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In this paper, a numerical algorithm for computing the connecting orbits in piecewise 
smooth dynamical systems is derived and is analyzed. A nondegenerate condition 
for the connecting orbit with respect to its bifurcation parameter is presented to 
ensure the defining equation being well posed, which is a generalization of the 
Melnikov condition for smooth systems. The error caused by the truncation of time 
interval is also analyzed. Some numerical calculations are carried out to illustrate 
the theoretical analysis.
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1. Introduction

In recent years, there are growing interests in piecewise smooth dynamical systems for their wide applica-
tions in applied science and engineering, such as the stick-slip mechanical systems [2,16,32], the mechanical 
systems with clearances or elastic constraints [34,33,36,37], the earthquake engineering [6,18,20], the power 
electronic converters [8,9,13], the suspension bridges [10] and so on. The discontinuity of the system is a 
special form of nonlinearity, which causes rich complicated new phenomena.

Our research interests in this work emanate from a model of a free-standing rigid block subjected to 
harmonic forcing, see Fig. 1 for a sketch. The model is often used to describe the behavior of man-made 
structures undergoing earthquakes.

The mathematical modeling of this rocking rigid block can be formulated as follows (see [21,18]),

αü + sin[α(1 − u)] = −αβ cos[α(1 − u)] cosωt, u > 0, (1)

αü− sin[α(1 + u)] = −αβ cos[α(1 + u)] cosωt, u < 0, (2)

u̇(tA) = ru̇(tB), (3)
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Fig. 1. Sketch of a rocking rigid block.

where α is the block shape parameter, αu presents the angle between one edge of the block and the droop, 
ü is the second derivative of u with respect to the time variable t, β and ω are amplitude and frequency 
parameters of the excitation, respectively. 0 � r � 1 is the coefficient of restitution characterizing the energy 
loss at impact, tA is the time just after impact and tB is the time just before impact. If there is no external 
excitation the coefficient β = 0 and if the impact is completely elastic the parameter r = 1.

Much work has been carried out for the case α � 1 (the slender block). In this situation, system (1)–(3)
is reduced to a piecewise-linear system and its solutions can be obtained analytically. Hogan [19] shows 
that heteroclinic bifurcations appear in this piecewise smooth system. Bruhn and Koch [6] calculate a 
heteroclinic bifurcation condition without using perturbation methods and also use the Melnikov method 
in the case of small excitation and damping, etc. In many papers, they have mentioned that their methods 
also apply to the nonlinear case when α is an arbitrary angle which is related to the ordinary man-made 
structures.

One research interest on this problem is to study the structure stability of this rocking block. The terms 
in the right-hand side of equations (1)–(2) represent the external force added to the block undergoing 
earthquakes and equation (3) is the impact equation which reflects the ability of the block reverting to its 
original state during earthquakes. These two factors play an important role while studying the structure 
stability of the block. Besides these two external influences, the block’s shape characterized by parameter 
α is also a key aspect to determine the stability of the block undergoing earthquakes. It is worthwhile to 
study the structure properties of the block without external influences, which correspond to studying the 
dynamics of equations (1)–(3) with parameters β = 0 and r = 1. It follows from numerical simulations 
that there exists a heteroclinic loop in the phase space (u, u̇), inside of which are piecewise smooth periodic 
solutions corresponding to bounded oscillations of the block around the rest situation u = u̇ = 0, outside 
of which are orbits of large scale motions leading to overturning. This heteroclinic loop is the separatrix to 
distinct the stable and unstable motions of the block. In other words, it characterizes the critical situation of 
the block changing from stable motions to unstable motions. The main purpose of this paper is to construct 
a numerical method for computing the connecting orbits including homoclinic and heteroclinic orbits in 
planar piecewise smooth dynamical systems.

The numerical methods for computing connecting orbits in smooth dynamical systems are well studied 
by many authors, see [4,14,15,26] and the references therein. But these well posed methods are unable to 
be directly applied to piecewise smooth dynamical systems due to the influences by the discontinuity of the 
system. In this paper we study the numerical method for approximating a connecting orbit which transver-
sally intersects the line of discontinuity. We define a nondegenerate condition for the piecewise smooth 
connecting orbit together with its bifurcation parameter, which is the generalization of the counterpart in 
smooth dynamical systems. In the geometric point of view, this nondegenerate condition is interpreted as 
that the stable and unstable manifolds pass each other along the line of discontinuity with non-vanishing 
velocity with respect to the bifurcation parameter. This nondegenerate condition ensures the regularity 
of an extending equation for computing a piecewise smooth connecting orbit together with its bifurcation 
parameter.
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Fig. 2. Dρ = {x ∈ R
2 : ‖x‖ < ρ}, D±

ρ = Dρ ∩ {(x1, x2)T : ±x1 > 0}.

For the connecting orbits in piecewise smooth dynamical systems, the onset of chaos near the homoclinic 
orbits has been treated. Awrejcewicz and Holicke [1] study a homoclinic orbit in a smooth system perturbed 
by non-smooth components involving stick-slip motions. They use the standard Melnikov function to study 
the appearance of chaos if the Melnikov function has a simple zero. Fechan [12] follows a different approach 
based on some kind of Lyapunov–Schmidt reduction and a topological method for multivalued problems. Zou 
and Küpper [30] study a non-smooth homoclinic orbit under small time-periodic perturbations by deriving 
an extended Melnikov function which contains an extra term reflecting the change of the vector fields at the 
discontinuity. Du and Wang [11] extend the Melnikov function to nonlinear impact systems and also give 
a method to compute the Melnikov functions up to the n-th order. Medrano et al. [25] present a general 
numerical method to demonstrate the existence of a connecting orbit in a piecewise linear three dimensional 
system. Kuznetsov et al. [23] study several cases of codimension 1 bifurcation of a sliding homoclinic orbit 
(having a sliding segment on the line of discontinuity). In each case they propose a defining system and 
then trace the bifurcation curve using standard continuation techniques.

This paper is organized as follows. In section 2, we introduce and discuss our basis assumptions for this 
work. In section 3, we propose a nondegenerate condition for a piecewise smooth connecting orbit together 
with its bifurcation parameter. We also construct a defining system for computing the piecewise smooth 
connecting orbit and its bifurcation parameter simultaneously. In section 4 we prove that the piecewise 
smooth connecting orbit is a regular solution to our defining system under the nondegenerate condition. 
In section 5 we set up a numerical computation method for the piecewise smooth connecting orbit by 
truncating the defining equation on a finite interval using the projection boundary conditions. We also 
prove the existence of solutions of the truncated system and estimate the truncation errors. In section 6
we apply the method to compute homoclinic orbits and heteroclinic orbits, respectively, to illustrate the 
theoretical analysis on the truncated errors.

2. Basic assumptions

In this section we describe and discuss the basic assumptions used in this paper.
Let Dρ be an open disk with radius ρ > 0 centered about the origin. Define a semi-disk D±

ρ = Dρ ∩
{(x1, x2)T : ±x1 > 0} and denote its closure by D±

ρ , see Fig. 2.
Consider the following parameterized piecewise smooth dynamical system

dx

dt
= f(x, λ), x ∈ Dρ, λ ∈ Λ, (4)

where Λ is an open interval in R and f is piecewisely defined by

f(x, λ) =
{

f+(x, λ), x ∈ D+
ρ ,

f−(x, λ), x ∈ D−
ρ .

Our assumptions are:
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Fig. 3. A homoclinic orbit transversally intersects the line of discontinuity at two points M̄1 and M̄2.

(H1) The function f± is Cr (r ≥ 2) smooth in Dρ × Λ, i.e., f± and all its derivatives up to the r-th order 
are continuous.

