (= D uy Va1V dxde
Qr

<Cra nui}_gvun

r—1
(LQ(QT))d HX||LOO(QT) + Huﬁ vunH(L2(QT))d||VXH(L2(QT))cL.

The third term is estimated, with the help of assumption (H2) and the Poincaré inequality [3], as follows
|75 < / ’(f (un) — g (uy)) V- ((7“ -1 uZ_QVunX + u;_1VX)‘ dxdt
Qr

2 —
< CT,QHV”(LOC(QT))d (Hun 1vu?7||(L2(QT))d + 1) ||VXH(L2(QT))d'

Similarly, we have
r— r— 2
L] < / |9 (uy) up ™V, - Vx| dx dt < Cyr o (Hun 1VunH(L2(QT>)d||V||<LOO<QT))d) VX (z2(@ryye-
Or

Finally, the last two terms are estimated as follows

|I5—|—Ig\§/|a(un)u:,*1Vun~Vx|dxdt+/‘nuffqun-Vﬂdxdt
Qr Qr

< Casa (1057 Vunll 2 me IVI e @ ) 19X 22y

It remains to estimate the terms of the form / that we denote by {L;}1<i<¢ respectively.

Qrn{un>us}
For the first term L, we have

|L1] < / la (un)j’ (uy) Vuy, - Vuyx| + |a (uy) j (uy) Vu, - Vx| dxdt

QrN{un>ux}
< H\/jl (1) @ (11) Vit

On the other hand, using the definition of u and j, we have, for all u, < u, <1, that

2
(120 HXHLoc(QT) + lla (uy) VJ(UU)H(L2(QT))d HVX“(L?(QT))d'
T

/

7l = (5 = 1) 80 (0= ) ()5 2 Co 1= ) 4 ),

thus, thanks to parts (i)—(iii), one deduces that |L1| < C (”X”LOO(QT) + ||VX||(L2(QT))d).
In the same manner, we obtain the estimates on the remaining terms except the estimate on L3. Indeed,
using assumption (H2) on f and g, one has

1

f(uy) =g (uy) < . (1—u,), Vi, <u, <1,
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and therefore, we obtain the following estimates

IN

/ (f (uy) — g (Un))J/ (uy) Vuy, - Vxdxdt é / |7 (un) Vg, - Vx| dx di
Qr Qr

IN

1
EHVJ (Un)H(Lz(QT))d||V||(L2(QT))d||X||Loo(QT)7

and

/ (f (un) — g (un))j (un) V- Vx dxdi| < C||V||(L2(QT))d||XH(L2(QT))d-
Qr

Plugging the previous estimates into equation (42), one gets

[0 (un) , x)| < C (||X||L°°(QT) + HXHL2(0,T;H(}(Q)))~

One can conclude the proof of part (iii), using the embedding of the Sobolev space W4 (Q) C H{ () N
L (Q) for ¢ > d, and consequently, one has

L= (0,T;Wh9(Q)) € L* (0,T; H' () N L™ (0,75 L* (), Vg > d.

To complete the proof of the lemma, we remark that the sequence (J (un))77 is lying into the Sobolev space
W = {J (un); J (uy) € L2 (0, T3 HE () and 8, (u,) € L} (O,T; WoLd (Q)) }

Thanks to the Aubin—Simon theorem, % is compactly embedded in L? (Qr), and the sequence (.J (uy)),, is
relatively compact in L? (0,7 L? ().

Since the differentiable function J is nondecreasing, then J~! exists and it is continuous, then the sequence
(“n)n is relatively compact in L2 (O, T; L? (Q)) The proof of Lemma 4.1 is now accomplished.

Lemma 4.2. Let ¢; = 311 +2 and g3 = 3ro+2, where r1 and ro are given in assumption (H1). The sequences
(Lgu, <u.yulta (uy) Vun)n and (1gy,>u.3 (1 — uy)® a (uy) Vu,,)q7 are two Cauchy sequences in measure.

