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We consider cardinal interpolation on gridded data by using various radial basis 
functions associated with one or two parameters, one of which leads asymptotically 
to so-called flat-limits. Previously it had been shown that the classical Paley–Wiener 
functions can be recovered by such cardinal interpolations as the parameter tends 
to infinity. In this article, we extend the results by relaxing the requirements on the 
approximand functions from several points of view. The radial basis functions that 
we are concerned with and which are of special interest contain the celebrated 
multiquadrics, inverse multiquadrics and shifted thin-plate spline radial basis 
functions for instance. We also generalise the classes of admitted approximands 
as well as the radial basis functions to generalised multiquadrics in place of the 
well-known ordinary or for example inverse multiquadrics. An interesting analytical 
aspect of this work is that – unlike the classical Whittaker–Shannon theorem – 
functions (approximands) may be reproduced for the parameter c → ∞ in the 
generalised multiquadrics cardinal approximands, where the usual Shannon series 
does not converge with theses approximands due to the slow decay of the sinc-
function which does not allow e.g. polynomials as approximands. In contrast to 
the latter, the generalised multiquadrics cardinal functions employed here decay 
sufficiently fast for each fixed parameter c that even polynomials may be admitted 
as approximands and are reproduced when then the parameter tends to infinity.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Approximation and interpolation in multiple dimensions of d-variable functions and data by computa-
tionally simpler expressions is a task that is often addressed for instance by using linear combinations of 
shifts of a single kernel function. This is because the computation of the aforementioned approximant or 
interpolant is greatly simplified in this way especially when the said kernel function has certain symmetries 
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for example. Especially in high dimensions d � 1, one type of symmetry is resulting from using a radially 
symmetric kernel ϕ(‖ · ‖) : Rd → R. Here and anywhere else the norm ‖ · ‖ is Euclidean and the radial part 
ϕ : R+ → R is called the radial basis function.

Various different approaches to approximate the approximand f may be taken. When going back to the 
radial basis functions, for instance one may work by varying on the positions of the shifts – here called centres 
because of the radial symmetry about them – and among them we wish to study cardinal interpolation on 
equally spaced data. Indeed, the problem of interpolating to a multivariate function on an integer grid using 
the radial basis function ϕ : R+ → R is formulated classically in the following way: given the continuous 
function f : Rd → R (the approximand), find a set of real coefficients {dk}k∈Zd such that

If (x) =
∑
k∈Zd

dkϕ(‖x− k‖), x ∈ Rd,

is well-defined (the sum converges at a minimum quadratically, that is, in the �2-sense and not, e.g., uniform, 
thus we may not in certain cases evaluate pointwise everywhere) and agrees with f everywhere on Zd. 
Alternatively, and this is our approach here, we may initially try to find coefficients {ck}k∈Zd such that the 
so-called cardinal function

χ(x) =
∑
k∈Zd

ckϕ(‖x− k‖), x ∈ Rd, (1.1)

is an absolutely pointwise with respect to x convergent sum with the cardinality conditions χ(j) = δ0,j for 
all multi-integers j ∈ Zd, where δ is the Dirac functional, that is, δs,t = 1 if s = t and δs,t = 0 if s �= t. We 
then set

If (x) =
∑
k∈Zd

f(k)χ(x− k), x ∈ Rd, (1.2)

whenever the approximant’s sum (1.2) converges absolutely with respect to x or at a minimum in an 
L2-sense. In the latter case we may be unable to evaluate pointwise but may consider the error

‖f − If ‖2

nonetheless.
This approach provides a useful and flexible family of approximants for many choices of ϕ. For instance, 

the famous multiquadric radial basis function (MQ) ϕ(r) = ϕc(r) =
√
r2 + c2, further inverse multiquadrics 

(IM)

ϕ(r) = 1√
r2 + c2

,

inverse quadratics (IQ)

ϕ(r) = 1
r2 + c2

,

which all unify and generalise in

ϕcγ(r) =
(
r2 + c2

)γ
, γ /∈ Z+;

nonnegative integers are forbidden because they force the radial function composed with the Euclidean 
norm to be simply a polynomial of degree 2γ in d unknowns. Finally, among the most often used radial 
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basis functions are the popular Gaussians (GA) ϕ(r) = exp(−(cr)2), the Poisson kernel ϕ(r) = exp(−cr)
and shifted thin-plate spline radial basis function ϕ(r) = (r2 + c2) log(r2 + c2).

However, in this article we will focus mostly on the multiquadrics ϕc(r) =
√
r2 + c2 with real parameter 

c and its aforementioned generalisation for γ not a nonnegative integer

ϕcγ(r) =
(
r2 + c2

)γ
.

