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Abstract

In this paper we study the stitity of the following nonlinear drif-diffusion system modeling
large population dynamicg p + div(pU — ¢Vp) = 0, divU = £p, with respect to the viscosity
parametee. The sign in the second equation depends on the attractive or repulsive character of the
field U. A proof of the compactness and convergence properties in the vanishing viscosity regime is
given. The lack of compactness in the attractive case is caused by the blow-up of the solution which
depends on the mass and on the space dimensiarst&hility result is conacted, depending of the
character of the potentials, with models in semiconductor theory or in biological population.
0 2003 Published by Elsevier Inc.
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1. Introduction

The stochastic model governing the dynamics of many-particle systems in a surrounding
bath is the well-known Vlasov—-Poisson-FekkPlanck system (VPFP). In terms of the
thermal velocity and the thermal mean free path, the low-field limit of this system was
analyzed by Poupaud and Soler in [13], who performed a parabolic limit which preserves
the second-order diffusive term

a .
o Pe T AV (pe Ue = eVipe) =0, (t,%) €10,00) x RY, (1.1)
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U= -V Py, —A P, =0p,, (t,x)e[0,00)xR", (1.2)
pe(0,) =poe, xeRY, (1.3)

wheree is a positive (viscosity) constant ad= 1 when we consider a self-consistent
field U of electrostatic type produced by a charge densifyepulsive forces) of = —1

for the gravitational case, in which the self-consistent field is due to the mass distribution
(attractive forces).

The high-field limit corresponds to a different regime of the physical constants (thermal
velocity and thermal mean free path) standing in the VPFP system. This limiting behavior
was analyzed in [10] by Nieto, Poupaud and Soler obtaining the equations of pressureless
gas dynamics:

3 .
oo +divi(pU) =0, (t,x) € [0,00) x RV, (1.4)
U=-V,®, —AP=0p, (t x)€l0,00)xR",

p(0,)=po, xeRM. (1.5)

Then, we can consider the system (1.1)—(1.3) as a perturbation of (1.4)—(1.5) in which a
viscosity termeA has been introduced producing a smoothing effect on the depsity
Therefore, in order to complete the framework of these stability results with respect to the
physical constants, we shall try to connect these two different regimes by showing that the
former converges to the latter whergoes to 0 or, in other words, that the second model

is stable under the perturbative viscosity method.

In fact, as will be shown in Section 3, in one dimension, a fiélsolution of (1.4)—(1.5)
solves the Hopf—Burgers equation (to see that, at least formally, it is enough to take into
accountthatin 1D’ = —0p) andU; is the approximated solution given by the vanishing
viscosity method. To justify the interest of the limit> 0, let us comment some interesting
phenomena modeled by these systems.

Both systems can be seen as hydrodynamic limits of the VPFP system and, as conse-
guence, they model macroscopic regimes of many particle systems. We can also connect
the drift-diffusion system (1.1)—(1.3) with an electrochemistry model for the electrodif-
fusion of charged ions in electrolytes filling the wha@é . In this direction we refer the
reader to Choi and Lui [3], where the long-time behavior of a more general model for two
species of charged particles is analyzed. Also, Biler and Dolbeault study in [1] the global
stability of steady-state solutions of a muladued electrochemistry model on bounded do-
mains. On the other hand, in the attractive case, the system (1.1)—(1.3) is a particular case
of the Keller-Segel model (see [6]), which describes the aggregation of the slime mold
amoebae due to an attractive chemical substance that they secrete when they lack nourish-
ment. The blow-up behavior of (1.1)—(1.3) in the chemotactic case has been extensively
analyzed by Herrero, Medina and Veladzquez in [4,5] in dimenaica 2 andN = 3, re-
spectively. Also, Nagai studies in [9] the blow-up of radially symmetric solutions in all
dimensions for bounded domains. We remark that our system is considered in the whole
spaceR” in contrast with previous results concerning chemotaxis models. In the attractive
case, the system (1.4)—(1.5) is also a particular case of the Keller—Segel model under some
assumptions op and®. We refer to Rascle and Ziti [15] for the analysis of these models,
specially the study of blow-up in finite time.
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When repulsive forces occur, the system (1.1)—(1.3) has been used in modeling semicon-
ductor devices when the typical length is large enough with respect to the typical tunneling
time which is for instance the case of silicium. However, due to the progressive miniaturiza-
tion of semiconductors, the system (1.1)—(1.3) stopped being useful due to the hyperbolic
character of the equations governing the electron transport. Then, (1.4)—(1.5) appears as
the natural macroscopic model to deberthe electron density transport.