Remark 2.1. The function f is piecewise smooth and may lose smoothness only along the x2-axis which is 
the line of discontinuity of system (4).

(H2) There exists a saddle point x̄0 ∈ D−
ρ at λ = λ̄ ∈ Λ, i.e.,

f−(x̄0, λ̄) = 0, detf−
x (x̄0, λ̄) < 0.

Remark 2.2. Saying x̄0 is a saddle point means that at the equilibrium x̄0, the Jacobian matrix f−
x (x̄0, ̄λ)

has one negative and one positive eigenvalues, respectively.

(H3) System (4) possesses a homoclinic orbit γ̄(t) with endpoint x̄0 at λ = λ̄.
(H4) The homoclinic orbit γ̄(t) transversally intersects the line of discontinuity at M̄1 and M̄2, respectively, 

see Fig. 3. Without loss of generality, we assume

f±(M̄1, λ̄)T · �n > 0 and f±(M̄2, λ̄)T · �n < 0, (5)

where �n = (1, 0)T represents the normal vector to the line of discontinuity directed from D−
ρ to D+

ρ .

Remark 2.3. A connecting orbit is either a homoclinic orbit or a heteroclinic orbit. For convenience, we only 
discuss homoclinic orbits in this paper and all the results can be easily generalized to heteroclinic orbits.

Remark 2.4. At the point M̄1 there is a pair of vectors f−(M̄1, ̄λ) and f+(M̄1, ̄λ). In the case of a smooth 
system, they coincide with each other, i.e.,

f−(M̄1, λ̄) = f+(M̄1, λ̄).

In the case of a piecewise smooth system, they might be different. These two vectors are either linearly 
dependent or linearly independent. Similar phenomena occur at the point M̄2. Precisely, we have three 
cases,

Case (I) Both the two pairs of vectors at point M̄1 and M̄2 are respectively linearly dependent, i.e., there 
exist two constants θ̄1 �= 0 and θ̄2 �= 0 such that

f−(M̄1, λ̄) = θ̄1 f+(M̄1, λ̄), f−(M̄2, λ̄) = θ̄2 f+(M̄2, λ̄) (6)

(this includes the smooth case when θ̄1 = θ̄2 = 1).
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Case (II) The pair of vectors at M̄1(M̄2) is linearly dependent while the pair at M̄2 (M̄1) is linearly 
independent.

Case (III) Both the two pairs of vectors are respectively linearly independent.

3. Nondegenerate connecting orbits

In this section, we first introduce a defining system for computing the piecewise smooth homoclinic 
orbit γ̄, then define and discuss a nondegenerate condition which ensures the regularity of the defining 
system.

Since system (4) is autonomous, we assume without loss of generality that γ̄(0) = M̄1 and γ̄(T ) = M̄2, 
where T is the flight time of the homoclinic orbit γ̄ from point M̄1 to point M̄2 inside the region D+

ρ , cf. 
Fig. 3. For convenience, we denote the three pieces of the homoclinic orbit γ̄ by

x̄(t) = γ̄|(−∞,0] (t), ȳ(t) = γ̄(Tt)|[0,1] (t), z̄(t) = γ̄|[0,∞) (t + T ).

We call (x̄(·), ȳ(·), ̄z(·), T , ̄λ) a homoclinic pair (HOP for short).
Let R± = {t : ±t � 0, t ∈ R}. Define Banach spaces,

Bk,± =
{
x(·) ∈ Ck(R±,R2) : lim

t→±∞
x(j)(t) exists, j = 0, · · · , k

}
, k = 0, 1,

with the norm

‖x‖k,± =
k∑

j=0
sup
t∈R±

‖x(j)(t)‖,

where ‖ · ‖ denotes Euclidian norm in R2. In order to simplify the notations, denoted by Bk = Bk,− ×
Ck([0, 1], R2) ×Bk,+, k = 0, 1. Define a function

B1 × R× R → B0 × R2 × R2 × R× R

F :

(x, y, z, T, λ) →
(
ẋ− f−(x, λ), ẏ − Tf+(y, λ), ż − f−(z, λ),

x(0) − y(0), y(1) − z(0), �nTx(0), �nT y(1)
)T

.

Obviously, the HOP (x̄, ȳ, ̄z, T , ̄λ) ∈ B1 × R × R is a solution of equation F (x, y, z, T, λ) = 0.

Definition 3.1. A homoclinic orbit (x̄(·), ȳ(·), ̄z(·)) of system (4) is called nondegenerate with respect to 
parameter λ if the Jacobian matrix f−

x (x̄0, ̄λ) = lim
t→−∞

f−
x (x̄(t), ̄λ) is hyperbolic, and

0∫
−∞

ū(t)T f−
λ (x̄(t), λ̄)dt +

1∫
0

v̄(t)TTf+
λ (ȳ(t), λ̄)dt +

+∞∫
0

w̄(t)T f−
λ (z̄(t), λ̄)dt �= 0 (7)

for all bounded nontrivial solutions (ū, ̄v, w̄) of the following equations

u̇(t) + (f−
x (x̄(t), λ̄))T u(t) = 0, (8)

v̇(t) + T (f+
x (ȳ(t), λ̄))T v(t) = 0, (9)
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1∫
0

v(t)T f+(ȳ(t), λ̄) dt = 0, (10)

ẇ(t) + (f−
x (z̄(t), λ̄))T w(t) = 0, (11)

(u(0) − v(0))T �n⊥ = 0, (12)

(v(1) − w(0))T �n⊥ = 0, (13)

where �n⊥ = (−n2, n1)T for �n = (n1, n2)T .

Remark 3.2. In the next section we will prove that equations (8)–(13) always possess nontrivial bounded 
solutions (cf. Lemma 4.11).

Remark 3.3. In smooth systems, the nondegenerate condition for a connecting orbit γ̄ in terms of a variational 
equation is

ẏ − fx(γ̄(t), λ̄)y = fλ(γ̄(t), λ̄)μ ⇒ μ = 0 and y = c ˙̄γ(t) for some c ∈ R. (14)

This condition was proposed by Beyn (see Definition 2.1 in [4]) and is consequently used later by other 
authors (cf. [3,5,14,15,24,26,27]). Beyn [4] also proves that the nondegenerate condition (14) is equivalent 
to the following Melnikov condition,

∞∫
−∞

ū(t)T fλ(γ̄(t), λ̄)dt �= 0, (15)

for any nontrivial solution ū of the equation

u̇(·) + fx(γ̄(t), λ̄)Tu(·) = 0. (16)

In this paper we generalize the Melnikov condition (15) and (16) to piecewise smooth systems with the form 
of (7)–(13). It is difficult to find an equivalent version of the form (14), see Corollary 4.19 for details.

Our final assumption is

(H5) The homoclinic orbit (x̄, ȳ, ̄z, T ) is nondegenerate with respect to λ.

The next theorem is a main result of this paper and its proof is left to the next section.

Theorem 3.4. Assume (H1)–(H5). Then (x̄, ȳ, ̄z, T , ̄λ) is a regular solution of equation F = 0.

By regular we mean that the total derivative DF � DF (x̄, ȳ, ̄z, T , ̄λ) of operator F at (x̄, ȳ, ̄z, T , ̄λ) is a 
linear homeomorphism from B1 × R × R onto B0 × R2 × R2 × R × R. Direct computation gives

DF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
L

�nT l1 0 0
0 �nT l 0

0 −f−
λ (x̄, λ̄)

−f+(ȳ, λ̄) −T f+
λ (ȳ, λ̄)

0 −f−
λ (z̄, λ̄)

0 0
0 0
0 0
0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
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where L : B1 → B0 × R2 × R2 is defined by

L

⎛⎜⎝ x(·)
y(·)
z(·)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ẋ − f−

x (x̄(·), λ̄) x

ẏ − Tf+
x (ȳ(·), λ̄) y

ż − f−
x (z̄(·), λ̄) z

x(0) − y(0)
y(1) − z(0)

⎞⎟⎟⎟⎟⎟⎠ �

⎛⎜⎜⎜⎜⎜⎝
L1 x(·)
L2 y(·)
L3 z(·)

x(0) − y(0)
y(1) − z(0)

⎞⎟⎟⎟⎟⎟⎠ , (17)

l1 : X1,− → R
2, l1(x) = x(0) and l2 : C1 → R

2, l2(y) = y(1).

