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Abstract

In this paper, we make some further considerations of the characteristic conditions of
(infinitesimally) unique extremality for Beltrami coefficients obtained by Bozin et al.,
and find some sufficient conditions simpler in form for a Beltrami coefficjenwith
nonconstant absolute value to be (infinitesimally) uniquely extremal.
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1. Introduction

Let A = {z: |z| < 1} be the unit disk in the complex plane, afidz) be the
guasiconformal mapping o onto itself. We denote its complex dilatation (or
Beltrami coefficient) by
_f

f
and its maximal dilatation by

1+ pyl
K[fl= ﬂ_
1—-1llsllco

Wf I rlloo <1,
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The boundary homeomorphisiijo A then determines the extremal maximal
dilatationKp[ /] > 1, defined as

Kol f1=inf{Klg]: gloa= flaA]}.

To avoid triviality, we always assume th&p[ f] > 1, i.e., f|dA is not the
boundary values of a conformal mapping. Théris called extremal ifK[ ] =
Kol f], and uniquely extremal iK[g] > Ko[ f] for any otherg with g|dA =
floA.

Let u(z) e M(A) ={u: u e L*®(A), |n(@)llw < 1}, and denote by the
normalized quasiconformal mapping afonto itself with complex dilatation (or
Beltrami coefficient), which fix three points (for example, 1and—1) on the
unitcircled A. If f¥|0A = f*|0 A for anothen(z) € L°(A) with [v(2)]leo < 1,
we say thatu andv are in the same Teichmdller class, or simply say that they
are equivalent, and denote~ v. We also denote byu] the class of Beltrami
coefficients equivalent to and

: 1+ k()

k([n]) =inf{|[v]lco, v~ u}, () 1T k()

Corresponding to the extremality and uniquely extremality of the quasiconformal
mappings, we say that is extremal in its Teichmdller class (or extremallinor
simply extremal) if|| i ]|co < |Vl fOrall v ~ e (i.e., | tllco = k([£])), @andu is
uniquely extremal in its Teichmller class (or uniquely extremaf jror simply
uniquely extremal) ifj ]lco < |IV]loo fOr any otherv ~ w. It is well known that
there always exists at least one extremal Beltrami coefficient in a Teichmuiller
class.

An equivalent clasgu] is called a Strebel point [2,7] Ko[ f*] > H(f*|0A),
where H(f*|0A) is the dilatation of the boundary corresponden@goA,
which is the infimum of the maximal dilatations of all quasiconformal extensions
of f#19A in any neighborhood ad A in A. Evidently, if we denoteH ( f#]0A)
by H([u]), then the condition fofui] to be a Strebel point can be written as
H([p]) < K([uD).

Let Li(A) be the set of analytic functions belonging 3(A). When ¢ €
L1(A), we denote itd.1-norm by|lg|| = [/, |¢|dx dy. It follows from Strebel's
frame mapping theorem [7] that[ift] is a Strebel point, then there exists a unit
vector g in Li(A) such thatu andkg/|p| are equivalent, wheré = k([u]).

Let u(z), v(z) € L®(A). If [[, updxdy = [[,vpdxdyforallg e L1(A), we

say thaty andv are in the same infinitesimal Teichmdiller class, or simply say
that they are infinitesimally equivalent, and denptez v. We also denote by
[1] the class of Beltrami coefficients infinitesimally equivalentitavhenever
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there is no ambiguity andlu|| = inf{||lv]0, v & u}. We say thatu is extremal

in its infinitesimal Teichmdiller class (or extremal B or simply infinitesimally
extremal) if||uloo < IV]loo fOrall v~ u (i.e., [1lloo = llill), @andu is uniquely
extremal in its infinitesimal Teichmuller class (or uniquely extremalBinor
simply infinitesimally uniquely extremal) {fit]l oo < [|V|lco fOr any othew ~ . It

is also known that there always exists at least one infinitesimal extremal Beltrami
coefficient in an infinitesimal Teichmdiller class.

