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Abstract

In this paper, we make some further considerations of the characteristic conditions of
(infinitesimally) unique extremality for Beltrami coefficients obtained by Bozin et al.,
and find some sufficient conditions simpler in form for a Beltrami coefficientµ with
nonconstant absolute value to be (infinitesimally) uniquely extremal.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let ∆ = {z: |z| < 1} be the unit disk in the complex plane, andf (z) be the
quasiconformal mapping of∆ onto itself. We denote its complex dilatation (or
Beltrami coefficient) by

µf = fz̄

fz

, ‖µf ‖∞ < 1,

and its maximal dilatation by

K[f ] = 1+ ‖µf ‖∞
1− ‖µf ‖∞

.
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The boundary homeomorphismf |∂∆ then determines the extremal maximal
dilatationK0[f ] � 1, defined as

K0[f ] = inf
{
K[g]: g|∂∆ = f |∂∆}.

To avoid triviality, we always assume thatK0[f ] > 1, i.e., f |∂∆ is not the
boundary values of a conformal mapping. Thenf is called extremal ifK[f ] =
K0[f ], and uniquely extremal ifK[g] > K0[f ] for any otherg with g|∂∆ =
f |∂∆.

Let µ(z) ∈ M(∆) = {µ: µ ∈ L∞(∆), ‖µ(z)‖∞ < 1}, and denote byf µ the
normalized quasiconformal mapping of∆ onto itself with complex dilatation (or
Beltrami coefficient)µ, which fix three points (for example, 1,i and−1) on the
unit circle∂∆. If f ν |∂∆ = f µ|∂∆ for anotherν(z) ∈ L∞(∆) with ‖ν(z)‖∞ < 1,
we say thatµ andν are in the same Teichmüller class, or simply say that they
are equivalent, and denoteµ ∼ ν. We also denote by[µ] the class of Beltrami
coefficients equivalent toµ and

k([µ]) = inf
{‖ν‖∞, ν ∼ µ

}
, K([µ]) = 1+ k([µ])

1− k([µ]) .

Corresponding to the extremality and uniquely extremality of the quasiconformal
mappings, we say thatµ is extremal in its Teichmüller class (or extremal inT , or
simply extremal) if‖µ‖∞ � ‖ν‖∞ for all ν ∼ µ (i.e.,‖µ‖∞ = k([µ])), andµ is
uniquely extremal in its Teichmüller class (or uniquely extremal inT , or simply
uniquely extremal) if‖µ‖∞ < ‖ν‖∞ for any otherν ∼ µ. It is well known that
there always exists at least one extremal Beltrami coefficient in a Teichmüller
class.

An equivalent class[µ] is called a Strebel point [2,7] ifK0[f µ] > H(f µ|∂∆),

where H(fµ|∂∆) is the dilatation of the boundary correspondencef µ|∂∆,

which is the infimum of the maximal dilatations of all quasiconformal extensions
of f µ|∂∆ in any neighborhood of∂∆ in ∆. Evidently, if we denoteH(f µ|∂∆)

by H([µ]), then the condition for[µ] to be a Strebel point can be written as
H([µ]) < K([µ]).

Let L1
a(∆) be the set of analytic functions belonging toL1(∆). When ϕ ∈

L1
a(∆), we denote itsL1-norm by‖ϕ‖ = ∫∫

∆ |ϕ|dx dy. It follows from Strebel’s
frame mapping theorem [7] that if[µ] is a Strebel point, then there exists a unit
vectorϕ in L1

a(∆) such thatµ and kϕ̄/|ϕ| are equivalent, wherek = k([µ]).
Let µ(z), ν(z) ∈ L∞(∆). If