The next lemma plays an important role in the proof of the main results of this work.

Lemma 3.5 (Bordering lemma, [4], Lemma 2.3). Let X , Y be Banach spaces and consider the operator

S =
[
A11 A12
A21 A22

]
∈ L [ X × R

p, Y × R
q ],

with bounded linear operators A11 ∈ L [X , Y], A12 ∈ L [Rp, Y], A21 ∈ L [X , Rq], and A22 ∈ L [Rp, Rq]. If 
A11 is Fredholm of index n then S is Fredholm of index n + p − q.

The next section is devoted to proving that L is Fredholm of index 0, then from the Bordering Lemma 3.5, 
the operator DF is Fredholm of index 0. Hence we only need to prove that DF (x, y, z, T, λ) = 0 has only 
trivial solution which ensures that DF̄ is a homeomorphism.

4. Linearization along connecting orbits

In this section, we first prove that the linear operator L defined in (17) is Fredholm of index 0, which is 
a conclusion from studying the properties of operators L1, L2 and L3, respectively. Then we investigate the 
dimensions of the kernel space N (L) and the range space R(L) of the linear operator L, respectively. At 
the end of this section we complete the proof of Theorem 3.4.

Denote the fundamental matrix for L1 by X̄(t) satisfying X̄(0) = I. According to [7,28], L1 has an 
exponential dichotomy on R− with properties summed up in the following Lemma 4.1 and Lemma 4.3.

Lemma 4.1. Assume (H1)–(H3). Then L1 has an exponential dichotomy on R− with data (Q̄(·), K̄−
1 , K̄−

2 ,

ᾱ−
1 , ᾱ

−
2 ) such that

X̄(t)X̄−1(s)Q̄(s) = Q̄(t)X̄(t)X̄−1(s), for t, s ∈ R
−,

‖X̄(t)X̄−1(s)Q̄(s)‖ � K̄−
1 e−ᾱ−

1 (t−s), for t, s ∈ R
− with t ≥ s,

‖X̄(t)X̄−1(s)(I − Q̄(s))‖ � K̄−
2 e−ᾱ−

2 (s−t), for t, s ∈ R
− with t ≤ s,

N (Q̄(0)) =
{
ξ ∈ R

2 : sup
t∈R−

‖X̄(t)ξ‖ < ∞
}

and

lim
t→−∞

X̄(t) (I − Q̄(t)) X̄(t)−1 = Q̄u.

Here Q̄u is the projector onto the unstable subspace along the stable subspace of the matrix f−
x (x̄0, ̄λ).
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Corollary 4.2. Assume (H1)–(H3). Then

(I) If x(t) is a bounded solution of L1x = 0, there holds x(0) ∈ N (Q̄(0)).
(II) Since dim N (Q̄u) = 1, we have dimN (Q̄(t)) = 1 for all t ∈ R−.

(III) ˙̄x(t) = dx̄

dt
(t) is a bounded solution of equation L1x(t) = 0 and

N (L1) = span{ ˙̄x(·)}, N (Q̄(0)) = span{ ˙̄x(0)}.

Define the adjoint operator of L1 as

L
∗
1 : B1,− → B0,−, L

∗
1 u(·) = − u̇(·) − f−

x (x̄(·), λ̄)Tu(·).

Then L
∗
1 has a fundamental matrix X̄−1(t)T with X̄−1(0)T = I.

Lemma 4.3. Assume (H1)–(H3). Then the adjoint operator L∗
1 has an exponential dichotomy on R− with 

data (I − Q̄(·)T , K̄−
2 , K̄−

1 , ᾱ−
2 , ᾱ

−
1 ). Moreover,

N (I − Q̄(0)T ) = {ξ ∈ R
2 : sup

t∈R−
‖X̄−1(t)T ξ‖ < ∞} = N (Q̄(0))⊥.

From Corollary 4.2 (I) and Lemma 4.3, it follows that

Corollary 4.4. Assume (H1)–(H3). Then for any bounded solution x(t) of L1x = 0 and any bounded solution 
u(t) of L∗

1u = 0, there holds

(x(t), u(t)) = (X̄(t)x(0), X̄−1(t)Tu(0)) = (x(0), u(0)) = 0,

where (·, ·) denotes the Euclidian inner product. Moreover,

N (L∗
1) = span{X̄−1(t)T ˙̄x(0)⊥}.

Remark 4.5. From Corollary 4.2 (III) and Corollary 4.4, it follows that for any bounded solution u(t) of 
L
∗
1u = 0, we have,

0∫
−∞

u(t)T f−(x̄(t), λ̄)dt =
0∫

−∞

u(t)T ˙̄x(t)dt = 0. (18)

In the definition of the Melnikov condition (15) for smooth systems, any nontrivial bounded solution ū of 
equation (16) automatically satisfies equation (10). In the case of piecewise smoothness, only u(t) satisfies
(18) and w(t) satisfies a similar equation to (18). In our Definition 3.1 we require the piece v(t) to satisfy 
the integral equation (10).

The properties of the operator L3 are similar to those of operator L1. Denoted the fundamental matrix 
for L3 by Z̄(t) satisfying Z̄(0) = I. Similarly, we obtain the following properties.

Lemma 4.6. Assume (H1)–(H3). Then L3 has an exponential dichotomy on R+ with data (P̄ (·), K̄+
1 , K̄+

2 ,

ᾱ+
1 , ᾱ

+
2 ) such that
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Z̄(t)Z̄−1(s)P̄ (s) = P̄ (t)Z̄(t)Z̄−1(s), for t, s ∈ R
−,

‖Z̄(t)Z̄−1(s)P̄ (s)‖ � K̄+
1 e−ᾱ+

1 (t−s), for t, s ∈ R
− with t ≥ s,

‖Z̄(t)Z̄−1(s)(I − P̄ (s))‖ � K̄+
2 e−ᾱ+

2 (s−t), for t, s ∈ R
− with t ≤ s,

R(P̄ (0)) =
{
ξ ∈ R

2 : sup
t∈R+

‖Z̄(t)ξ‖ < ∞
}

and

lim
t→∞

Z̄(t) P̄ (t) Z̄(t)−1 = P̄s.

Here P̄s is the projector onto the stable subspace along the unstable subspace of the matrix f−
x (x̄0, ̄λ).

Corollary 4.7. Assume (H1)–(H3). Then

(I) If z(t) is a bounded solution of L3z = 0, there holds z(0) ∈ R(P̄ (0)).
(II) Since dimR(P̄s) = 1, we have dimR(P̄ (t)) = 1 for all t ∈ R+.

(III) ˙̄z(t) = dz̄(t)
dt

is a bounded solution of equation L3z(t) = 0 and

N (L3) = span{ ˙̄z(·)}, R(P̄ (0)) = span{ ˙̄z(0)}.

Define the adjoint operator of L3 as

L
∗
3 : B1,+ → B0,+, L

∗
3 w(·) = − ẇ(·) − f−

x (z̄(·), λ̄)Tw(·)

Lemma 4.8. Assume (H1)–(H3). Then the adjoint operator L∗
3 has a fundamental matrix Z̄−1(t)T and has 

an exponential dichotomy on R+ with data (I − P̄ (·)T , K̄+
2 , K̄+

1 , ᾱ+
2 , ᾱ

+
1 ). Moreover,

R(I − P̄ (0)T ) = {ξ ∈ R
2 : sup

t∈R+
‖Z̄−1(t)T ξ‖ < ∞} = R(P̄ (0))⊥.