Corresponding to the boundary dilatation for the Teichmuller class, we can
also define the boundary seminorbid[u]) for the infinitesimal Teichmdller
class:b([u]) = inf{|lvla—Flleo, v & 1, F is compact inA}. An infinitesimally
equivalent clas$u] is called an infinitesimal Strebel point ffu|| > b([u]). It
follows from the infinitesimal frame mapping theorem (see Theorem 2.4 in [3])
that if [1] is an infinitesimal Strebel point, then there exists a unit vegtan
Li(A) such thafu and|juw||@/|e| are infinitesimally equivalent.

We also need the following definitions: The extremal X¥ét.) of a Beltrami
coefficientu is the set wheréu(z)| = ||nllco. A Beltrami coefficient; is called
an admissible variation agf if it does not increase th&®-norm of u and it is
allowed to differ fromu only on the set whergu(z)| < constant< ||t]lo0. Let
r > 0, and letE be a compact subset df; the Beltrami coefficient

{u, E,

M _
1+r> A—E,

1
HXE + l——l—rMXA_E =

is called the truncation qf to E.

In [1], Bozin et al. gave a series of characteristic conditions for a Beltrami
coefficient to be uniquely extremal or infinitesimally uniquely extremal. For
simplicity, we state the characteristic conditions in the specialized situation when
the domain of the mappings is the unit digk The following are parts of them:

Theorem A [1]. Let u be a Beltrami coefficient iM (A) with constant absolute
value. Then the following conditions are equivalent

(1) wis uniquely extremal in its class;

(2) w is uniguely extremal in its clasB;

(3) For every measurable subsgét of A with nonzero measure, there exists a
sequence of unit vectogs, in Ltll(A) such that

1
T o ldxdy —Re dxd 0 ;
ffE lonldxdy (”MHOO ///*W)n X y)—> (n — o0)
A

(4) wisextremalinits clas$, and for every compact subsgiof A with nonzero
measure and every> O, [uxe +(1/(1+r))uxa—g]is a Strebel pointirf;

(5) uisextremalinits clas®, and for every compact subsgtof A with nonzero
measure and every > 0, [uxeg + (1/(1+r)uxa—g] is an infinitesimal
Strebel point inB.
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Theorem B [1]. Let u be a Beltrami coefficient idZ(A). Then the following
conditions are equivalent

(1) wis uniquely extremal in its clasE;

(2) w is uniguely extremal in its clasB;

(3) For every admissible variation of i, and every compact subsgtof X ()
with nonzero measure, there exists a sequence of unit vegtars Li(A)
such that

1
- —-R dxd 0 :
T lgnldxdy (IInlloo e//mpn x y>—> (n — 00)
A

(4) nis extremal in its clasg’, and for every- > 0, every admissible variation
n of u, and every compact subsEtof X () with nonzero measuréy xg +
(/L +r))nxa—k] is a Strebel point ir7";

(5) w is extremal in its clas®, and for every- > 0, every admissible variation
n of u, and every compact subsEtof X () with nonzero measuréy xg +
(1/(A+r)nxa—gl is an infinitesimal Strebel point iB.

In this paper, we make some further considerations of the conditions in the
above two theorems and find some sufficient conditions for a Beltrami coefficient
u with nonconstant absolute value to be (infinitesimally) uniquely extremal,
which are similar in certain sense to that in Theorems A and B, but simpler in
form. In fact, we prove that the conditions in Theorems A and B are still sufficient
when the condition of “constant absolute value dfin Theorem A and the
condition “for every admissible variatiopof " in Theorem B are removed.

The remainder of this paper is organized as follows: Section 2 provides the
preliminaries and some lemmas; Section 3 provides some theorems regarding the
(infinitesimally) unique extremality of Beltrami coefficients.