∫∫
∆ µϕ dx dy = ∫∫

∆ νϕ dx dy for all ϕ ∈ L1
a(∆), we

say thatµ andν are in the same infinitesimal Teichmüller class, or simply say
that they are infinitesimally equivalent, and denoteµ ≈ ν. We also denote by
[µ] the class of Beltrami coefficients infinitesimally equivalent toµ whenever
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there is no ambiguity and‖µ‖ = inf{‖ν‖∞, ν ≈ µ}. We say thatµ is extremal
in its infinitesimal Teichmüller class (or extremal inB, or simply infinitesimally
extremal) if‖µ‖∞ � ‖ν‖∞ for all ν ≈ µ (i.e.,‖µ‖∞ = ‖µ‖), andµ is uniquely
extremal in its infinitesimal Teichmüller class (or uniquely extremal inB, or
simply infinitesimally uniquely extremal) if‖µ‖∞ < ‖ν‖∞ for any otherν ≈ µ. It
is also known that there always exists at least one infinitesimal extremal Beltrami
coefficient in an infinitesimal Teichmüller class.

Corresponding to the boundary dilatation for the Teichmüller class, we can
also define the boundary seminormb([µ]) for the infinitesimal Teichmüller
class:b([µ]) = inf{‖ν|∆−F ‖∞, ν ≈ µ, F is compact in∆}. An infinitesimally
equivalent class[µ] is called an infinitesimal Strebel point if‖µ‖ > b([µ]). It
follows from the infinitesimal frame mapping theorem (see Theorem 2.4 in [3])
that if [µ] is an infinitesimal Strebel point, then there exists a unit vectorϕ in
L1

a(∆) such thatµ and‖µ‖ϕ̄/|ϕ| are infinitesimally equivalent.
We also need the following definitions: The extremal setX(µ) of a Beltrami

coefficientµ is the set where|µ(z)| = ‖µ‖∞. A Beltrami coefficientη is called
an admissible variation ofµ if it does not increase theL∞-norm ofµ and it is
allowed to differ fromµ only on the set where|µ(z)| � constant< ‖µ‖∞. Let
r > 0, and letE be a compact subset of∆; the Beltrami coefficient

µχE + 1

1+ r
µχ∆−E =

{
µ, E,
µ

1+r
, ∆ − E,

is called the truncation ofµ to E.

In [1], Bozin et al. gave a series of characteristic conditions for a Beltrami
coefficientµ to be uniquely extremal or infinitesimally uniquely extremal. For
simplicity, we state the characteristic conditions in the specialized situation when
the domain of the mappings is the unit disk∆. The following are parts of them:

Theorem A [1]. Letµ be a Beltrami coefficient inM(∆) with constant absolute
value. Then the following conditions are equivalent:

(1) µ is uniquely extremal in its classT ;
(2) µ is uniquely extremal in its classB;
(3) For every measurable subsetE of ∆ with nonzero measure, there exists a

sequence of unit vectorsϕn in L1
a(∆) such that

1∫∫
E |ϕn|dx dy

(
‖µ‖∞ − Re

∫ ∫
∆

µϕn dx dy

)
→ 0 (n → ∞);

(4) µ is extremal in its classT , and for every compact subsetE of∆ with nonzero
measure and everyr > 0, [µχE +(1/(1+ r))µχ∆−E] is a Strebel point inT ;

(5) µ is extremal in its classB, and for every compact subsetE of∆ with nonzero
measure and everyr > 0, [µχE + (1/(1+ r))µχ∆−E] is an infinitesimal
Strebel point inB.
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Theorem B [1]. Let µ be a Beltrami coefficient inM(∆). Then the following
conditions are equivalent:

(1) µ is uniquely extremal in its classT ;
(2) µ is uniquely extremal in its classB;
(3) For every admissible variationη of µ, and every compact subsetE of X(η)

with nonzero measure, there exists a sequence of unit vectorsϕn in L1
a(∆)

such that

1∫∫
E

|ϕn|dx dy

(
‖η‖∞ − Re

∫ ∫
∆

ηϕn dx dy

)
→ 0 (n → ∞);

(4) µ is extremal in its classT , and for everyr > 0, every admissible variation
η of µ, and every compact subsetE of X(η) with nonzero measure,[ηχE +
(1/(1+ r))ηχ∆−E] is a Strebel point inT ;

(5) µ is extremal in its classB, and for everyr > 0, every admissible variation
η of µ, and every compact subsetE of X(η) with nonzero measure,[ηχE +
(1/(1+ r))ηχ∆−E] is an infinitesimal Strebel point inB.