Corollary 4.9. Assume (H1)–(H3). Then for any bounded solution z(t) of L3z = 0 and any bounded solution 
w(t) of L∗

3w = 0, we have

(z(t), w(t)) = (Z̄(t)z(0), Z̄−1(t)Tw(0)) = (z(0), w(0)) = 0.

Moreover, N (L∗
3) = span{Z̄−1(t)T ˙̄z(0)⊥}.

Next, we study the properties of the operator L2. Let Ȳ (t) be the fundamental matrix of L2 satisfying 
Ȳ (0) = I, then the adjoint operator of L2 is defined as

L
∗
2 : C1([0, 1],R2) → C0([0, 1],R2), L

∗
2 y(·) = − ẏ(·) − Tf+

x (ȳ(·), λ̄)T y(·),

with a fundamental matrix Ȳ −1(t)T .

Remark 4.10. Notice that ˙̄y(t) = dȳ

dt
(t) is a bounded solution of equation L2(y) = 0, thus ˙̄y(t) = Ȳ (t) ˙̄y(0). 

Moreover, dimN (L2) = 2.

Lemma 4.11. Assume (H1)–(H4). Then the solution space of equations (8)–(13) is always one dimensional.
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Proof. Define

(ū(t), v̄(t), w̄(t)) = (c1X̄−1(t)T ˙̄x(0)⊥, Y −1(t)T ˙̄y(0)⊥, c2Z̄−1(t)T ˙̄z(0)⊥),

then from Corollaries 4.4 and 4.9, it follows that (ū, ̄v, w̄) is a nontrivial solution of equations (8), (9) and 
(11) for any c1, c2 ∈ R.

By Remark 4.10, we have

1∫
0

v̄(t)T f+(ȳ(t), λ̄)dt = 1
T

1∫
0

v̄(t)T ˙̄y(t)dt

= 1
T

1∫
0

(Ȳ −1(t)T ˙̄y(0)⊥)T Ȳ (t) ˙̄y(0)dt = 0,

which leads to equation (10).
Now we only need to find appropriate constants c1 and c2 such that equations (12) and (13) hold.
Denoted by ˙̄x(0) = (x̄1, ̄x2)T and ˙̄y(0) = (x̃1, ̃x2)T . Then equation (12) turns out to be

(c1 ˙̄x(0)⊥ − ˙̄y(0)⊥)T�n⊥ = (c1(−x̄2, x̄1)T − (−x̃2, x̃1)T )T (0, 1)T = c1x̄1 − x̃1 = 0.

From the transversality condition (H4), x̄1 �= 0 and x̃1 �= 0, thus c1 = x̃1/x̄1 �= 0. And c2 is obtained in a 
similar way. �

Next, we investigate the properties of the Null space N (L).

Theorem 4.12. Assume (H1)–(H4). Then
in Case (I), dim N (L) = 1 and Ȳ (1) N (Q̄(0)) = R(P̄ (0)). Precisely,

N (L) = span{( ˙̄x, (θ̄1/T ) ˙̄y, (θ̄1/θ̄2) ˙̄z)}.

In Case (II), dim N (L) = 0 and Ȳ (1) N (Q̄(0)) �= R(P̄ (0)).
In Case (III), if Ȳ (1) N (Q̄(0)) = R(P̄ (0)), there holds dim N (L) = 1, otherwise dim N (L) = 0.

Proof. We first prove Case (I). It follows from Corollary 4.2 (III) that

dim N (L) � dim N (L1) = 1.

Assume (x∗(·), y∗(·), z∗(·)) ∈ N (L). Then from Corollary 4.2 (III) and Corollary 4.7 (III), there exist 
constants c1 and c2 such that

x∗(t) = c1 ˙̄x(t), z∗(t) = c2 ˙̄z(t).

From x∗(0) = y∗(0), we have y∗(t) = Ȳ (t)y∗(0) = Ȳ (t)c1 ˙̄x(0). Therefore, dimN (L) = 1 if and only if the 
last equation in (17) holds for nonzero c1 and c2, i.e.,

c1Ȳ (1) ˙̄x(0) = c2 ˙̄z(0).

Thus if Ȳ (1) ˙̄x(0) and ˙̄z(0) are linearly dependent, dimN (L) = 1, otherwise dimN (L) = 0.
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Notice that ˙̄x(0) = f−(M̄1, ̄λ), ˙̄y(0) = Tf+(M̄1, ̄λ), ˙̄y(1) = Tf+(M̄2, ̄λ) and ˙̄z(0) = f−(M̄2, ̄λ), then 
from (6), we have

Ȳ (1) ˙̄x(0) = Ȳ (1)f−(M̄1, λ̄) = Ȳ (1)θ̄1f+(M̄1, λ̄) = Ȳ (1)(θ̄1/T ) ˙̄y(0)

= (θ̄1/T ) ˙̄y(1) = θ̄1f+(M̄2, λ̄) = (θ̄1/θ̄2)f−(M̄2, λ̄) = (θ̄1/θ̄2) ˙̄z(0).

Let c1 = 1 and c2 = θ̄1/θ̄2, then N (L) = span{( ˙̄x, (θ̄1/T ) ˙̄y, (θ̄1/θ̄2) ˙̄z)}. And from Corollary 4.2 (III) and 
Corollary 4.7 (III),

span{Ȳ (1) ˙̄x(0)} = Ȳ (1)N (Q̄(0)), span{ ˙̄z(0)} = R(P̄ (0)),

thus Ȳ (1) N (Q̄(0)) = R(P̄ (0)).
The other two cases can be proved in a similar way. �

Corollary 4.13. Assume (H1)–(H4). If Ȳ (1) N (Q̄(0)) = R(P̄ (0)) then dim N (L) = 1, otherwise 
dim N (L) = 0.

Now, we present the properties of the space R(L) via the following Lemma 4.14 and Lemma 4.17.

Lemma 4.14. Assume (H1)–(H4). Then for any (x, y, z) ∈ B1 and for any (u, v, w, μ, ω) ∈ B1 × R2 × R2, 
there holds

〈L(x, y, z), (u, v, w, μ, ω)〉 = 〈(x, y, z, x(0), y(0), y(1), z(0)), L
∗(u, v, w, μ, ω)〉

+ lim
t→−∞

x(t)Tu(t) + lim
t→∞

z(t)Tw(t), (19)

where the adjoint operator L∗ is defined as

L
∗

⎛⎜⎜⎜⎜⎜⎝
u(·)
v(·)
w(·)
μ

ω

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−u̇ − f−
x (x̄, λ̄)T u

−v̇ − T f+
x (ȳ, λ̄)T v

−ẇ − f−
x (z̄, λ̄)T w

u(0) + μ

−v(0) − μ

v(1) + ω

−w(0) − ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L
∗
1 u(·)

L
∗
2 v(·)

L
∗
3 w(·)

u(0) + μ

−v(0) − μ

v(1) + ω

−w(0) − ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. Integrating by part, we obtain