The aim of this work is to study the behavior of (1.1)—(1.3) when the viscosity parameter
& goes to zero and recover the system (1.4)—(1.5). To do that, we consider a sequence
of initial conditions pp which converges tgg in a suitable space to be precised. We
study the associated sequenpgef solutions to (1.1)—(1.3) with initial datep .. We shall
apply the compactness techniques devalope[10,13] in dimension one and in higher
dimensions when possible. Then, we shall prove that in the 1D case the anti-symmetry of
the Poisson kernel and the global bound of its first derivative allow us to pass to thexweak-
limit in the space of finite Radon measures uniformly on bounded time intervals. This
result is obtained under the assumption that the initial condition converges aoly (R),
weak~) and has a bounded first-order moment. In 1D, the attractive and repulsive case are
treated simultaneously. In higher dimensions, we shall pass to the limit by using a uniform
bound for||pe (¢, )l Lo rNy, With 1 < p < oo andr € [0, T]. Here the time interval0, T']
is arbitrary in the repulsive casé £ 1) and, in the attractive oné & —1), it depends on
the initial data in the fornf" < 7* = (sup|l po.¢ [l o)) ™t < 0.

The paper is structured as follows. In 8en 2 we study the compactness properties
of p. depending on the space dimension and on the attractive or repulsive character of the
forces. Section 3 is devoted to the rigorous analysis of the limit.

2. Compactness propertiesand existence of solutions

In the previous literature some existenceutesfor the system (1.1)—(1.3) can be found.
We present here some additional properties of the system which do not deperahdn
some answers concerning the possible blow-up of solutions in the attractive case. The main
result of this section is the following.

Theorem 2.1. Let pg . be a sequence of nonnegative initial conditions satisfying

L :=suplpo.ell Loomny < 00, M :=supllpo.ellL1gy) <00, and
e>0 e>0

/ Ix[po,e(x)dx < C <00

RN
whereC is a positive constant independent erThen, there exists a solutiqp,, U, ) of
(1.1)—(1.3)verifying

() Mass conservatianV, := || pe (¢, )l L1gny = lpo.ell 1wy, VI > 0.
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(i) If N =1, the inequality

/ Ix|pe(t, x)dx + ||Ue(t, )o@ < CT,
R

holds forr € [0, T] with T < o0.
(iii) If N > 1, the inequality

e (2, )l oo @y + 1Ue (8, )l Loy + / x| (t,x)dx <CT
RN

holds forr € [0, T]withT < oo if 6 =1land withT < T* = (1/L) if 6 = —1.

Moreover, for a fixed > 0, in the two-dimensional attractive cagasually known as the
critical case this solution satisfiesf

M, = ”:00,8 ||L1(R2) < 4e (26)

_pr
(p+D?%
for 1 < p < oo, then|lp: (7, )l Lrr2) < |l 0.ellLr (2 fOr all positiver.

We devote the rest of this section to prove this result. We first study a priori estimates in
L% uniformly in & by using a maximum principle iR . Next, we derive (uniform i)
bounds for the field and the first-order moment.

Also, for a fixed viscosity parameter we study the behavior of solutions of (1.1)—
(1.2) in the two-dimensional attractive case. To this aim, giwen 0, (2.6) constitutes
a sufficient condition to control the blow-up of the solutionsZifi(R2). However, this
condition cannot hold for the passage to the limit- 0.