Proof. In order to prove Lemma 4.2, we rely on the compactness result given in Lemma 2.1. Indeed, thanks
to Lemma 4.1, one deduces that the sequence (uy), verifies assumptions (A1)-(A3). Then, it suffices to
show that

/ VA, V(b(uy)Tu(By,y))dxdt — 0, as p,n,n" — 0. (43)
Qr

Let us prove statement (43). For that, we consider the primitive ©, of the truncation function 7},, defined
by

O, (u) = /Tu (r)dr, VueR, Vu>0. (44)
0

We subtract the equations (24) satisfied by (u,,)n and (un/)n,, then we multiply by o, = b(uy,) T, (Byy)
and o, = b (uy ) T, (By,y) respectively, to get
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/@M (By, (t,x))dx + / (VA (uy) - Vo, —VA(uy) - Vo, ) dxdt
Q Qt
~ [ (wa) = g () V- V3 = (7 1) = (1)) V - Vory)
Qt
— / (¢ (uy) Vuy, - Vo, — ¢’ (uy) Vg - Vo, ) dx dt
Qt
- n/Vun Vo, dxdt + n'/Vu,,r Vo, dxdt
Qt Qt
- / (VA (uy,) - Vo, — VA(uy) - Vo, ) dxdt
Q
-n / Vu, - Vo, dxdt + ' / Vu, - Vo, dxdt.
Q Qt

We denote by I;, i = 1,7, the integrals on the right-hand side of equation (45), and let (6,7)77, <677')n” (Vn)n,
and (Vy),, be the sequences defined by

677 = (f (un) -9 (un)) ) 577’ = (f (’U,n/) -9 (un’)) ) Vn = 577V, Vn’ = 6n’v'
Using the dominated convergence Lebesgue theorem, we get

”VT/ - VU'”(L?(QT))d = H(f (un) -9 (un)) A\ (f (U'n/) -9 (U'n/)) VH(Lz(QT))d —— 0. (46)

n,n'—0

Now, we give estimates on each term on the right-hand side of equation (45). For the first term, we have

V,-Vo, =V Vo, = (V- Vb(uy) = Vi - Vb (uy )T (By ) + (Vb (uy) — Vb (uy ) VT, (Byy)

) :
= (Vi Vb(uy) = Vi - Vb (uy)) T (Bw) + (Vg = Vi) b (uy) VT, (Byy)
+ (b (uy) = b(uy )V - VT (Byyy )

As a consequence,

(L < [(Vy - Vb (uy) = Vi - Vb (uy)) Ty, (Bnm’)HLl(QT)
+ ||b||L°°(QT) an - Vy H(LZ(QT))d HVTM (BTIJ]')H(L?(QT))d (47)

+ 16 (ug) — b (uy)) Vi - VT, (Bnﬂ?/)”Ll(QT).
The first term on the right-hand side of inequality (47) is estimated as follows

H(Vn Vb (“n) —Vy - Vb (“n’))Tu (Bn,n’) HLI(QT)

< C IVl @y 1T B iz (179 @ndllgaqryys + IV ()l oy )

Taking into account the uniform boundedness in (L? (QT))d of the sequence (Vb (uy)),, and the following
overestimate |T), (By,,)| < p, one has



964 M. Ibrahim, M. Saad / J. Math. Anal. Appl. 446 (2017) 945-969
. /
(Vs - Vb (uy) — Vo - Vb (uy)) T, (Bﬂm’)”Ll(QT) #TO> 0, uniformly on 7,7’

It is easy to see, using the convergence (46), that the second term on the right-hand side of inequality (47)
tends to zero as 7,7 — 0. Using the boundedness of the function b, one has [[(b (uy) = b (uy)) Vi [l 12(g,)4
tends to zero as 1,7 — 0. One can conclude that the last term on the right-hand side of inequality (47)
tends to zero as n,n’ — 0.