In this case, the existence of the cardinal function χ = χc defined by (1.1) was confirmed for example by 
the first author [3], where it is furthermore proved that for instance beginning in one dimension and for the 
multiquadrics proper it is true that at a minimum

|χc(x)| = O(‖x‖−5) = Oc(‖x‖−5) as ‖x‖ → ∞,

with the constant absorbed in O = Oc being dependent on c but not on x. This is a first indication that 
the convergence of the infinite series for the cardinal interpolants may also be hoped for in the context of 
some polynomially increasing approximands f or indeed polynomials p = f of certain degrees themselves.

Continuing now, from the broad theory in Chapter 4 in [4], and when c is not zero, it follows that for 
the generalised multiquadrics function we get further decay estimates of

|χc(x)| = Oc(‖x‖−4γ−3d), as ‖x‖ → ∞, (1.3)

for x ∈ Rd so long as 2γ + d is an even positive integer, and in all other cases

|χc(x)| = Oc(‖x‖−2γ−2d), as ‖x‖ → ∞. (1.4)

Then, a frequently occurring question is whether the limits of interpolants (1.2) will recover the origi-
nal function on the whole space either immediately or indeed asymptotically when the parameter c tends 
to infinity – which makes the radial basis functions “increasingly flat” in a term coined by Fornberg and 
Larsson [6]. This aspect of radial basis function interpolation and its numerical solution is useful because 
it also concerns the numerical problem with ill-conditioned matrices when solving the mentioned interpo-
lation problems for extreme parameters and how to solve the interpolation problems for the interpolation 
coefficients efficiently in the face of this ill-conditioning. An interesting feature of the so-called “flat limits” 
is that they are often as simple functions as polynomials. The reproduction of polynomials happens also 
in our context, see for instance the last theorem of this section or the polynomial reproduction on infinite 
grids by interpolation or quasi-interpolation, see for instance the standard references (but there are many 
others) [4] or [3] or [5].

An earlier paper [2] by Baxter gave out certain sufficient conditions on functions f such that (1.2)
uniformly converges to f on Rd when the parameter c tends to infinity. More precisely, the result is stated 
in the following theorem.

Theorem 1.1. [2] Given a continuous function f ∈ L2(Rd), whose square-integrable Fourier transform f̂ is 
compactly supported in [−π, π]d, so that it is band-limited, then the interpolant

(Icf)(x) =
∑
k∈Zd

f(k)χc(x− k), x ∈ Rd, (1.5)

is well-defined in L2(Rd), where χc denotes the cardinal function for the integer grid using the classical 
multiquadric radial function (γ = 1/2) with parameter c. Furthermore, it is true that
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lim
c→∞

(Icf)(x) = f(x) (1.6)

uniformly for all arguments on Rd.

In another recent article [9] by Ledford, the author established the result (see [9, Theorem 2]) with 
respect to a relatively general family of basis functions. But in [9] it is still required all approximand 
functions satisfying the same conditions. However, Powell [12, Section 5] had pointed out that (1.6) holds 
for f(x) = x2, which, obviously, as an approximand does not in fact satisfy the conditions of Theorem 1.1. 
Therefore, the central purpose of this paper is to extend the uniform approximation property (1.6) by 
relaxing the requirements on the approximands much further.

When the approximand is again the sinc-function, this theorem implies that the limit of the cardinal 
functions with respect to the c parameter (the “flat limit”) as the parameter c tends to ∞ is the sinc-function 
pointwise, for this and other radial basis functions as in [9]. Our first main result establishes the uniform 
convergence of (1.6) for Lp-integrable functions, 1 < p < ∞, with limited support of Fourier transforms. 
Also, it is shown that such approximation is true under the corresponding derivatives.

Theorem 1.2. Let f ∈ Lp(Rd), 1 < p < ∞, with a Fourier transform f̂ in the distributional sense. If the 
radial basis function in use is the generalised multiquadric function and f̂ is supported in [−π, π]d, we have 
that

lim
c→∞

(Icf)(x) = f(x) (1.7)

uniformly on Rd. More generally, for any α ∈ Zd
+,

lim
c→∞

∂α(Icf)(x) = ∂αf(x) (1.8)

uniformly on Rd, where ∂α is a short notation for the partial derivative

∂|α|

∂xα1
1 ∂xα2

2 · · · ∂xαd

d

of order α ∈ Zd
+.

Remarks.

(i) In this sense, χc can be seen as a generalisation of the sinc function which provided the famous sampling 
theorem (see [7]). However, the sinc function decays far too slowly, so it is not very well localised, and 
it has to be used employing the tensor product form in the high dimensional case.

(ii) By Paley–Wiener’s theorem, the functions satisfying the conditions in Theorem 1.2 can be extended 
to entire functions of exponential type at most π. For details, one can refer to [15] and [11].