In this paper, we make some further considerations of the conditions in the
above two theorems and find some sufficient conditions for a Beltrami coefficient
µ with nonconstant absolute value to be (infinitesimally) uniquely extremal,
which are similar in certain sense to that in Theorems A and B, but simpler in
form. In fact, we prove that the conditions in Theorems A and B are still sufficient
when the condition of “constant absolute value ofµ” in Theorem A and the
condition “for every admissible variationη of µ” in Theorem B are removed.

The remainder of this paper is organized as follows: Section 2 provides the
preliminaries and some lemmas; Section 3 provides some theorems regarding the
(infinitesimally) unique extremality of Beltrami coefficients.

2. Preliminaries and some lemmas

Our main tools in this paper are some basic inequalities, which we now state
as follows:

Theorem C (Main Inequality) [6].Let f and g be two quasiconformal map-
pings of∆ onto itself, and denote byµ,ν, µ̃, ν̃ the complex dilatations off,g,
f −1, g−1, respectively. Ifµ ∼ ν, then∫ ∫

∆

|ϕ|dx dy �
∫ ∫
∆

|ϕ| |1− µϕ/|ϕ||2
1− |µ|2

∣∣1+ µ
ν̃◦f
µ̃◦f

ϕ
|ϕ|

1−µ̄ϕ̄/|ϕ|
1−µϕ/|ϕ|

∣∣2
1− |ν̃ ◦ f |2 dx dy

holds for anyϕ ∈ L1
a(∆).
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The following is a consequence of the Main Inequality, known as the Reich–
Strebel’s fundamental inequality:

Theorem D [6]. If there existsϕ0 ∈ L1
a(∆) with ‖ϕ0‖ = 1 and [µ] = [kϕ̄0/|ϕ0|]

for somek ∈ (0,1) in T , then

1+ k

1− k
�
∫ ∫
∆

|ϕ0| |1+ µϕ0/|ϕ0||2
1− |µ|2 dx dy. (2.1)

The following two inequalities, which are Theorems 3 and 4 in paper [1], can
also be obtained from the Main Inequality.

Theorem E [1]. If µ andν are two equivalent Beltrami coefficients with‖ν‖∞ �
‖µ‖∞ = k < 1, then there is a constantC depending only onk such that∫ ∫

∆

|µ̃ ◦ f − ν̃ ◦ f |2|ϕ|dx dy � C

(
k‖ϕ‖ − Re

∫ ∫
∆

µϕ dx dy

)
(2.2)

holds for allϕ ∈ L1
a(∆), wheref = f µ and µ̃, ν̃ are the complex dilatations of

(f µ)−1, (f ν)−1, respectively.

Theorem F [1]. If µ andν are two infinitesimally equivalent Beltrami coefficients
with ‖ν‖∞ � ‖µ‖∞ = k < ∞, then there is a constantC depending only onk
such that∫ ∫

∆

|µ − ν|2|ϕ|dx dy � C

(
k‖ϕ‖ − Re

∫ ∫
∆

µϕ dx dy

)
(2.3)

holds for allϕ ∈ L1
a(∆).

Before we state our main results, we need to prove the following two lemmas,
the first of that was inspired by the lemma in [5]:

Lemma 1 [5]. If µ ∈ M(∆) is extremal with‖µ‖∞ = k, then for every compact
subsetE of ∆ with nonzero measure and everyr > 0, the truncationµr =
µχE + (1/(1+ r))µχ∆−E of µ to E has the propertyk([µr ]) � k/(1+ r).