For the second term on the right-hand side of equation (45), we have using the definition of the function b
that is

g (uy) Vg - Vb (uy) Ty (Byy) — 9 () Vg - Vb (uy) Ty (B )
= (9" (uy) V- VB (uy) — g" (uy) V- VB (uy)) Tpu(Biwy ),

and consequently,

121 < Cyry W (B iy (198 ()lgrys + 195 () arys) 77 O

For the third term I3 on the right-hand side of equation (45), we write
Vg, -V (b(uy) Ty (Byy)) = 2V A (uy) - VA (uy) Ty, (Byy ) + 2A (uy) - VA (uy) VT, (Byyy)
+ 24 (uy) @' (uy) Vg, - Vu, Ty, (By ).

Using the uniform boundedness of the sequences (VA(uy)),, (VB(uy))y, and (Vb(uy)),, one can deduce
that |I3| < Cn, for some constant C' > 0 independent of 1 and 7’. Therefore, |I3] — 0 as 1,7’ — 0. Similarly,
we prove that |I] < Cn’ — 0 as n,n’ — 0. For the fifth term I5 on the right-hand side of equation (45), we
write

I = [ VA () VO ) i (Ba) = VA () VB () T, (B
Qt

— [ (@) V- TB () = ) V- VB (1)) T (B e,
Q:

Obviously, we have
15| < [[(a(uy) V- VB (uy) = a(uy) V- VB (uy)) T, (Bnﬂv/)”Ll(QT) < Cp.

Finally, for the last two terms of equation (45), we have

/Vu77 - Vb (uy) T, (B ) dxdt =2 / VA((uy) - VA(uy) T, (By,,y) dx dt.
Q1 Q

As a consequence,

1Zs| < n(IVA un)ll L2 @ry2 I V2200 pye Min) < Cn e 0.
Similarly, we prove that |I;| < Cn — 0 as ,n’ — 0 for some constant C' > 0 independent of n and 7'.
We denote by W, (n,1") the right-hand side of equation (45) and by V' (u) the firm term on the left-hand
side of the same equation; from the estimations on the integrals I;, W, (n,7") goes to zero as n,n" — 0, for
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all g > 0. We also have |V (u)| < |Q| i, which goes to zero as p — 0 and uniformly on 7 and n’. Therefore,
we have the following result stemming from equation (45) and the aforementioned definitions

/(VA (uy) - V(b (wg) Ty (By)) = VA (uy) - V (b () Ty (Byy)))dx dt= W, (n,0') + V (). (48)
Qr

One can get the convergence result (43) using equation (48) and the following equation

[ TV (b T, (B
Qt
= [ (VAG0) T (b Ty (Bray)) = VA L) -5 (b)) Ty (By)
Qr
= [ T ) T (b lug) = b)) Ty (B
QT

= [ ) = D) TA () Ve, e
Qr

that leads to

/VAW,/ -V (b(uy) Ty (By,y)) dxdt —— 0.

Qt
Applying Lemma 2.1, one gets that for all n,7" < 1y, we have meas{|Vs (u,) — Vs (u,)| > §} < e, where
Vs(uy) = b(un)A(u,)VA(u,). Now we have

l{ungu*}ugf VA (Un) — l{ungu*}ugﬁ VA (un/)
= 1{un§u*}’u%l VA??J?’ + (1{ungu*}u%1 — l{ungu*}uf7}> VA (un/) .

The last term of the previous equation goes to zero as  and 1’ go to zero in L' (Q7).