〈L(x, y, z), (u, v, w, μ, ω)〉

=
0∫

−∞

(L1x)T udt +
1∫

0

(L2y)T vdt +
∞∫
0

(L3z)T wdt + (x(0) − y(0))Tμ

+ (y(1) − z(0))Tω

= xTu|0−∞ −
0∫

−∞

xT (u̇ + f−
x (x̄, λ̄)Tu)dt + yT v|10 −

1∫
0

yT (v̇ + Tf+
x (ȳ, λ̄)T v)dt

+ zTw|∞0 −
∞∫
zT (ẇ + f−

x (z̄, λ̄)Tw)dt + (x(0) − y(0))Tμ + (y(1) − z(0))Tω

0
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=
0∫

−∞

xT (L∗
1u) dt +

1∫
0

yT (L∗
2v) dt +

∞∫
0

zT (L∗
3w) dt

+ x(0)T (u(0) + μ) − y(0)T (v(0) + μ) + y(1)T (v(1) + ω) − z(0)T (w(0) + ω)

+ lim
t→−∞

x(t)Tu(t) + lim
t→∞

z(t)Tw(t)

= 〈(x, y, z, x(0), y(0), y(1), z(0)), L
∗(u, v, w, μ, ω)〉

+ lim
t→−∞

x(t)Tu(t) + lim
t→∞

z(t)Tw(t). �
Similar to Theorem 4.12, we have

Theorem 4.15. Assume (H1)–(H4). Then

in Case (I), dim N (L∗) = 1,

in Case (II), dim N (L∗) = 0,

in Case (III), if Ȳ (1)N (Q̄(0)) = R(P̄ (0)), dim N (L∗) = 1,

otherwise dim N (L∗) = 0.

Remark 4.16. This theorem shows that if we replace the equations (12) and (13) by u(0) − v(0) = 0 and 
v(1) − w(0) = 0, respectively, equations (8)–(13) will have only trivial solution in the case dimN (L∗) = 0.

Lemma 4.17. Assume (H1)–(H4). Then (f1(·), f2(·), f3(·), f4, f5) ∈ R(L), if and only if

〈(f1, f2, f3, f4, f5), (u, v, w, μ, ω)〉 = 0, ∀(u(·), v(·), w(·), μ, ω) ∈ N (L∗) (20)

Proof. The necessity follows from equation (19) and the fact u(t), w(t) → 0 exponentially fast as t → ∓∞.
The sufficiency means that there exists (x∗, y∗, z∗) ∈ B1, such that

L (x∗, y∗, z∗) = (f1(·), f2(·), f3(·), f4, f5)T ,

if (f1, f2, f3, f4, f5) ∈ B0 × R2 × R2 satisfies condition (20).
For any given ξ, η ∈ R2, define three functions as follows

x∗(t) = X̄(t)(I − Q̄(0))ξ +
∫ t

−∞ Q̄(t)X̄(t)X̄−1(s)f1(s)ds

−
∫ 0
t
(I − Q̄(t))X̄(t)X̄−1(s)f1(s)ds, t � 0,

y∗(t) = Ȳ (t)y∗(0) +
∫ t

0 Ȳ (t)Ȳ −1(s)f2(s)ds, t ∈ [0, 1],

z∗(t) = Z̄(t)P̄ (0)η +
∫ t

0 P̄ (t)Z̄(t)Z̄−1(s)f3(s)ds

−
∫∞
t

(I − P̄ (t))Z̄(t)Z̄−1(s)f3(s)ds, t � 0.

Then, (x∗, y∗, z∗) is a bounded solution of equation

L(x, y, z) = (f1, f2, f3, f4, f5),

if and only if there exist ξ and η, such that x∗(0) −y∗(0) = f4 and y∗(1) −z∗(0) = f5, which read respectively
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(I − Q̄(0))ξ +
0∫

−∞

Q̄(0)X̄−1(s)f1(s)ds− y∗(0) = f4,

Ȳ (1)y∗(0) − P̄ (0)η +
1∫

0

Ȳ (1)Ȳ −1(s)f2(s)ds +
∞∫
0

(I − P̄ (0))Z̄−1(s)f3(s)ds = f5.

Eliminating y∗(0) from these two equations we obtain

P̄ (0)η − Ȳ (1) (I − Q̄(0))ξ

= Ȳ (1)
∫ 0
−∞ Q̄(0)X̄−1(s)f1(s)ds +

∫ 1
0 Ȳ (1)Ȳ −1(s)f2(s)ds

+
∫∞
0 (I − P̄ (0))Z̄−1(s)f3(s)ds− Ȳ (1)f4 − f5.

(21)

To simplify the notations, we write the total terms in the right-hand side of (21) as h. Then the equation 
(21) is solvable if

h ∈ R(P̄ (0)) + R(Ȳ (1)(I − Q̄(0))). (22)

If R(P̄ (0)) �= R(Ȳ (1)(I − Q̄(0)), we have

R(P̄ (0)) + R(Ȳ (1)(I − Q̄(0))) = R
2,

therefore equation (22) holds. Otherwise, we only need to prove κTh = 0 for any κ ∈ N (P̄ (0)T ). Direct 
calculation gives

κTh =
∫ 0
−∞[X̄−1(s)T Q̄(0)T Ȳ (1)Tκ]T f1(s)ds +

∫ 1
0 [(Ȳ −1(s)T Ȳ (1)Tκ]T f2(s)ds

+
∫∞
0 [(Z̄−1(s)T (I − P̄ (0)T )κ]T f3(s)ds− κT Ȳ (1)f4 − κT f5

= 〈(u∗(·), v∗(·), w∗(·), μ∗, ω∗), (f1(·), f2(·), f3(·), f4, f5)〉,

where

u∗(t) = X̄−1(t)T Q̄(0)T Ȳ (1)Tκ, t � 0,
v∗(t) = Ȳ −1(t)T Ȳ (1)Tκ, t ∈ [0, 1],
w∗(t) = Z̄−1(t)T (I − P̄ (0)T )κ, t � 0,
μ∗ = − Ȳ (1)Tκ,
ω∗ = − κ.

(23)

Clearly, κTh = 0 if (u∗, v∗, w∗, μ∗, ω∗) ∈ N (L∗). It follows from Lemmas 4.3 and 4.8 that

L
∗
1u

∗ = 0, L
∗
2v

∗ = 0 and L
∗
3w

∗ = 0.

Since κ ∈ N (P̄ (0)T ), we have P̄ (0)Tκ = 0, hence κ = (I − P̄ (0)T )κ, therefore v∗(1) = w∗(0). On the 
other hand,

N (P̄ (0)T ) = (R(P̄ (0)))⊥ = (R(Ȳ (1)(I − Q̄(0)))⊥ = N ((I − Q̄(0)T )Ȳ (1)T ),

therefore κ ∈ N (P̄ (0)T ) implies that

(I − Q̄(0))T Ȳ (1)Tκ = 0.

Hence Q̄(0)T Ȳ (1)Tκ = Ȳ (1)Tκ which leads to u∗(0) = v∗(0). �
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By now, we have proved the following theorem which states the Fredholm properties of the linear oper-
ator L.

Theorem 4.18. Assume (H1)–(H4). Then the linear operator L is Fredholm of index 0.

Corollary 4.19. Assume (H1)–(H4). If Ȳ (1) N (Q̄(0)) = R(P̄ (0)), codimR(L) = 1, otherwise L is onto.

Now, we are ready to complete the proof of Theorem 3.4.