2.1. Uniform bounds and existence of solutions

We first observe that the field defined by (1.2) can be equivalently rewritten in convolu-
tion form U, (¢, x) = 0Ky *, p:(t, x), Where

Ky=Cy 2.7)

x|V’
whereCy is apositiveconstant depending on the space dimension. We définas in
Theorem 2.1, that is, the maximum time until which we expect that the uniform bounds
hold in the attractive case. Now, we fix> 0 andT > 0 (by choosingl < T* when

6 = —1) and take, for any natural numbere N and for any;j =0, ..., n, the partition

tj = jT/n. We consider the retarded-in-time sequence of Cauchy problems

3 o o
o P = eApl —divy (U2 p20),  teltj-1, 1)1, (2.8)

Pl (tj-) = pl o), j=1,....n,

where
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. ; T
Ug’j(tax) 29[(KN *x é‘n) *x p:)] (t — T )}(-x)a
n

PO, x) = (" %2 p0.£)(X).
Note that, in order to regularize the fiedhd the initial condition, we have introduced a
standard nonnegative mollifief (x) = n™ ¢ (n x) with ¢ € C5°(RY) and ¢ = 1. Expand-

ing the second term of (2.8) and using thatd”’ 1 (t, ) =6 ¢" %, p2 ' "t = T/n, )
we find

9 . . . . . .
T 4 (U V) e = —0(¢" e o) g, 2.9)
in[tj_1,¢;] x RN wherep/ 1 is valued in(t — T/n, -). In order to study this retarded-

in-time linear equation, let us focus our attention ogeneric parabolic linear equation of
the type

0
a—’; + (@ Vop—eAp=—0f, p(so.x)=pox), (2.10)

with given regular data, f and pg, where f is nonnegative ansy is fixed. A classical

result based on the construction of the fundamental solution associated with (2.10) (see,
for example, [8]), gives the existence of a smooth solution which is uniformly bounded in
[so, so + T']. But this bound is a priori strongly dependent on the coefficieautd on the
functiona. To skip this dependence, we use a maximum principle as follows: defase

p(t,x) — ||P0||LOO(RN), ifo=1,
_ t
f,x)= _
ptt.x) p(t,x) — (”pO”Loc(RN) +/ £ (55 ) oo ) ds), if 0 =—1.

S0
In both caseg verifies

ap _ _ N
o +a-Vp—eA,p <0, with p(so, x) = po(x) — | poll ooy < O.

Now, using the uniform bound fgs, we deduce the following weak decreasing condition
at infinity:

liminf (e % sup{ (¢, x): t € [s0, T1, |x] < R}) =0,

R—o00

which allows to conclude thgi(z, x) < 0 in [so, T] x R (see [14, Theorem 10, §3]) or,
equivalently, that a solution of (2.10) verifies:

if 0 =1, p(t, x) < || poll Loo mnys (2.11)

t
if0=-1, p( x) < ||p0||L°°(RN)+/”f(sv‘)”LOO(RN)dS' (2.12)
fo

We can apply this bound to the solutions of (2.9) wijth= pg’j, a=U""t andf =
—0(¢" % p"I ™Yo Then, we conclude that there exigtd’ in C(tj_1,tj; L°(RN))
solution of (2.9) verifying

Hpgj(ta ')HLOO(RN) g ||p;l!j_1HLoo(RN) g e g ||100,8||L00(RN)7 (213)
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in the repulsive case and

Hpg’j(t, ')HLOO(RN) < “P;”j_l(t.i—l’ ')HL”(RN)

t
; T
+ / pZ”l(s - —,'>
n

j-1
in the attractive one. Here, Gronwall’s Lemma and an inductive argument allow us to prove
that

Lo H/’g’j(& I Loo@®N) 955

ll 00, ||L00(RN)

o2 )| ooy < (2.14)

1—1lpoellpoomny .
Now, we define

o8t x) = pMI(t,x) in[tj_1,1],

which is a continuous function ifD, T]. Analogously we define alst} as Ug"’j on the
corresponding time interval. Then, using the weak formulation of (2.8) we can write

T
// <%+Axw+U€”~th/f>p§’dxdt=/po,s(X)I/f(O,X)dx, (2.15)
ORN RN

for everyy € D([0, T) x RM).

Now, in order to take the limit — oo in (2.15), we need some additional boundsdpr
Firstly, using the same maximum principle as before, we deducefhatO so that we can
estimate its.1 norm by integrating in (2.8). In fact, the mass conservation property

|0z, ‘)”Ll(RN) = H'O(r)l.,s”Ll(RN) SMe <M,

holds. These bounds imply that tp¢ is bounded inL>°(0, T'; LPRN)) for1< p<oo
and then, that/* is bounded inL> (0, T; (WL (RN))N) for 2 < p < co. Using now
Eq. (2.8), we deduce thatp! (z, -) is bounded inW =2°°(RY) € D'(RY) uniformly with
respect ta andn. SinceD(RY) is separable and densel’ (RV) (p # 1) we can then
assure, by using standard arguments from the general theory of conservation law$, that
lives in a compact set af' ([0, T']; (L?(RY), weak=)) for all 1 < p < oo (this argument
shall be carried out in detail in the next section).