Proof. Let η be equivalent toµr andη is extremal, and denote byf µ,f µr , f η

the normalized quasiconformal mappings of∆ onto itself with complex dilata-
tion µ,µr, η. Sincef η has the same boundary values asf µr , it follows that
f µ ◦ (f µr )−1 ◦ f η has the same boundary values asf µ. Sincef µ is extremal by
hypothesis, it therefore follows that

1+ k

1− k
= K[f µ] � K

[
f µ ◦ (f µr )−1 ◦ f η

]
� K[h]K[f η],
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whereh = f µ ◦ (f µr )−1. Since

∣∣µh

(
f µr (z)

)∣∣= ∣∣∣∣ µ(z) − µr(z)

1− µ̄r (z)µ(z)

∣∣∣∣=
{

r |µ(z)|
1+r−|µ(z)|2 , z ∈ ∆ − E,

0, z ∈ E,

we have∣∣µh

(
f µr (z)

)∣∣� rk

1+ r − k2 , z ∈ ∆.

Thus

K[h] � 1+ k

1− k

1+ r − k

1+ r + k
.

Hence we conclude that

K[f η] � 1+ r + k

1+ r − k
= 1+ k

1+r

1− k
1+r

,

which proves the lemma.✷
Lemma 2. If µ ∈ L∞(∆) is infinitesimally extremal with‖µ‖∞ = k, then for
every compact subsetE of ∆ with nonzero measure and everyr > 0, the
truncationαr = µχE + (1/(1+ r))µχ∆−E of µ to E has the property‖αr‖ �
k/(1+ r).

Proof. Suppose thatαr is infinitesimally equivalent to some infinitesimally ex-
tremal Beltrami coefficientη. Thenµ is infinitesimally equivalent toη + µ− αr,

and

µ − αr =
{

rµ(z)
1+r

, z ∈ ∆ − E,

0, z ∈ E,
‖µ − αr‖∞ � rk

1+ r
.

Then we have

‖µ‖∞ � ‖η‖∞ + ‖µ − αr‖∞ � ‖η‖∞ + rk

1+ r
.

Hence

‖η‖∞ � k − rk

1+ r
= k

1+ r
,

so the lemma follows. ✷

3. Unique extremality theorems

We have the following theorems:
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Theorem 1. (1) If µ ∈ M(∆) is extremal, and for every compact subsetE of ∆
and everyr > 0, [µχE + (1/(1+ r))µχ∆−E] is a Strebel point inT , thenµ is
uniquely extremal.

(2) If µ ∈ M(∆) is uniquely extremal, then for every compact subsetE of ∆
and everyr > 0, either [µχE + (1/(1+ r))µχ∆−E] is a Strebel point inT , or
µr = µχE + (1/(1+ r))µχ∆−E is uniquely extremal.

Proof. (1) Denoteµr = µχE + (1/(1+ r))µχ∆−E and ‖µ‖∞ = k. Then by
Lemma 1 we havek([µr ]) � s = (k/(1+ r)). Because[µr ] is a Strebel point
in T , then, by Strebel’s frame mapping theorem, there existssr = k([µr ]) � s

and a unit vectorϕ in L1
a(∆) such thatµr andsr ϕ̄/|ϕ| are equivalent. Therefore,

by Reich–Strebel’s fundamental inequality (2.1),

1+ s

1− s
� 1+ sr

1− sr
= K([µr ]) �

∫ ∫
∆

|ϕ| |1+ µrϕ/|ϕ||2
1− |µr |2 dx dy.

By lettingµ1 = µ/(1+ r), we have

1+ s

1− s
�
∫ ∫

∆−E

|ϕ| |1+ µ1ϕ/|ϕ||2
1− |µ1|2 dx dy +

∫ ∫
E

|ϕ| |1+ µϕ/|ϕ||2
1− |µ|2 dx dy

�
∫ ∫
∆

|ϕ| |1+ µ1ϕ/|ϕ||2
1− |µ1|2 dx dy + C1(k)r

∫ ∫
E

|ϕ|dx dy.

Thus

1+ s

1− s
�

1+ s2 + 2 Re
∫∫

∆
µ1ϕ dx dy

1− s2 + C1(k)r

∫ ∫
E

|ϕ|dx dy,

2

(
s − Re

∫ ∫
∆

µ1ϕ dx dy

)
� C1(k)r

∫ ∫
E

|ϕ|dx dy.