Proof of Theorem 3.4. We only need to prove that equation

DF (x, y, z, T, λ) = 0 (24)

has only trivial solution. Let (x, y, z, T, λ) ∈ B1 × R × R satisfy equation (24), which reads

L

⎛⎜⎝ x

y

z

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
L1 x

L2 y

L3 z

x(0) − y(0)
y(1) − z(0)

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
f−
λ (x̄, λ̄)λ

Tf+
λ (ȳ, λ̄)λ + f+(ȳ, λ̄)T

f−
λ (z̄, λ̄)λ

0
0

⎞⎟⎟⎟⎟⎟⎟⎠ (25)

and

�nTx(0) = 0, �nT y(1) = 0. (26)

We need to prove that (x, y, z, T, λ) = 0.
Let (ū, ̄v, w̄) ∈ B1 be any nontrivial solution of equations (8)–(13). Multiplying equation (25) by 

(ū, ̄v, w̄, 0, 0) and by virtue of equation (10) we get,

〈(ū, v̄, w̄, 0, 0), L(x, y, z)〉 =
( 0∫

−∞

ūT f−
λ dt +

1∫
0

T v̄T f+
λ dt +

∞∫
0

w̄T f−
λ dt

)
λ. (27)

Then, the nondegeneracy (7) implies that λ = 0 if and only if the left hand side of equation (27) vanishes. 
By Lemma 4.14, we have

〈(ū, v̄, w̄, 0, 0), L(x, y, z)〉

= 〈L∗(ū, v̄, w̄, 0, 0), (x, y, z, x(0), y(0), y(1), z(0))〉

+ lim
t→−∞

x(t)T ū(t) + lim
t→∞

z(t)T w̄(t)

= 〈(0, 0, 0, ū(0),−v̄(0), v̄(1),−w̄(0)), (x, y, z, x(0), y(0), y(1), z(0))〉

= ū(0)Tx(0) − v̄(0)T y(0) − v̄(0)T y(1) − w̄(0)T z(0),

where the limits vanish because that ū (ω̄) tends to zero exponentially fast as t → −∞ (∞) (see Lemma 4.1). 
From equation (12) it follows that ū(0) − v̄(0) = c�n for some constant c ∈ R. Then by the fourth equation 
of (25) and (26), we obtain

ū(0)Tx(0) − v̄(0)T y(0) = (ū(0) − v̄(0))Tx(0) = c�nTx(0) = 0.
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Similarly −v̄(0)T y(1) − w̄(0)T z(0) = 0.
Now equation (25) becomes,

(L1x, L2y, L3z, x(0) − y(0), y(1) − z(0))T = (0, f+(ȳ, λ̄)T, 0, 0, 0)T . (28)

From Corollary 4.2 (III), x = c1 ˙̄x for some c1 ∈ R. Then by (26) and the assumption (H4), c1 = 0, thus 
x = 0. Similarly z = 0.

Finally, y and T satisfy the following boundary value problem due to equation (28)

L2y = f+(ȳ, λ̄) T, y(0) = 0, y(1) = 0.

Then y(t) = Ȳ (t)y(0) + T
∫ t

0 Ȳ (t) Ȳ −1(s) f+(ȳ(s), ̄λ)ds. By Remark 4.10,

0 = y(1) = T

1∫
0

Ȳ (1)Ȳ −1(s)f+(ȳ(s), λ̄)ds = T/T

1∫
0

Ȳ (1)Ȳ −1(s) ˙̄y(s)ds

= T/T

1∫
0

Ȳ (1)Ȳ −1(s)Ȳ (s) ˙̄y(0)ds = T/T

1∫
0

˙̄y(1)ds = T/T ˙̄y(1),

therefore T = 0, which implies y = 0. �
5. Truncation to a finite interval

In order to obtain a numerical HOP, we truncate the orbit pieces x(t) and z(t) on a finite interval using 
the projection boundary conditions, for more details see [4,14,15,24,29]. Precisely, we consider the following 
boundary value problem on a finite interval [−T−, T+] with T± > 0.

ẋ(t) = f−(x(t), λ), t ∈ (−T−, 0), (29)

ẏ(t) = Tf+(y(t), λ), t ∈ (0, 1), (30)

ż(t) = f−(z(t), λ), t ∈ (0, T+), (31)

b−(x(−T−), λ) = 0, (32)

b+(z(T+), λ) = 0, (33)

x(0) = y(0), (34)

y(1) = z(0), (35)

�nTx(0) = 0, (36)

�nT y(1) = 0, (37)

where b±(x, λ) = 0 represents a standard projection boundary condition such that its zeroes are on some 
computable approximation of unstable (stable) manifold of the hyperbolic equilibrium x̄λ at parameter λ.

We will investigate the existence of solutions to equations (29)–(37) and their error estimates. We use a 
well-known linearization technique (see for examples, Keller [22]; Vainikko [31]; Beyn [4]). The basic tool 
for analyzing the nonlinear problem (29)–(37) is the following perturbation lemma. See Vainikko (§3, [31]) 
for a proof.
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Lemma 5.1. Let F : Uδ(XJ) → B2 be a C1-mapping from some ball Uδ(XJ) of radius δ in a Banach space 
B1 into some Banach space B2. Assume that DF(XJ) is a homeomorphism and that for some constants κ, σ
we have

‖DF(X ) −DF(XJ)‖ � κ < σ � ‖DF(XJ)−1‖−1, ∀X ∈ Uδ(XJ), (38)

‖F(XJ)‖ � (σ − κ) δ. (39)

Then F has a unique zero X0 in Uδ(XJ) and the following estimates hold

‖X0 −XJ‖ � (σ − κ)−1‖F(XJ)‖, (40)

‖X1 −X2‖ � (σ − κ)−1‖F(X1) −F(X2)‖, ∀X1,X2 ∈ Uδ(XJ).

For simplicity, denoted by J− = [−T−, 0], J+ = [0, T+] and J = [−T−, T+]. By saying that J is sufficiently 
large, we mean that J− and J+ are sufficiently large, respectively. We use the spaces Ck(J±, R2) (k = 0, 1)
equipped with the standard Ck-norm denoted by ‖ ·‖k. The restriction of a function x ∈ Bk,± to the interval 
J± is written as x|J± , which belongs to Ck(J±, R2).

The following theorem ensures the existence of truncated connecting orbits and provides a way to ap-
proximate the HOP using numerical methods.

Theorem 5.2. Assume (H1)–(H5) and that b±(·) ∈ C1(R2 × R, R) satisfies

b±(x̄0, λ̄) = 0, b−x (x̄0, λ̄)Es(λ̄) �= 0, b+x (x̄0, λ̄)Eu(λ̄) �= 0, (41)

where Es,u(λ̄) are the stable and unstable eigenspaces of f−
x (x̄0, ̄λ), respectively.

Then there exist constants δ > 0 and C > 0, such that for sufficiently large J− and J+, the finite 
boundary-value problem (29)–(37) has a unique solution (xJ, yJ, zJ, TJ, λJ) in the tube

Kδ = {(x, y, z, T, λ) ∈ C1(J−,R2) × C1([0, 1],R2) × C1(J+,R2) × R× R :

‖x− x̄|J−‖1 + ‖y − ȳ‖1 + ‖z − z̄|J+‖1 + |T − T | + |λ− λ̄| � δ}

and the following estimate holds

‖xJ − x̄|J−‖1 + ‖yJ − ȳ‖1 + ‖zJ − z̄|J+‖1 + |TJ − T | + |λJ − λ̄|

� C (|b−(x̄(−T−), λ̄)| + |b+(z̄(T+), λ̄)|). (42)

Proof. We apply Lemma 5.1 with the settings

B1 = C1(J−,R2) × C1([0, 1],R2)× C1(J+,R2) × R× R,

B2 = C0(J−,R2) × C0([0, 1],R2) × C0(J+,R2) × R× R× R
2 × R

2 × R× R,

XJ = (x̄|J− , ȳ, z̄|J+ , T , λ̄),

and

F(x, y, z, T, λ)

= (ẋ− f−(x, λ), ẏ − Tf+(y, λ), ż − f−(z, λ), b−(x(−T−), λ),

b+(z(T+), λ), x(0) − y(0), y(1) − z(0), �nTx(0), �nT y(1)).
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Suppose and we will prove later that ‖DF(XJ)−1‖ has a uniform bound σ−1 for all sufficiently large J, i.e., 
the following estimate holds for any given (φ(·), ψ(·), ϕ(·), κ1, κ2, �1, �2, ε1, ε2) ∈ B2 and for all sufficiently 
large J,