(iii) The conclusions of Theorem 1.2 are still justified for any radial basis function with its Fourier transform 
using the modified Bessel functions Kvj in the form of

φ̂c(r) =
m∑
j=1

gj(r)csj
Kvj (cr)

rvj
,

where for each j = 1, . . . , m, vj being always positive, sj ∈ R+, and gj are univariate functions which 
have continuous derivatives with gj and g′j possessing at most polynomial growth.
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Notice that when p = ∞, (1.6) may not be true. To see this, one can consider f(x) = sin πx as an example, 
which is nonzero but vanishes at every integer. In this view, we turn to establish (1.6) as well for approximand 
functions, which are in some special forms-Fourier transform of Borel measure, Fourier–Stieltjes integral and 
multivariate polynomials, respectively.

Theorem 1.3. Let f be a multivariate function on Rd which is band-limited and defined by a Fourier transform 
of any Borel measure, that is

f(x) =
∫

[−π,π]d

exp(ix · u) dμ(u), (1.9)

where μ is a Borel measure on Rd with μ([−π, π]d) < ∞. The · denotes the usual inner product. Then we 
still have for the generalised multiquadric radial basis function

lim
c→∞

(Icf)(x) = f(x)

uniformly for all x ∈ Rd.

Theorem 1.4. Let f be a multivariate function on Rd defined by a Fourier–Stieltjes integral, that is

f(x) =
∫

[−π,π]d

exp(ix · u) dα1(u1) · · · dαd(ud), x ∈ Rd, u = (u1, . . . , ud), (1.10)

where each αj(uj), j = 1, . . . , d, is of bounded variation in [−π, π] with αj(−π + 0) − αj(−π) = αj(π) −
αj(π− 0). The cardinal interpolation in multiple dimensions using the aforementioned cardinal function χc

with radial basis functions ϕcγ = (r2 + c2)γ will then in fact satisfy for all γ that are not non-negative 
integers

lim
c→∞

(Icf)(x) = f(x)

uniformly for all x ∈ Rd.

Theorem 1.5. If f is a multivariate polynomial on Rd of degree componentwise less than 4γ + 3d − 1 when 
2γ+d is even or 2γ+2d −1 for all other cases, it enjoys for the generalised multiquadric function the identity 
(1.6) pointwise with an absolutely convergent infinite sum. For a polynomial of degree componentwise less 
than 4γ +3d − 1/2 when 2γ + d is even or 2γ +2d − 1/2 for all other cases, the same is true in the sense of 
L2 with a square summable series. So the L2-error of the difference between approximand and approximant 
vanishes.

We remark that the generalisation also could be seen easily by applying Theorem 1.4 to the example 
f(x) = cosπx as approximand for which therefore Theorem 1.1, Theorem 1.3 and Theorem 1.5 are not 
applicable. Also the observation of Powell [12, Section 5] about f(x) = x2 is justified by Theorem 1.5.

In the papers [2] and [9], the authors essentially accomplished their proofs by applying the limit behaviour 
of χ̂c, the Fourier transform of cardinal function χc. However, in our cases it is no longer enough for the 
proofs. Hence, in the next section after recalling some well known facts we will first give an estimate of χc. 
Then, in particular, taking into account special properties of the modified Bessel functions we gave an 
estimate of a sum of χc and its derivatives, which are crucial for the proofs of our main results. Finally, we 
will complete that section by proving Theorem 1.2, Theorem 1.3, Theorem 1.4 and Theorem 1.5.
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2. Limit for the parameter of cardinal interpolation with RBF

Again, the radial basis function we consider is called the generalised multiquadric with a parameter c > 0
and a nonzero parameter γ, not a positive integer, where incidentally for positive exponent γ also c = 0 is 
explicitly allowed,

ϕcγ(r) =
(
r2 + c2

)γ
, r > 0.

So we now have two parameters in our radial basis function.
As it is well known, the Fourier transform preserves the radial symmetry property; that is, if f is a radial 

function on Rd, its Fourier transform satisfies that

f̂(ξ) = f̂(η), if ‖ξ‖ = ‖η‖, ξ, η ∈ Rd.

So for convenience, given a fixed dimension d, we define

ϕ̂cγ(r) := Φ̂cγ(x), r = ‖x‖, x ∈ Rd,

with Φcγ(x) = ϕcγ(‖x‖). Here and in what follows, we specify the Fourier transform normalised incidentally 
as

f̂(ξ) =
∫
Rd

f(x) exp(−ix · ξ) dx, ξ ∈ Rd. (2.1)

So long as we have the classical case γ = 1
2 , ϕ̂cγ can be formulated as

ϕ̂cγ(r) = ϕ̂c,1/2(r) = −
(2πc)(d+1)/2K(d+1)/2(cr)

πr(d+1)/2 ,

where K(d+1)/2 is modified Bessel function with degree (d +1)/2. In particular, for the one-dimensional case 
with γ = 1/2, we have the simple expression

ϕ̂cγ(‖x‖) = ϕ̂c,1/2(‖x‖) = −2cK1(c‖x‖)
‖x‖ = −2

∞∫
1

exp(−c‖x‖t)(t2 − 1) 1
2 dt. (2.2)

Now, in the general d-dimensional case for γ not a nonnegative integer and c > 0,

ϕ̂cγ(r) = −2Γ(γ + 1)πd/2−1(2c/r)γ+d/2 sin(πγ)Kγ+d/2(cr)

which has an integral representation as

−2π(d−1)/2c2γ+d Γ(γ + 1) sin(πγ)
Γ
(
γ + d+1

2

) ∞∫
1

exp(−crt)(t2 − 1)γ+ d−1
2 dt, (2.3)

and for the case c = 0, γ > 0, not integral,

ϕ̂0γ(r) = −Γ
(
γ + d

2

)
Γ(1 + γ) sin(πγ)22γ+dπd/2−1r−2γ−d.