Hence we obtain

k − Re
∫ ∫
∆

µϕ dx dy � C2(k)r

∫ ∫
E

|ϕ|dx dy.

On the other hand, supposeµ is not uniquely extremal. Then there exists a
Beltrami coefficientν with ‖ν‖∞ � ‖µ‖∞ and distinct fromµ such thatµ andν

are equivalent. Then there existsε > 0 and a compact subsetE in ∆ of positive
measure such that|µ̃ ◦ f − ν̃ ◦ f | � ε on E wheref = f µ and µ̃, ν̃ are the
complex dilatations of(f µ)−1, (f ν)−1, respectively. By inequality (2.2), we have

ε2

4

∫ ∫
E

|ϕ|dx dy � C

(
k − Re

∫ ∫
∆

µϕ dx dy

)
� C3(k)r

∫ ∫
E

|ϕ|dx dy,
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whenever‖ϕ‖ = 1, which leads to a contradiction provided thatr is sufficiently
small.

(2) If µ ∈ M(∆) is uniquely extremal, and[µr ] is not a Strebel point, then it
follows from Lemma 1 that

K([µr ]) = 1+ k
1+r

1− k
1+r

= H([µr ]).

Let η ∼ µr , and letη be extremal. Thenf µ ∼ f µ ◦ (f µr )−1 ◦ f η.

If η �= µr , then

1+ k

1− k
= K[f µ] < K

[
f µ ◦ (f µr )−1]K[f η] � 1+ k

1− k

1+ r + k

1+ r − k
K[f η].

Hence

K([µr ]) = K([f η]) > 1+ k
1+r

1− k
1+r

.

This contradiction implies thatµr is uniquely extremal. ✷
Theorem 2. If µ ∈ M(∆) is extremal, and for every compact subsetE of ∆ there
exists a sequence of unit vectorsϕn in L1

a(∆) such that

1∫∫
E

|ϕn|dx dy

(
‖µ‖∞ − Re

∫ ∫
∆

µϕn dx dy

)
→ 0 (n → ∞),

thenµ is uniquely extremal.

Proof. If µ is not uniquely extremal, then there exists a Beltrami coefficientν

with ‖ν‖∞ � ‖µ‖∞ and distinct fromµ such thatµ andν are equivalent. Then
there existsε > 0 and a compact subsetE in ∆ of positive measure such that
|µ̃ ◦ f − ν̃ ◦ f | � ε onE wheref = f µ andµ̃, ν̃ are the complex dilatations of
(f µ)−1, (f ν)−1, respectively. By inequality (2.2), we have

ε2
∫ ∫
E

|ϕn|dx dy �
∫ ∫
∆

|µ̃ ◦ f − ν̃ ◦ f |2|ϕn|dx dy

� C

(
‖µ‖∞ − Re

∫ ∫
∆

µϕn dx dy

)
.

Obviously it leads to a contradiction providedn is sufficiently large. ✷
Theorem 3. (1) If µ ∈ L∞(∆) is infinitesimally extremal, and for every compact
subsetE of ∆ and everyr > 0, [µχE + (1/(1+ r))µχ∆−E] is an infinitesimal
Strebel point, thenµ is infinitesimally uniquely extremal.
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(2) If µ ∈ L∞(∆) is infinitesimally uniquely extremal, then for every compact
subsetE of ∆ and everyr > 0, either [µχE + (1/(1+ r))µχ∆−E] is an
infinitesimally Strebel point, orαr = µχE + (1/(1+ r))µχ∆−E is infinitesimally
uniquely extremal.

Proof. (1) Denoteαr = µχE + (1/(1+ r))µχ∆−E and ‖µ‖∞ = k. Then by
Lemma 2 we have‖αr‖ � s = k/(1+ r). Because[αr ] is an infinitesimal Strebel
point, then by the infinitesimal frame mapping theorem there existssr = ‖αr‖ � s

and a unit vectorϕ in L1
a(∆) such thatαr and sr ϕ̄/|ϕ| are infinitesimally

equivalent and
∫∫

∆
αrϕ dx dy � k/(1+ r). Therefore

k

1+ r
�
∫ ∫
E

µϕ dx dy +
∫ ∫
∆−E

ϕ
µ

1+ r
dx dy.