‖x‖1 + ‖y‖1 + ‖z‖1 + |T | + |λ|

� σ−1(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + |κ1| + |κ2| + ‖�1‖ + ‖�2‖ + |ε1| + |ε2|), (43)

where (x, y, z, T, λ) is the solution of the following variational equation,

DF(XJ) (x, y, z, T, λ) = (φ, ψ, ϕ, κ1, κ2, �1, �2, ε1, ε2). (44)

Then, we find a δ > 0 by the smoothness properties of f± and b±, such that condition (38) holds with 
κ = 1

2σ for all sufficiently large J.
Condition (39) holds for sufficiently large J by virtue of assumption (41) and the fact

‖F(XJ)‖ = ‖F(x̄|J− , ȳ, z̄|J+ , T , λ̄)‖
= |b−(x̄(−T−), λ̄)| + |b+(z̄(T+), λ̄)| → 0, as T−, T+ → ∞. (45)

Therefore by Lemma 5.1, F has a unique zero X0 = (xJ, yJ, zJ, TJ, λJ) in Kδ and the estimate (42) follows 
from (40).

Now, we prove the estimate (43). Equation (44) turns out to be the following variational equation

ẋ(t) − f−
x (x̄(t), λ̄)x(t) − f−

λ (x̄(t), λ̄)λ = φ(t), (46)

ẏ(t) − Tf+
x (ȳ(t), λ̄)y(t) − f+(ȳ(t), λ̄)T − Tf+

λ (ȳ(t), λ̄)λ = ψ(t), (47)

ż(t) − f−
x (z̄(t), λ̄)z(t) − f−

λ (z̄(t), λ̄)λ = ϕ(t), (48)

b−x (x̄(−T−), λ̄) x(−T−) + b−λ (x̄(−T−), λ̄)λ = κ1, (49)

b+x (z̄(T+), λ̄) z(T+) + b+λ (z̄(T+), λ̄)λ = κ2, (50)

x(0) − y(0) = �1, (51)

y(1) − z(0) = �2, (52)

�nT x(0) = ε1, (53)

�nT y(1) = ε2. (54)

First, we will find an estimate for parameter λ. Let (ū, ̄v, w̄) ∈ B1 be any nontrivial solution of equations 
(8)–(13), then there exist two constants c1, c2 ∈ R, such that

ū(0) − v̄(0) = c1�n, v̄(1) − w̄(0) = c2�n. (55)

Multiply equations (46), (47) and (48) by the functions ū(t)|J− , ̄v(t) and w̄(t)|J+ , respectively, then integrate 
by part and sum them up to get an equation for λ

( ∫ 0

−T−

ūT f−
λ dt +

1∫
0

v̄T f+
λ dt +

T+∫
0

w̄T f−
λ dt

)
λ

= ū(0)Tx(0) − v̄(0)T y(0) + v̄(1)T y(1) − w̄(0)T z(0) − ū(−T−)Tx(−T−)

+ w̄(T+)T z(T+) −
0∫
ūTφdt −

1∫
v̄Tψdt −

T+∫
w̄Tϕdt.
−T− 0 0
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The coefficient of λ tends to a nonzero constant as T−, T+ → ∞ by the nondegeneracy (7). And by equations 
(55), (51) and (53)

ū(0)Tx(0) − v̄(0)T y(0) = (ū(0) − v̄(0))Tx(0) + v̄(0)T (x(0) − y(0))

= c1�n
Tx(0) + v̄(0)T �1 = c1ε1 + v̄(0)T �1,

similarly

v̄(1)T y(1) − w̄(0)T z(0) = c2ε2 + w̄(0)T �2.

Since ū(−T−) (w̄(T+)) → 0 exponentially fast as T−(T+) → ∞, then we get an initial estimate for λ

|λ| � cJ−‖x‖0 + cJ+‖z‖0 + c3(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2|),

where cJ− , cJ+ and c3 are all independent of x, z, φ, ψ, ϕ, �1, �2, ε1, ε2, and c3 is also independent of J, 
but cJ± → 0 as T−(T+) → ∞. By a slight abuse of notation, we write that as

λ = o(‖x‖0) + o(‖z‖0) + O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2|). (56)

Using the same argument as Appendix D in [4], we obtain

‖x‖0 = o(‖z‖0) + O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1|),
‖z‖0 = o(‖x‖0) + O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ2|),

therefore,

‖x‖0 = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|), (57)

‖z‖0 = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|).

Thus from (56), we get an estimate for λ,

λ = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|).

And from (57) and (46), we obtain an estimate for x,

‖x‖1 = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|).

Similarly,

‖z‖1 = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|).

Next we estimate T . Let ṽ(t) = Ȳ −1(t)T ˙̄y(0), then ṽ ∈ N (L∗
2). We multiply equation (47) by ṽ(t) and 

integrate over [0, 1] which leads to an equation for T ,

T

1∫
0

ṽ(t)T f+(ȳ(t), λ̄)dt

= ṽ(1)T y(1) − ṽ(0)T y(0) − λ

1∫
ṽ(t)TTf+

λ (ȳ(t), λ̄)dt−
1∫
ṽ(t)Tψ(t)dt.
0 0
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Since,

1∫
0

ṽ(t)T f+(ȳ(t), λ̄) dt = 1
T

1∫
0

ṽ(t)T ˙̄y(t) dt

= 1
T

1∫
0

(Ȳ −1(t)T ˙̄y(0))T Ȳ (t) ˙̄y(0) dt = 1
T

‖ ˙̄y(0)‖2 �= 0, (58)

there exists a constant c4 ∈ R, such that

|T | � c4(‖y(1)‖ + ‖y(0)‖ + |λ| + ‖ψ‖).

Then, an estimate for T is obtained by (51), (52) and the estimates for x, z, λ,

T = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + ‖�1‖ + ‖�2‖ + |ε1| + |ε2| + |κ1| + |κ2|).

Finally we estimate y. The solution of equation (47) can be written as

y(t) = Ȳ (t)y(0) +
t∫

0

Ȳ (t)Ȳ −1(s)
(
Tf+

λ (ȳ(s), λ̄)λ + f+(ȳ(s), λ̄)T + ψ(s)
)
ds.

Then there exists a constant c5 ∈ R, such that

‖y‖0 � c5(‖y(0)‖ + |λ| + |T | + ‖ψ‖0).

From equation (51) and the estimates for x, λ, T we get an estimate for ‖y‖0. Then by (47), we obtain

‖y‖1 = O(‖φ‖0 + ‖ψ‖0 + ‖ϕ‖0 + |κ1| + |κ2| + ‖�1‖ + ‖�2‖ + |ε1| + |ε2|).

Hence we complete the proof. �
Corollary 5.3. Under the assumptions of Theorem 5.2 we have, for sufficiently large J = [−T−, T+],

‖xJ − x̄|J−‖1 + ‖yJ − ȳ‖1 + ‖zJ − z̄|J+‖1 + |TJ − T | + |λJ − λ̄|

� C exp(−min{μ+T+, μ−T−}).

If, in addition, b−x (x̄0, ̄λ)Eu(λ̄) = 0, b+x (x̄0, ̄λ)Es(λ̄) = 0, we have

‖xJ − x̄|J−‖1 + ‖yJ − ȳ‖1 + ‖zJ − z̄|J+‖1 + |TJ − T | + |λJ − λ̄|

� C exp(−2 min{μ+T+, μ−T−}),

where −μ− and μ+ are the negative and positive eigenvalues of f−
x (x̄0, ̄λ).