For further details of above formulae, one can refer to [8] for instance.
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Especially the exponential decay of ϕ̂cγ for large argument is essential for our proofs, that is, for 0 <
‖ξ‖ < ‖η‖ in particular

|ϕ̂cγ(‖η‖)| ≤ exp
[
−c(‖η‖ − ‖ξ‖)

]
|ϕ̂cγ(‖ξ‖)| , (2.4)

which is in fact a slight generalisation of Lemma 2.1 in [2] and is guaranteed by an asymptotic behaviour
of modified Bessel functions (see [1, 9.7.2]); that is, for any degree v ∈ R+,

Kv(x) ∼ e−x

√
x
, x → +∞, (2.5)

where A ∼ B means there is a positive constant θ independent of x such that θ−1A ≤ B ≤ θA. Apart from 
this, we need two more facts on modified Bessel functions. Namely,

Kv(x) ≥
√

π

2
e−x

√
x
, x > 0, |v| ≥ 1

2 , (2.6)

and the formulas for derivatives (see for instance [1, 9.6.28]), that is

d

dz

Kv(z)
zv

= −Kv+1(z)
zv

, z ∈ C. (2.7)

Furthermore, due to [3], with respect to the generalised multiquadric radial function again, the cardinal 
function defined by (1.1) in Rd exists, and its Fourier transform is given by

χ̂c(x) = ϕ̂cγ(‖x‖)∑
� ϕ̂cγ(‖x + 2π�‖) , (2.8)

where the sum is taken over all d-dimensional multi-integers �. Based on this, the following two lemmas 
provide us with further details about the cardinal function χc and its Fourier transform.

Lemma 2.1. For any u ∈ (−π, π),

|1 − χ̂c(u)| ≤ e−c|π−u|, (2.9)

and for u ∈ R \ [−π, π], say u = ζ + 2πk with k ≥ 1 and ζ ∈ (−π, π),

|χ̂c(u)| ≤ e−cπk + e−c|π−ζ|. (2.10)

Remarks.

(i) Lemma 2.1 can be seen as a deeper characterisation of Proposition 2.2 in [2]. For the clarity of presen-
tation, it is convenient to rewrite it as a lemma.

(ii) This result can be easily extended to any high dimensional case Rd by replacing |π− ζ| and k in (2.9), 
(2.10) by σd(ζ) and |κ|∞ respectively, where |k|∞ = max |kj | and

σd(ζ) = min{|πε− ζ| : ε ∈ {−1, 0, 1}d, ε �= 0}, ζ ∈ (−π, π)d. (2.11)

(iii) By employing the inverse Fourier transform, this lemma immediately implies that

|∂αχc(x)| ≤ A, α ∈ Zd
+, x ∈ Rd, (2.12)

where A is a constant independent of c and x.
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(iv) It is a particular consequence of this result that the pointwise convergence of the cardinal function with 
respect to c as c → ∞ to the sinc-function is exponential.

Proof. By using (2.8), we get

|χ̂c(2π − u)| ≤ ϕ̂cγ(|2π − u|)
ϕ̂cγ(|u|) .

Since |2π − u| − |u| ≥ |π − u| for u ∈ [0, π), by (2.4) we have (2.9) immediately.
Similarly, when k ≥ 2, notice that

|2kπ − u| = |(2k − 1)π + π − u| ≥ (2k − 1)π,

which means |2kπ − u| − |u| ≥ (2k − 2)π ≥ kπ, and therefore (2.10) holds by (2.8) and (2.4). �
Lemma 2.2. For any ε > 0, ∑

j∈Zd

|χc(x + j)|1+ε < A < ∞, (2.13)

where A is a constant independent of c and x. Furthermore, for any α ∈ Zd
+,

∑
j∈Zd

|∂αχc(x + j)|1+ε < A′ < ∞, (2.14)

where A′ is a constant independent of c and x ∈ Rd.

Proof. It will be instructive to consider first the one dimensional case where the arguments can be transferred 
to the higher dimensional situation easily under a slight change.