Then, up to a subsequengd, converges irC ([0, T'1; (L3(RN), weak~)) and Ul con-
verges inLﬁ)c([O, T1x RY) whenn — oo. Combining the convergence pf andU”, we
can pass to the limit in (2.15) to find a solution of (1.1). Finally, we can use estimates (2.13)
and (2.14) to find the uniform bounds:

1
foro =—1, |lpe(t, )lpoo@mn) < V0§t<T*=Z,

1—-1L’

Clearly (see [10]) this uniforrbound is optimal because in the limit> 0 it is satisfied
by the solutions of the limiting system (1.4)—(1.5).
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Remark 1. Even in the 2D attractive caseé £ —1), but for fixeds > 0, we can say some-
thing more about the absence of blow-uglifi(R?). N = 2 is known as the critical case,
because there is a mass threshold for abtawtic collapse that seems to be absent for

N > 3 (see [4] and references therein and [9] for the study on bounded domains). Using a
Sobolev—Gagliardo—Nirenbergaguality (see [2, Chapter IX.3]),

2
/pp+1(x)dx<@(/ﬂ(ﬁf)dx)</\V(PP/Z)(X)F‘ZX)’
p RZ RZ

R2
multiplying (1.1) by,og”_l and integrating, we find

1 9 (p+1)2 4e 2\ 2

12 pgdx<< M=) [ 9o ax (2.16)
—1 0t 2

p J p P,

for 1 < p < co. Here we observe that the control of the mass implies the estimates on
variation of | p¢ (¢, )| » g2, In fact, if (2.6) holds, then the second term of (2.16) becomes
negative and we conclude thigg. (7, ) [l .» z2) < llp0.ell Lr (r2) fOrall 7 > 0.

2.2. Field and moment estimates

To estimate the field/,, we use the well-known bound
U (2, ')||L°°(RN) < C(”pS(ta ')||L1(RN) + llps (2, ')||Lr(RN))’ r>N. (2.17)

In particular, in the one-dimensional case, by using th&t = %sign(x) is bounded, we
have

1
1Ue @ L@ < Slloe . ) iLar- (2.18)

which gives, forN = 1, a global uniform bound independent of the attractive or repulsive
character of the Coulomb forces.

Finally, we shall find a bound for the first-order momenpgto control the loss of mass
at infinity and consequently to get compactnesg.in To do that, we take an auxiliary
functiong € C2(R") such thatg(x) > |x| for all x andg(x) = |x| for |x| > 1 (note that
this implies thatVg and Ag are bounded). Then, using Eq. (1.1) we find

/IXIps(t,x)dx</g(x)ps(t,x)dx
RN

RN

t
= / §(0)pe.0(x) dox + f f (Ue - Vg + £Ag)pe(s, ) dx ds.
RN ORN

As consequence, for some const@rdepending only oig, we have

t
/|x|ps(r,x)dx<c</|x|po,gdx+Mg)+CMg/(||Ug(s,.>||Lm(RN)+1)ds,
RN RN 0
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which gives an estimate i, 7'] provided that, is bounded. Then, following (2.17) and
(2.18) and the bounds fer., we have finally done with (ii) and (iii) of Theorem 2.1.

The following step is to pass to the limit rigorously in the sequencand in (1.1)—(1.3)
in a weak sense as— 0 and show that the limjp satisfies the system (1.4)—(1.5).

3. Passageto thelimit
We first state the main result of this paper.

Theorem 3.1. Under the same hypotheses of TheoBeinthe associated solutiafp,, Ue)
to the systen(l.1)—(1.3)verify

Pe—p, In C(O, T; (Lp (RN), weak*)) N (Ll(RN),Wea@, p < 00,

Us— U, inL%0,T; LP(2)V nC(2)N), 1< g <00, 2< p < o0,
for every compact subs€ c RN and T > 0 in the case of repulsive forcés = 1) and
for T < T* in the case of attractive forcegs = —1).