6. Numerical implementation and applications

In this section we apply the numerical method described in (29)–(37) to compute homoclinic orbits and 
heteroclinic orbits, respectively in two examples. In each example, we show some numerical computations 
and illustrate the truncation errors, respectively.
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Fig. 4. A numerical piecewise smooth homoclinic orbit.

Fix h > 0 to be a stepsize with Mh = 1 for a suitable integer M . Let T− = M−h and T+ = M+h for 
large integers M± > 0. In order to implement equations (29)–(37), we use the midpoint Euler scheme to 
discretize equation (29)–(31), then equations (29)–(37) become nonlinear equations

xn+1 − xn = hf−(xn+1 + xn

2 , λ), n = −M−, · · · ,−1,

ym+1 − ym = Thf+(ym+1 + ym
2 , λ), m = 0, 1, · · · ,M − 1,

zl+1 − zl = hf−(zl+1 + zl
2 , λ), l = 0, 1, · · · ,M+ − 1,

b−(x−M− , λ) = 0,

b+(zM+ , λ) = 0,

x0 = y0,

yM = z0,

�nTx0 = 0,

�nT yM = 0.

We apply the standard Newton’s method to solve these equations to obtain a discrete approximation 
(x[−M−,0], y[0,M ], z[0,M+], T, λ) of the HOP.

In the next two numerical examples we fix the stepsize h = 0.01 for carrying out the calculation.

Example 1. Consider an equation(
ẋ1
ẋ2

)
=

(
x2 − (x1 − σ±φ(x1))

−p±(x1 − κ±φ(x1) − λ)

)
, ± (x1 − 0.8) > 0, (59)

where σ±, κ±, λ ∈ R, p± > 0 and φ(z) = (1 + exp(−4z))−1.
If σ− = σ+, κ− = κ+ and p− = p+, system (59) is smooth and is a special case of the generalized 

Lienard system [35]. The homoclinic bifurcation properties in smooth case are analyzed in [17] by numerical 
computation. Now we also apply numerical method to study a piecewise smooth system of (59) with the 
following settings κ− = κ+ = 2, σ− = 1.3, σ+ = 1.67, p− = 3.35 and p+ = 85.5. Applying the extending 
equations (29)–(37) by taking λ as the bifurcation parameter, we approximately compute a piecewise smooth 
homoclinic orbit γ̄(t) on [−10, 10], which is shown in Fig. 4.

Denoted by (x̄, ȳ, ̄z, T , ̄λ) the exact solution and by (xJ, yJ, zJ, TJ, λJ) the truncated solution on J =
[−T−, T+]. We define a local error as,
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Fig. 5. Errors ln(e(−T , T , t )) by varying T from 1 to 6 with step 1, t is scaled to [−1, 1]. ‘+’ represents the errors at the two points 
of the homoclinic orbit at which the orbit crosses the line of discontinuity.

Fig. 6. Global errors versus the truncation time T , : ln(ex(T )), : ln(eT (T )), : ln(eλ(T )).

e (−T−, T+, t ) =

⎧⎪⎨⎪⎩
‖x̄(t) − xJ(t)‖, − T− � t � 0,
‖ȳ(t) − yJ(t)‖, 0 � t � 1,
‖z̄(t− 1) − zJ(t− 1)‖, 1 � t � T+ + 1.

Define a global error as

ex(T ) = max
−T �t�T +1

{e(−T , T , t)}, eT (T ) = |T − TJ|, eλ(T ) = |λ̄− λJ|.

Since we can not find the exact piecewise smooth homoclinic orbit, we regard a truncated homoclinic 
orbit on a large interval as the standard homoclinic orbit and calculate all the error estimates with respect 
to this standard homoclinic orbit. Here we choose the large interval as [−15, 15]. All finite boundary-value 
problems (29)–(37) are solved at high accuracy (∼ 10−13) so that discretization errors do not spoil the error 
arising from truncation.

Take T− = T+ = T , we calculate the local errors when T = 1, 2, · · · , 6, respectively, the numerical 
results are shown in Fig. 5. Then we vary T from 1 to 7 with step 1 and calculate the global errors, 
respectively which are shown in Fig. 6. The error ex(T ) shows the expected slope of − min{2μ−, 2μ+} which 
is predicted in Corollary 5.3. While eλ(T ) and eT (T ) show the superconvergence with a slope approximately 
− min{(2μ− + μ+), (2μ+ + μ−)} which is beyond the reach of Corollary 5.3.

Next, we discuss the influence on the errors of the choice of the truncation interval [−T−, T+]. As a 
consequence of our previous calculations we only consider the local error e(−T−, T+, t). Fix T+ = 5 and 
vary T− from 1 to 9 with step 1, then the local error estimates are shown in Fig. 7. Clearly, as T− increases, 
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Fig. 7. Errors ln[e(−T−, 5, t)] by fixing T+ = 5 and varying T− from 1 to 9 with step 1, t was scaled to [−1, 1].

Fig. 8. Local and global errors obtained by varying one endpoint of the interval [−T−, T+] only.

the error cannot pass below a certain error function whose maximum is at T+. But the error at t =
−T− decreases over a certain range. This is summarized in Fig. 8 which compares the local and global 
errors.

� − � : e (−T−, 5,−T−), � − � : e (−5, T+, T+),
×−× : max

−T−�t�5+1
e(−T−, 5, t), + − + : max

−5�t�T++1
e(−5, T+, t).

Example 2. Consider the unforced and undamped rocking block

αü + sin[α(1 − u)] = 0, u > 0,
αü− sin[α(1 + u)] = 0, u < 0.

(60)

This is a piecewise-defined Hamiltonian system which contains a piecewise smooth heteroclinic loop. In 
order to approximate the heteroclinic loop, we rewrite this second order equation as the following first order 
equations by setting x1 = u and x2 = u̇,(

ẋ1
ẋ2

)
=

(
x2

∓ sin(α∓ x1 ∓ λ)

)
, ± x1 > 0. (61)

The artificial parameter λ introduced here is to ensure the nondegenerate property. Obviously, at λ = 0, 
equation (61) coincides with equation (60).

At α = 0.3, we obtain a numerical heteroclinic orbit on [−10, 10], see Fig. 9, and a heteroclinic loop 
which is shown in Fig. 10.
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Fig. 9. The numerical heteroclinic orbit.

Fig. 10. The numerical heteroclinic loop.

Fig. 11. Local errors ln(e(−T ,T , t)) by varying T from 1 to 8 with step 1, t was scaled to [−1, 1].

The next four figures (Figs. 11–14) show the error estimates similar to the previous example. Here, the 
heteroclinic orbit approximated on [−15, 15] is taken as the standard solution (x̄, ȳ, ̄λ).

In Fig. 11 we present the logarithmic error of the approximation. In Fig. 12, ex(T ) shows the expected 
slope of

−min{min{2μ−
−, 2μ−

+},min{2μ+
−, 2μ+

+}}

as predicted in Corollary 5.3. In Fig. 13, we exhibit the logarithmic error of the approximation by varying 
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Fig. 12. Global errors by varying T = 1, 3, 5, · · · , 11. : ln(ex(T )), : ln(eλ(T )).

Fig. 13. Errors ln[e(−T−, 6, t)] by fixing T+ = 6 and varying T− from 1 to 12 with step 1, t is scaled to [−1, 1].

Fig. 14. Local and global errors obtained by varying one endpoint of the interval [−T−, T+] only.

the left endpoint T− and fixing the right endpoint T+. In Fig. 14, we depict the local and global errors with 
four different settings of the endpoint T− and T+.

� − � : e(−T−, 6,−T−); ×−× : max
−T−�t�6+1

e(−T−, 6, t);

� − � : e(−6, T+, T+); + − + : max
−6�t�T++1

e(−6, T+, t).
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