Hence

k − Re
∫ ∫
∆

µϕ dx dy � kr

∫ ∫
E

|ϕ|dx dy.

Supposeµ is not infinitesimally uniquely extremal. Then there exists a Beltrami
coefficientν with ‖ν‖∞ � ‖µ‖∞ and distinct fromµ such thatµ and ν are
infinitesimally equivalent. Then there existsε > 0 and a compact subsetE in
∆ of positive measure such that|µ − ν| � ε onE. By inequality (2.3), we have

ε2
∫ ∫
E

|ϕ|dx dy �
∫ ∫
∆

|µ − ν|2|ϕ|dx dy

� C

(
k‖ϕ‖ − Re

∫ ∫
∆

µϕ dx dy

)
� Ckr

∫ ∫
E

|ϕ|dx dy,

whenever‖ϕ‖ = 1, which leads to a contradiction provided thatr is sufficiently
small.

(2) If µ ∈ L∞(∆) is infinitesimally uniquely extremal, and[αr ] is not an
infinitesimally Strebel point, then it follows from Lemma 2 that

‖αr‖ = k

1+ r
= b([αr]).

Let η ≈ αr , and letη be infinitesimally extremal. Thenµ ≈ µ − αr + η.

If η �= αr , then

k = ‖µ‖∞ < ‖µ − αr + η‖∞ � ‖µ − αr‖∞ + ‖η‖∞ � r

1+ r
k + ‖η‖∞.

Hence

‖αr‖ = ‖η‖∞ >
k

1+ r
.

This contradiction implies thatαr is infinitesimally uniquely extremal. ✷
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Theorem 4. If µ ∈ L∞(∆) is infinitesimally extremal, and for every compact
subsetE in ∆ there exists a sequence of unit vectorsϕn in L1

a(∆) such that

1∫∫
E

|ϕn|dx dy

(
‖µ‖∞ − Re

∫ ∫
∆

µϕn dx dy

)
→ 0 (n → ∞),

thenµ is infinitesimally uniquely extremal.

Proof. If µ is not infinitesimally uniquely extremal, then there exists a Beltrami
coefficientν with ‖ν‖∞ � ‖µ‖∞ and distinct fromµ such thatµ and ν are
infinitesimally equivalent. Then there existsε > 0 and a compact subsetE in
∆ of positive measure such that|µ − ν| � ε onE. By inequality (2.3), we have

ε2
∫ ∫
E

|ϕn|dx dy �
∫ ∫
∆

|µ − ν|2|ϕn|dx dy

� C

(
‖µ‖∞ − Re

∫ ∫
∆

µϕn dx dy

)
.

Obviously it leads to a contradiction providedn is sufficiently large. ✷
Remarks. (a) It should be noticed that conditions (1) in Theorems 1, 3 and
conditions (4), (5) in Theorems A, B have the following difference: The set
of truncations{µχE + (1/(1+ r))µχ∆−E} in Theorems 1, 3 and the set of
truncations{ηχE + (1/(1+ r))ηχ∆−E} in Theorems A, B are not the same. They
do not contain each other.

(b) We have the following example for the result (2) in Theorems 1 and 3:
In [1], Bozin et al. gave a counterexample of a Beltrami coefficient which is
(infinitesimally) uniquely extremal, but the absolute value ofµ(z) is not a constant
(also see the counterexample in [4]). Becauseµ(z) equals zero in a Merglyan
subsetE, which is a compact connected subset of∆ with empty interior that
does not disconnect∆, the truncationµχE + (1/(1+ r))µχ∆−E of µ(z) to E

is equal to(1/(1+ r))µ, which obviously does not represent a (infinitesimal)
Strebel point, but is (infinitesimally) uniquely extremal.

(c) From the theorems proved above, we know that if all the truncations of an
extremal Beltrami coefficientµ are Strebel points, then in the infinitesimal setting
all the truncations ofµ are infinitesimal Strebel points.
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