2. Preliminariesand some lemmas

Our main tools in this paper are some basic inequalities, which we now state
as follows:

Theorem C (Main Inequality) [6].Let f and g be two quasiconformal map-

pings of A onto itself, and denote by, v, i1, b the complex dilatations of, g,
f~1, g71, respectively. Ifs ~ v, then

1— 214 pl2 -
// oldxdy < //| II /w/||<;|| | i f|~¢7|1 1e/l¢| dxdy

holds for anyp € Lg(A).
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The following is a consequence of the Main Inequality, known as the Reich—
Strebel’s fundamental inequality:

Theorem D [6]. If there existspg € Lg(A) with ||goll = 1 and[u] = [k@o/|¢ol]
for somek € (0,1) in T, then

1+k //| I1+M<00/I<p0||2

|2 dxdy. (2.1)

The following two inequalities, which are Theorems 3 and 4 in paper [1], can
also be obtained from the Main Inequality.

Theorem E [1]. If u andv are two equivalent Beltrami coefficients with|| oo <
lnllco =k < 1, then there is a constarit depending only ok such that

// o f— o fl2lpldxdy < c<k||<o|| - Re// /wdxdy) (2.2)
A A

holds for allg € L1(A), where f = f* and 1, ¥ are the complex dilatations of
(™1, (f*)7L, respectively.

TheoremF [1]. If u andv are two infinitesimally equivalent Beltrami coefficients
with |[v]le < Illec = k < 00, then there is a constartt depending only o
such that

f |u—v|2|¢|dxdy<c<kn¢n—Re//ugadxdy) (2.3)
A A

holds for allg € L1(A).

Before we state our main results, we need to prove the following two lemmas,
the first of that was inspired by the lemma in [5]:

Lemma 1 [5]. If u € M(A) is extremal with|| 1]l .c = k, then for every compact
subsetE of A with nonzero measure and every> 0, the truncationu, =
uxe + (1/(L+r)uxa-g of u to E has the property([u,]) > k/(1+r).

Proof. Let n be equivalent tqu, andn is extremal, and denote hg*, f#r, 7
the normalized quasiconformal mappingsfonto itself with complex dilata-
tion u, ur, n. Since f has the same boundary values &%, it follows that
ffo (f*)~1o £ has the same boundary valuesfds Since f* is extremal by
hypothesis, it therefore follows that

1+k

1 = Kt K[f*o(f*) o f1] < KIMK[fM,
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whereh = f* o (f*)~1. Since

wh(fw(z)),:}M: SO cea-E,
1- wr () (z) 0, ZcE,
we have
rk
|“h(fm(z))|<m, z€A.
Thus
1+kl4r—k
K[h]gLL.
1—kl+4r+k

Hence we conclude that

1+r+k 1475

Thr—k 1- &

K[f">
which proves the lemma.O

Lemma 2. If u € L*°(A) is infinitesimally extremal with| 1|0 = &, then for
every compact subsef of A with nonzero measure and every> 0, the
truncationo, = uxe + (1/(1+r))uxa—g of u to E has the propertyjje, || >
k/(A+7).

Proof. Suppose thak, is infinitesimally equivalent to some infinitesimally ex-
tremal Beltrami coefficieny. Thenu is infinitesimally equivalent tg + 1 — o,
and

ru(z)
, eA—FE, rk
M—%={“” ¢ it = trlloo < -
0, Z€E, 1+r
Then we have
rk
litlloo < MM lloo + It — arlloo < IMllco + 1
+r
Hence
rk k
>k_—: ’
17100 T g

so the lemma follows. O

3. Unique extremality theorems

We have the following theorems:
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Theorem 1. (1) If u € M(A) is extremal, and for every compact subgebdf A
and everyr > 0, [uxe + (1/(1+r))uxa—g] is a Strebel pointirl’, thenu is
uniquely extremal.