By combining (2.8), (2.2) and (2.7), after a straightforward calculation, we have that

χ̂′
c(ξ) =

c
[
K1(c|ξ|)

|ξ|
∑

�
K2(c|ξ+2π�|)H(ξ+2π�)

|ξ+2π�| − K2(c|ξ|)
|ξ|

∑
�
K1(c|ξ+2π�|)

|ξ+2π�|

]
[∑

�
K1(c|ξ+2π�|)

|ξ+2π�|

]2
=

c
[
K1(c|ξ|)

|ξ|
∑

��=0
K2(c|ξ+2π�|)H(ξ+2π�)

|ξ+2π�| − K2(c|ξ|)
|ξ|

∑
��=0

K1(c|ξ+2π�|)
|ξ+2π�|

]
[∑

�
K1(c|ξ+2π�|)

|ξ+2π�|

]2 ,

where H(x) = 1 for x ≥ 0 and H(x) = −1 otherwise. Now, suppose that the parameter c is sufficient large, 
by using (2.5) and (2.6), we have that

|χ̂′
c(ξ)| �

{
ce−c|π−ζ|, |k| ≤ 1;
cke−cπk, |k| > 1,

(2.15)

for ξ = ζ + 2πk with ζ ∈ (−π, π) and k ∈ Z and |ξ| > ε. Here and in what follows we use � to denote that 
there is an extra constant independent of c in the proposed upper bound.

Note that in case of choosing ξ = π for example, the first infinite sum in the numerator in the pen-ultimate 
display cancels, that is
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∑
�

K2(c|ξ + 2π�|)H(ξ + 2π�)
|ξ + 2π�|

vanishes, which results in a nonzero numerator, because the two series no longer cancel each other asymp-
totically, and explains the c factor for ±π as arguments in χ̂′

c(ξ).
Therefore, by symmetry,

∞∫
−∞

|χ̂′
c(ξ)|dξ = 2

∞∑
k=0

∫
[−π,π]

|χ̂′
c(ζ + 2πk)|dζ < B < ∞, (2.16)

where B > 0 is independent of the parameter c. It turns out that

|χc(x)| ≤ 1
2π|x|

∣∣∣∣∣∣
∞∫

−∞

eixξχ̂′
c(ξ)dξ

∣∣∣∣∣∣ ≤ B

|x| (2.17)

which, by combining with (2.12), implies the desired (2.13) for d = 1.
Then, for the general d-dimensional case, using the same argument we can obtain that for ξ = ζ + 2πk

with ζ ∈ (−π, π)d and k ∈ Zd,

|∂1
ξ χ̂c(ξ)| �

{
ce−cσd(ζ), |k|∞ ≤ 1;
ce−cπk, |k|∞ > 1,

where ∂1
ξ = ∂d

∂ξ1···∂ξd and σd is as defined in the remarks after Lemma 2.1. This immediately implies that

|χc(x)| ≤ 1
2π
∏d

j=1 |xj |

∣∣∣∣∣∣
∫
Rd

eix·ξ∂1χ̂c(ξ)dξ

∣∣∣∣∣∣ ≤ B′∏d
j=1 |xj |

with B′ independent of c and x – and thus (2.13) is justified.
Finally, to prove (2.14), when d = 1 we notice that (2.15) implies the analogues of (2.15), (2.16) and 

(2.17); that is, for any a ∈ Z+, we have that

|ξaχ̂′
c(ξ)| �

{
ce−c|π−ζ|, |k| ≤ 1;
ckae−cπk, |k| > 1,

for ξ = ζ + 2πk with ζ ∈ (−π, π), k ∈ Z, and there is a constant B′′ independent of c such that

∞∫
−∞

|ξaχ̂′
c(ξ)|dξ < B′′ (2.18)

and

∣∣∣∣ dadxa
χc(x)

∣∣∣∣ ≤ 1
2π|x|

∣∣∣∣∣∣
∞∫

−∞

(iξ)aeixξχ̂′
c(ξ)dξ

∣∣∣∣∣∣ ≤ B′′

2π|x| , |x| > 0. (2.19)

Consequently, with (2.12) we can conclude (2.14) for one dimension and indeed for any higher dimension. �
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Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that f ∈ Lp(Rd), 1 < p < ∞, with its Fourier transform supported in 
[−π, π]d. Let fn ∈ Lp(Rd) ∩ L2(Rd) such that supp f̂ ⊂ [−π, π] and fn → f in Lp(Rd). Here n ∈ N. For 
instance, one can set

fn(x) = f ∗ gn(x)

with gn(x) = (n/π)d/2e−n‖x‖2 . Here, the star denotes the classical convolution by integrals on Rd. Noticing 
indeed the Nikolskii type inequality for exponential type obtained by Nessel and Wilmes [10, Theorem 3], 
fn also converges to f uniformly as n → ∞.