Since g1 = 3r1 + 2, then 1{“n§u*}u%1 = 1{u77§u*}u§]7l1+2 < Oﬁ,mll{“nﬁu*}b(un)A(un) where Cy, m, =
(7“1 + 1)2

2m3
We write
|1{un§u*}ug]1 VAn,n’ < CT17m1b (un) A (“n) ‘VAW»W’ |
< Crymy [V (uy) = Vs ()| + Cry iy (b (un) A (un) — b (uy) A(uy)) VA (ury)].
Consequently,

‘1{%9*}@1; VA ()~ L, <uy ult VA (uy)

< ’(l{ungu*}ugi — 1{un,§u*}ug,l) VA (’U,,,]/)

+Crioma Vs (un) — Vs (“n’)| +Cri s (b (un) A (un) =b (un’) A (un’)) VA (un’)‘-

(49)

One can conclude that the right hand side of inequality (49) goes to zero as n and 7’ go to zero. Therefore, the
sequence (l{ungu*}ugla (uy) Vztn)?7 is a Cauchy sequence in measure. In the same manner, one proves that
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(Lu,>uyl —u?fa(u,,)Vun)n since 1y, >u 3 u® = 1y, >uyup > < Cry oy 1w, >0y b (ug) A (uy,) where
Cy, m, is a constant independent of 7.

4.1. Convergence and identification as a weak solution

To conclude the proof of Theorem 1.1, we deduce from Lemma 4.1 and Lemma 4.2, that we can extract
a subsequence such that we have the following convergences

0 <wu(x,t) <1 for almost everywhere (x,t) € Qr,
U, — u strongly in L?*(Qr) and a.e. in Qr,
a(uy)Vu, — a(u)Vu weakly (L? (Q;p))d7

J (uy) — J (u) strongly L* (Qr),

J (uy) — J (u) weakly in L* (0,T; Hy (€)),

v a(uy) i (ug)Vuy, — /a(u) @/ (u)Vu weakly in (L? (Q;p))al7

1{un§u*}ugla (up) Vi, — liy<y,yu®a (u) Vu a.e. in Qr,

L, w3 (1 —uy)® a(uy) Vg — 1py>a,y (1 —u)® a(u) Vu ace. in Q.

We consider the following weak formulation

- / Jox (uy) Opx dx dt — /Jg)\ (ug (x)) x (x,0) dx

Qr Q
+ / a (uy) Vg - Vig s (uy) x dx dt + / a (uy) Vg, - Vo (uy) dx dt

Qr Qr
+n / Vg, - Vg (uy) xdxdt +n / Vg, - Vxjox (uy) dxdt

Qr QT (51)

[ ) = 9 )V o () xdxdt [ g (1) V- T () x s

Qr Qr
- / (f (uy) — g (uy)) V- Vxgo (uy) dx dt + / a(uy) V- Vugjox (uy) x dx dt

Qr Qr

+1n / Vu, - Vig (uy) xdxdt =0, Vx € ¢ ([0,T]; Hy () with x (T,-) = 0.
Qr

By splitting these integrals into two sub integrals, we denote by L;, ¢ = 1,...,11 the integral terms of the
form / in (51).

Qrn{uy<u.}
From the definition (4) of the function jg x, we have

a (uy) Vg, - Vxjox (uy) dxdt = / u:fqun ula (u,) Vx dxdt.

n
QrN{u,<u.} Qrn{uy<u.}
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The sequence (u;_1Vun)n converges weakly towards u” ' Vu in (L2 (QT))d. Further, thanks to Lebesgue’s

(%
n

convergences of terms L4, and Lig. In the same manner, we obtain the convergence of Lg 4+ Lg towards

theorem, the sequence (u a (uy) Vx)n converges strongly towards u’a (u) Vy in (L2 (QT))d; this gives the

J V- Vujos xdxdi— [ () =g () V- Vs (u) dxcr
QTQ{UWSU*} QTm{ungu*}
Let us focus on the seventh term L7 of equation (51). Since 6 > 1, then we define 6y = 6 — 1 > 0. Therefore,

using the dominated convergence Lebesgue theorem and the weak convergence (50), one has

L;=—(r—1+86) / u;;_1Vu,, -Vuf;‘) (f (uy) — g (uy)) xdxdt

Qrn{uy<us}

— (f (w) — g (u)) V- Vi (u) xdxdt.