(2) If u € M(A) is uniquely extremal, then for every compact sulizetf A
and everyr > 0, either[uxg + (1/(1+7r))uxa—gl is a Strebel point i, or
wr = puxe + Q/(A+r))uxa—g is uniquely extremal.

Proof. (1) Denotew, = uxe + (L/(L+r))uxa—e and ||ullooc = k. Then by
Lemma 1 we havé&([u,]) = s = (k/(1+r)). Becausdu,] is a Strebel point
in T, then, by Strebel's frame mapping theorem, there exjsts k([i,]) > s
and a unit vectop in Li(A) such thatu, ands,¢/|¢| are equivalent. Therefore,
by Reich—Strebel’'s fundamental inequality (2.1),

1+s _1+s 11+ wro/loll?
< =K([ur1><//|¢|7r‘”/f dxdy.
1-s " 1-—y5 1—fprl

By letting u1 = u/(1+r), we have

1+ 1+ 2 1+ 2
s // P II ulw/llszoll dx dy +//| II M<P/|<P|| dx dy

1+ 2
//| Lt e /lell” ’“‘p/"”” dx dy+c1<k>r/ ¢l dxdy.

Thus

1+s 1+4s°+2Re uiedxd
< 1_”;; Y y+c1<k>r//|¢|dxdy,

Z(S—Re//,uﬂpdxdy) <C1(k)r/ lpldxdy.
A E

Hence we obtain

k—Re//,u(pdxdngz(k)r// lpldxdy.
A E

On the other hand, suppoge is not uniquely extremal. Then there exists a
Beltrami coefficient with ||v]lc < [|t]lco @nd distinct fromu such thatw andv
are equivalent. Then there exists- 0 and a compact subsetin A of positive
measure such thdfi o f — Vo f| > ¢ on E where f = f* and 1, v are the
complex dilatations of f#) 1, (f¥)~1, respectively. By inequality (2.2), we have

2
%// ol dxdy < c<k— Re//wdxdy) < c3<k>r// ol dxdy,
E A E
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whenever|¢| = 1, which leads to a contradiction provided thas sufficiently
small.
(2) If u € M(A) is uniquely extremal, anflt,] is not a Strebel point, then it
follows from Lemma 1 that
1+ 44
K () = —5 = H({u, ).
1-15

Letn ~ u,, and lety be extremal. Theg# ~ f# o (f# )~ Lo f.
If n# u,, then

1+k_ oru W gy g« LTEIRI AR
1% = KU < K[ o (P TIKUM S g = KU
Hence

1+ 1
K(uD) = K{Lf") > 1—1:
T 14r

This contradiction implies that, is uniquely extremal. O

Theorem 2. If u € M(A) is extremal, and for every compact subgedf A there
exists a sequence of unit vectgrsin L%(A) such that

1
T o ldxdy —Re dxd 0 ’
f/E|§0n|dXdy<”M”OO //M@n X y)—> (n — o0)
A

thenu is uniquely extremal.

Proof. If x is not uniquely extremal, then there exists a Beltrami coefficient
with [[v]leo < lltlleo @nd distinct fromu such thatw andv are equivalent. Then
there exists > 0 and a compact subsét in A of positive measure such that
Lo f—Vo f| >eo0onE wheref = f* andji, v are the complex dilatations of
(r™~L, (f)~1, respectively. By inequality (2.2), we have

ezf/ |<on|dxdy<//mof—ﬁoﬂzmmxdy

E A

< C<||M||oo - Re// UPn dxdy).
A

Obviously it leads to a contradiction provideds sufficiently large. O

Theorem 3. (1) If u € L*°(A) is infinitesimally extremal, and for every compact
subsett of A and everyr > 0, [uxe + (1/(L+r)uxa—g] is an infinitesimal
Strebel point, thep is infinitesimally uniquely extremal.
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(2) If € L*(4) is infinitesimally uniquely extremal, then for every compact
subsetE of A and everyr > 0, either [uxe + (1/(L+r)uxa—g] is an
infinitesimally Strebel point, ak, = uxg + (1/(1+r))uxa—k is infinitesimally
uniquely extremal.