Then by Hölder’s inequality, for any x ∈ Rd and p > 1 with p′ = p/(p − 1), we have

|Ic(fn)(x) − Ic(f)(x)| ≤

⎛⎝∑
j

|fn(j) − f(j)|p
⎞⎠1/p⎛⎝∑

j

|χc(x− j)|p′

⎞⎠1/p′

,

which, with Lemma 2.2 and Plancherel–Pólya’s theorem (see, for instance [11]), implies that

|Ic(fn)(x) − Ic(f)(x)| ≤ C‖fn − f‖p,

where C is a constant dependent on p but not dependent on x, n and neither on c. Therefore, since

|Ic(f)(x) − f(x)| ≤ |Ic(f)(x) − Ic(fn)(x)| + |Ic(fn)(x) − fn(x)| + |fn(x) − f(x)|,

by applying Theorem 1.1 to fn, we conclude (1.7), and the same is true for (1.8) by a similar argument 
using the statement about the sum of partial derivatives from the previous lemma. �
Next we turn to prove Theorem 1.3, Theorem 1.4 and Theorem 1.5, which will be essentially relying on 
the following Lemma 2.4. However, for more clarity of the presentation, before that we state a corollary of 
Lemma 2.1 since it will be used many times in the proof of Lemma 2.4.

Corollary 2.3. Let m1, m2 be any two nonnegative integers with m1 + m2 = d. Then for u ∈ (−π, π)d, the 
series ∑

k1∈A1 or k2∈A2

χ̂c

(
2πk1 + u, πk2

)
� e−cσd(u), as c → ∞, (2.20)

where A1 = Zm1 \ {0} and A2 = Zm2 \ {0, −1, 1}m2 .

Lemma 2.4. Let χc be the cardinal interpolation function as above, employing the said generalised multi-
quadric function ϕcγ . Then for any x = (x1, x2) ∈ Rd with x1 ∈ Rm1 , x2 ∈ Rm2 , and m1 +m2 = d, m1, m2
being nonnegative integers, if u ∈ (−π, π)m1 ,∣∣∣∣∣∣

∑
j1∈Zm1

∑
j2∈Zm2

eij1·u(−1)j2χc(x1 − j1, x2 − j2) − eix1·u cos(πx2)

∣∣∣∣∣∣ � e−cσd(u), (2.21)

as c → ∞, where σd(u) is as defined in (2.11). Here and anywhere else we adopt the convention that for 
some nonnegative integer m we have (−1)α := (−1)α1 · · · (−1)αm if α = (α1, . . . , αm) ∈ Zm and x · y, for 
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x, y ∈ Rm, is the inner product as before, and cosx denotes the componentwise product cosx1 · · · cosxd̂ if 
x = (x1, . . . , xd̂) ∈ Rd̂, any d̂ ∈ N.

In particular, when m2 vanishes, one can simplify (2.21) as the estimate∣∣∣∣∣∣
∑
j∈Zd

eij·uχc(x− j) − eix·u

∣∣∣∣∣∣ � e−cσd(u), u ∈ (−π, π)d, x ∈ Rd. (2.22)

Proof. Recall that with the specification of the Fourier transform (2.1), the Poisson summation formula 
states that, if for example – see e.g. [16] also for weaker requirements –

|f(x)| +
∣∣f̂(x)

∣∣ = O
(
1 + ‖x‖−d−ε

)
with some ε > 0, (2.23)

then it is true that ∑
j∈Zd

f(x− j) =
∑
k∈Zd

f̂(2πk)e−2πix·k, x ∈ Rd. (2.24)

Now, the proof is the same in all dimensions, but the description is simpler for R2, so first our proof is carried 
out for R2, and next we indicate the necessary changes to the desired generalisation to higher dimensions.

Obviously, the decay properties (1.3), (1.4) and (2.4) guarantee the requirement (2.23). Therefore, for 
fixed x1, x2 ∈ R, since∑

j1∈Z

∑
j2∈Z

eij1u(−1)j2χc(x1 − j1, x2 − j2) =

eix1u
∑
j1∈Z

∑
j2∈Z

e−i(x1−j1)u
[
χc

(
x1 − j1, 2

(x2

2 − j2

))
− χc

(
x1 − j1, 2

(x2 − 1
2 − j2

))]
and by using the stated Poisson summation formula (2.24) with

f(x) = e−ix1uχc(x1, 2x2),

we have that ∑
j1∈Z

∑
j2∈Z

eij1u(−1)j2χc(x1 − j1, x2 − j2)

= eix1u

2
∑
k1∈Z

∑
k2∈Z

χ̂c(2πk1 + u, πk2)e−2iπk1x1
[
e−iπk2x2 − e−iπk2(x2−1)

]
= I1 + I2,

where

I1 = eix1u
[
χ̂c(u, π)e−iπx2 + χ̂c(u,−π)eiπx2

]
and

I2 = eix1u

2
∑

χ̂c(2πk1 + u, πk2)e−2iπk1x1
[
e−iπk2x2 − e−iπk2(x2−1)

]
.

k1 �=0 or |k2|>1
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Notice that by using the symmetry of (2.8),