n—0
QTm{un <y }

For the fifth term, we have

|Ls| =1 / Vuy, - Vig (uy) x dxdt| = Cn / |u;72+exvuy, . Vun‘ dx dt

QrN{u,<u.} Qr
<Cn / ul =2 |V, [* dx dt + / ul 2 (Vg * dx dt | [1x] e )
Qrn{u,<n?v} Qr{u,>n2r}

< (et et

As a consequence, |Ls| — 0, as n goes to zero.

i r—1
(L2(Qr))? JrCT]? ||u?7 vuTl||(L2(QT))d> HX“LOC(QT)'
T

The convergence to zero for the sixth and the last terms is similar to that of L;. Indeed, we have

|Le| =n / Vuy, - Vxjo (uy)dxdt| =n / u;_1Vu,, . uf,Vx dx dt
Qrn{u,<u,} Qrn{uy<u.}

-1 .
30“““; V“nH(m(QT))d||VX||(L2(QT))d =0 0.

Now, let us show the convergence for the remaining terms of the form

QTm{un 2“*}

We have that the sequence (a (uy,) Vuy), converges weakly in (L? (QT))d towards a (u) Vu and the
sequence (VX jo,x (uy)), converges strongly in (L (QT))d towards Vx jig.x (u), then

a (up) Vuy, - Vx jox (uy) dxdt —— a (u) Vu - Vx jox (u) dx dt.

n—0
{un>u.} {uu.}

Furthermore, we have
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n / Vo, - Vi (uy) x dx dt| = C’n/ ‘(1 — un)%_2+>‘x Vauy, - Vu, | dxdt
QT

{un>u.}

<o / ’(1 —uy)?"x V- Vun‘ dxdt < Cnlla (un) Vugll p2(gpy)a IXI Lo (@)
Qr

As a consequence

n / Vo, - Vig (uy) x dx dt m 0. (52)

{“772“*}
In the same manner, we can prove the convergence of the remaining terms on the right-hand except for the
third term. Indeed, this term exhibits a product of a sequence which converges weakly in L*(Qr) and a
sequence that we cannot prove its strong convergence. However, using the convergence almost everywhere
of the sequences 1y, <y, yudta (uy) Vuy and 1y, >4,y (1 — upy)®a (uy) Vu,, we can get a result on the con-

vergence of the third term. To do this, we remark that (a (u,) Vuy - Vjgx (uy)), is a nonnegative sequence
and into region 21, we have

a(uy) Vg, - Viga (uy) = (r—1+6) u:fzwa (un) Vuy, - Vuy,

converges almost everywhere, up to a subsequence, to a (u) Vu - Vjg » (u), since r —2 460 —2g —r1 > 0, i.e.
0>Tr1+6—r.
In the same manner and into region €25, we have

a (uy) Vi, - Viga (uy) = ¢ (uy) (1 — un)%fﬂ/\ a(uy) Vuy, - Vuy,

which converges almost everywhere, up to a subsequence, to a (u) Vu-Vjg  (u), since %/ —24+A—2gs—15 > 0,
ie. A>Tro+6— %
Consider a nonnegative test function (x > 0); then the Fatou’s lemma ensures that

hmi[r)lf / a (up) Vuy, - Vig a (uy) x dxdt > / a (u) Vu - Vigx (u) x dx dt,
n—
Qr Qr

then the limit solution u verifies inequality (9) into Definition 1.1. Finally, to obtain (10), we apply the
Egorov theorem on the sequence (a (uy,) Vu, - Viga (un))n which converges almost everywhere. Indeed, we
have

Ve > 0,3Q° C Qr such that meas (Q°) < ¢, and

a (uy) Vuy, - Vi x (uy) —a (u) Vu - Vjg. (u) uniformly in Q7\Q°.
n—
Now, we take a nonnegative test function x such that supp x C ([0,7) x 2)\Q¢, then

/ a (up) Vuy, - Vjgx (uy) x dx dt — a(u) Vu - Vjg x (u) x dx dt.
n—
QrT\Q* Qr\Q*

This ends the proof of Theorem 1.1. O
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