Proof. (1) Denotew, = uxg + (1/(L+r)uxa—e and ||ullec = k. Then by
Lemma 2 we havée, || > s = k/(1+ r). Becauséda, ] is an infinitesimal Strebel
point, then by the infinitesimal frame mapping theorem there exists||«, || > s
and a unit vectorp in L1(A) such thate, ands,g/|p| are infinitesimally
equivalentand’[ , a,¢dxdy > k/(1+r). Therefore

k u
< dxd dxdy.
vy < freasars [zt avas
E A—E
Hence

k—Re//,u(pdxdy<kr//|<p|dxdy.
A

E
Supposeu is not infinitesimally uniquely extremal. Then there exists a Beltrami
coefficientv with ||v]e < ||l @and distinct fromu such thaty andv are
infinitesimally equivalent. Then there exists> 0 and a compact subsét in
A of positive measure such thiat — v| > ¢ on E. By inequality (2.3), we have

82// |<p|dxdy<// I — vPlg| dxdy

E A

< c<k||¢|| - Re// mpdxdy) < Chr // ol dxdy.
A E

whenever|¢|| = 1, which leads to a contradiction provided thaits sufficiently
small.

(2) If n € L*®(A) is infinitesimally uniquely extremal, anfly,] is not an
infinitesimally Strebel point, then it follows from Lemma 2 that

k
lleer || = m =b([a;]).

Let n ~ «,, and letn be infinitesimally extremal. Thep ~ u — o + 1.
If n #«,, then
’

k .
ikt l7lloo

k=lmlloo <l —ar +nlloe < it — arlloc + Moo <

Hence

lleer Il = lnlloo > i

This contradiction implies that, is infinitesimally uniquely extremal. O
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Theorem 4. If © € L*°(A) is infinitesimally extremal, and for every compact
subsetE in A there exists a sequence of unit vectggsn L%(A) such that

1
S —Re wdxd 0 ,
T, fonldxdy (”M”oo //mo x y>—> (n — o0)
A

theny is infinitesimally uniquely extremal.

Proof. If u is not infinitesimally uniquely extremal, then there exists a Beltrami
coefficientv with ||v|lc < [l]leo @nd distinct fromu such thaty andv are
infinitesimally equivalent. Then there exisis> 0 and a compact subsét in
A of positive measure such thiat — v| > ¢ on E. By inequality (2.3), we have

szf/ |<on|dxdy<//|u—v|2|<on|dxdy

E A

< C<||/¢e||oo _ Re// s dx dy).
A

Obviously it leads to a contradiction provideds sufficiently large. O

Remarks. (a) It should be noticed that conditions (1) in Theorems 1, 3 and
conditions (4), (5) in Theorems A, B have the following difference: The set
of truncations{uxg + (1/(A+r))uxa—g} in Theorems 1, 3 and the set of
truncationgnxg + (1/(1+r))nxa—g} in Theorems A, B are not the same. They
do not contain each other.

(b) We have the following example for the result (2) in Theorems 1 and 3:
In [1], Bozin et al. gave a counterexample of a Beltrami coefficient which is
(infinitesimally) uniquely extremal, but the absolute valug.¢f) is not a constant
(also see the counterexample in [4]). Becapsge) equals zero in a Merglyan
subsetE, which is a compact connected subsettbfwith empty interior that
does not disconned, the truncationuxg + (1/(1+r))puxa—g of u(z) to E
is equal to(1/(1+r))u, which obviously does not represent a (infinitesimal)
Strebel point, but is (infinitesimally) uniquely extremal.

(c) From the theorems proved above, we know that if all the truncations of an
extremal Beltrami coefficient are Strebel points, then in the infinitesimal setting
all the truncations of. are infinitesimal Strebel points.
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