∣∣χ̂c(u, π) − 1
2
∣∣

=
∣∣χ̂c(u,−π) − 1

2
∣∣

=

∣∣∣∣∣ ϕ̂cγ

(
‖(u, π)‖

)∑
�1,�2∈Z

ϕ̂cγ

(
‖(u + 2π�1, π + 2π�2)‖

) − 1
2

∣∣∣∣∣ (2.25)

=

∣∣∣∣∣
⎛⎜⎜⎝2 +

∑
|�1|≥1

�2 �=0,−1

ϕ̂cγ

(
‖(u + 2π�1, π + 2π�2)‖

)
ϕ̂cγ

(
‖(u, π)‖

)
⎞⎟⎟⎠

−1

− 1
2

∣∣∣∣∣

≤
∣∣∣∣∣
⎛⎜⎜⎝2 +

∑
|�1|≥1

�2 �=0,±1

ϕ̂cγ

(
‖(u + 2π�1, π�2)‖

)
ϕ̂cγ

(
‖(u, π)‖

)
⎞⎟⎟⎠

−1

− 1
2

∣∣∣∣∣
= o(1), (2.26)

which uniformly approaches zero as c → ∞ after a straightforward calculation by using (2.4).
For I2, using (2.8) again, we have that

|I2| ≤
∑

k1 �=0 or |k2|>1

χ̂c

(
2πk1 + u, πk2

)
� e−cσ1(u), (2.27)

where the last step follows from Corollary 2.3.
Then, with a slight modification, the proof works equally well for the remaining cases when for instance 

m1 = 2 and m1 = 0, and therefore we have completed the proof now for 2-dimensional case.
In the general Rd case, with m1 + m2 = d, m1, m2 being both nonnegative integers, and u ∈ (−π, π)m1 ,∑

j1∈Z
m1

j2∈Z
m2

eij1·u(−1)j2χc(x1 − j1, x2 − j2)

= eix1·u
∑

s2∈{0,1}m2

∑
j1∈Z

m1

j2∈Z
m2

e−i(x1−j1)·u(−1)s2χc(x1 − j1, x2 − s2 − 2j2)

= eix1·u

2m2

∑
k1∈Z

m1

k2∈Z
m2

χ̂c(2πk1 + u, πk2)ei2πx1·k1eiπx2·k2
∑

s2∈{0,1}m2

(−1)s2e−iπs2·k2 . (2.28)

Then one can check that for any nonnegative integer m, if k ∈ {1, −1}m,∑
s∈{0,1}m

(−1)seiπk·s =
∑

s∈{0,1}m

(−1)2s = 2m, (2.29)

and if k ∈ {0, 1, −1}m \ {1, −1}m, say ki1 = ki2 = · · · = kit = 0, 1 ≤ i1 < · · · < it ≤ m with a positive 
integer 0 < t ≤ m, ∑

m

(−1)seiπk·s =
∑

(−1)si1+···+sit = 0.

s∈{0,1} si1 ,...,sit∈{0,1}
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By applying these equalities to (2.28), it implies that

∑
j1∈Zm1 ,j2∈Zm2

eij1·u(−1)j2χc(x1 − j1, x2 − j2) = eix1·uχ̂c(u, πe)
∑

k2∈{−1,1}m2

eiπx2·k2 + J2 (2.30)

= 2m2eix1·u cos(πx2)χ̂c(u, πe) + J2. (2.31)

Here recall that e = (1, 1, . . . , 1) ∈ Rm2 and J2 equals

eix1·u

2m2

∑
k1∈A1or k2∈A2

⎡⎣χ̂c(2πk1 + u, πk2)ei2πx1·k1eiπx2·k2
∑

s2∈{0,1}m2

(−1)s2e−iπs2·k2

⎤⎦
satisfying that, with A1 = Zm1 \ {0} and A2 = Zm2 \ {0, 1, −1}m2 , as before

|J2| ≤
∑

k1∈A1 or k2∈A2

χ̂c

(
2πk1 + u, πk2

)
� e−cσd(u), c → ∞,

by using Corollary 2.3. Moreover, in a similar way as in (2.26), we obtain that uniformly in u,

lim
c→∞

χ̂c(u, πe) = 2−m2 .

Then consequently (2.31) yields the desired (2.21). �
Now we are in the position to prove Theorem 1.3, Theorem 1.4 and Theorem 1.5. Beginning by using 
Lemma 2.4 and the dominated convergence theorem, we can obtain Theorem 1.3 directly, basically in the 
same way as in the following

Proof of Theorem 1.4. For the sake of convenience and being concise, we shall carry out the proof only for 
d = 2, while the general case follows in a most similar way.

For each j = 1, 2, let

αj,0(u) =

⎧⎪⎨⎪⎩
αj(−π + 0), if u = −π,

αj(u), if − π < u < π,

αj(π − 0), if u = π;

and define furthermore

Aj = αj(−π + 0) − αj(−π) = Bj = αj(π) − αj(π − 0) and Cj = Aj + Bj = 2Aj .

Then using that Aj = Bj , j = 1, 2,

f(x) =
2∏

j=1

⎡⎣ π∫
−π

eixjuj dαj,0(uj) + Cj cos(πxj)

⎤⎦
where u = (u1, u2), x = (x1, x2).
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Then, by expanding f(k) for each k = (k1, k2) ∈ Z2, we have

|(Icf)(x) − f(x)|

= |
∑
k∈Z2

f(k)χc(x− k) − f(x)|

≤
∫

[−π,π]2

∣∣∣∣∑
k∈Z2

eik·uχc(x− k) − eix·u
∣∣∣∣ dα1,0(u1)dα2,0(u2)

+ |C1|
π∫

−π

∣∣∣∣∑
k∈Z2

(−1)k1eik2u2χc(x− k) − eix2·u2 cosπx1

∣∣∣∣ dα2,0(u2) +

+ |C2|
π∫

−π

∣∣∣∣∑
k∈Z2

(−1)k2eik1u1χc(x− k) − eix1u1 cosπx2

∣∣∣∣ dα1,0(u1) +

+ |C1C2||
∑
k∈Z2

(−1)kχc(x− k) − cos(πx)|,

which, by applying Lemma 2.4 and the continuity of α1,0, α2,0, allows us to claim that

lim
c→∞

|f(x) − (Icf)(x)| = 0

uniformly on x ∈ R2 and therefore – using the analogous arguments in the general multivariate case – 
conclude the proof of Theorem 1.4. �

In order to prove Theorem 1.5, it is sufficient to notice that for example

x2 = 2 lim
u→0+

1 − cos(xu)
u2 (2.32)

and

x3 = lim
u→0+

2 sin(xu) − sin(2xu)
u3 .

Moreover,

x4 = lim
u→0+

6 − 8 cos(xu) + 2 cos(2xu)
u4 ,

and similarly for all other powers. Then, by applying Lemma 2.4 again and choosing certain linear combi-
nations, we arrive directly at Theorem 1.5. �

We remark that the idea of Theorem 1.4 using Fourier–Stieltjes integrals follows from the work of 
I.J. Schoenberg in [14], where it concerns the spline interpolation. Moreover, in [13], he also proved the 
necessity of the condition (1.10). Nonetheless, this problem is still open for our case.

We also remark a straightforward generalisation of the Corollary 2.3, where the decay property and the 
existence of the Lagrange functions are needed and guaranteed by the work in Chapter 4 in [4], and the 
remaining part of the proof follows the same lines as above.

Corollary 2.5. Let ϕ
c

be any radial basis function, depending on a positive parameter c, that possesses a 
generalised Fourier transform ϕ̂ which is positive, decays exponentially with
c
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ϕ̂
c
(r) = O

(
exp(−αcr)

)
, c, r → ∞, (2.33)

and

1/ϕ̂
c
(r) = O

(
exp(αcr)

)
, c, r → ∞,

for some positive α, α, and has a singularity of positive order μ at the origin. Then the identities of the 
previous Lemmas 2.1 and 2.2 hold. If moreover, the standard conditions in [4], p. 59, are satisfied, namely 
for M > d + μ that ϕ̂

c
∈ CM (R+) with all its derivatives satisfying (2.33) and having singularities

ϕ̂(�)(r) ∼ r−μ−�

at the origin, � = 0, 1, . . . , M , then the cardinal function satisfies the decay estimate that at a minimum

|χc(x)| = O(‖x‖−d−μ)

for large argument. Therefore in particular

∑
j∈Zd

∣∣∣χc(x− j)
∣∣∣

is uniformly convergent and bounded for all arguments.

Note that the proof of Theorem 1.4 essentially only relies on the decay property of radial basis function ϕ
c

given in Corollary 2.5. Naturally we extend our results to this more general class of radial basis functions. 
A typical example is the generalised shifted thin-plate spline radial basis function

ϕ
c
(r) = (r2 + c2) log(r2 + c2)

with Fourier transform

2(2π)d/2 d

dβ
2β/2/Γ(β/2)

∣∣∣∣
β=2

Kd/2+1(cr)(c/r)d/2+1,

see for example [5] Example 2.7.

Corollary 2.6. Let f be an entire multivariate function on Cd defined by a Fourier–Stieltjes integral, that is

f(x) =
∫

[−π,π]d

exp(ix · u) dα1(u1) · · · dαd(ud), x ∈ Rd, u = (u1, . . . , ud),

where each αj(uj), j = 1, . . . , d, is of bounded variation in [−π, π] with αj(−π + 0) − αj(−π) = αj(π) −
αj(π − 0). The cardinal interpolation in d dimensions using the aforementioned cardinal function χc with 
radial basis functions ϕ

c
as given in Corollary 2.5 will then in fact satisfy

lim
c→∞

(Icf)(x) = f(x)

uniformly for all x ∈ Rd.
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