The limit(p, U) is the unique solution of1.4)—(1.5) Moreover, in the one-dimensional
case we have

pe = p, inC(0,T; M(R)-weak«)

for everyT > 0, independently of .

Proof. In the following T > O will be a fixed time as before, that i%, < T* = 1/L in
the attractive case arnfl < oo in the repulsive one or when we work in dimension one
(independently oR).

We first consider the system (1.1)—(1.3) in a weak form, i.e., for every test function
¥ € D([0, T) x RY) we write

/po,g(x)w(O,x)dxszpg(% +8Axl/f+Ug'Vl//> dxdr. (3.19)

RN 0 RN

We observe that thé&! bound is enough to pass to the limit, weakly as measures, in the
three first terms but not in the last one: the nonlinear term. Let us specify how to pass to
the limit in the nonlinear term by studying the convergence.offor that we first take a

test functionp € D(RY) and observe that

N

e [$1(r) = f pe(t, )P () dx < 106t ) 1M 191l Lo )
R

a
3% [p1(r) = / Pe(e¢” + Ue¢') dx < Cllpe(t, )l preny (L4 1Ue (2, )l oo mny)-
RN



724 J. Nieto / J. Math. Anal. Appl. 291 (2004) 716-726

Using Theorem 2.1, we conclude tha{¢](-) is ane-equi-continuous and bounded family
of C(0, T) and therefore, there existssub-sequence (dependinggnsuch thatx.[¢](-)
converges to some[¢](-) in C(0, T'). But using the separability d(R"), we know that
this sub-sequence can be chosen independently of thé.test

Now, in a general dimensiaN, we use thaD(R") is dense in.” (RY) for 1 < p < oo
and then, thate[-](r) defines a bounded family of linear continuous operators on the
spaceL” (RV). Moreover, using the density and the previous convergence, we can easily
conclude in terms ob. (and identifying the limitx with a functionp) that

pe = p, inC(0,T; (LP(RY), weak«)), 1< p<oo. (3.20)

Analogously, in dimension one we observe thgR) is dense inCoo(R) and therefore,
thata[-](r) become linear continuous operators on the sgagegR) for any:. In this
case the convergence holds in the measansea and the limit can be identified with a
measure that we cali(). We have just proved that, up to a sub-sequence,

pe—p, 1IN C(O, T; (M(R)-weak*)). (3.21)

Remark 2. We observe that (3.20) is also valid fpr= 1 (with the weak topology) al-
thoughD(RY) is not dense inL>°(RY). This can be proved (see [13]) by using some
results based on the Egorov Theorem and the bound for the first-order moment.

3.1. Passage to the limit in the general case

To pass to the limit in an arbitrary dimensidhwe will use the uniform estimates of
pe to have the strong convergence of the field From (3.20), Theorem 2.1(iii), and the
estimates of harmonic analysis we know that

U, is uniformly bounded in.*°(0, T'; (Wl*”(RN))N), 2< p<oo.

ThusU,(t -) is relatively compact irL.” (£2) N C(£2), for every compact se® ¢ R and

for everyt € [0, T]. Then, for every € [0, T] there exists a sub-sequence converging to
someU (t,-) in LP(£2) N C(2). Now, using Eq. (1.3) and the convergenceppf(3.20),

we find the form of the limitU (z, x) = Ky *, p(z, x) and conclude that all the sequence
converges independently onTherefore, the dominated convergence theorem assures that

U.— U, inL0,T; LP(2)N nc@)V), (3.22)

for 1 < ¢ < oo and 2< p < oo. The convergence (3.20) and (3.22) suffices to take the
limit in (3.19) and find the announced system. Finally, the uniqueness of weak solutions
of (1.4)—(1.5) inL1 N L™ (see [10]) concludes that the whole sequence converges and the
result is proved.

3.2. Passage to the limit in dimension one
In this case we can use the techniques introduced in [10,13] based on the anti-symmetry

properties of the kernel. Using the convolution forml&f in terms of the kernek1, we
rewrite the nonlinear term of (3.19) as follows:
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/pg(t,x)Ug(t,x)%lﬁ(t,x) dxdt (3.23)
R

O [ [y (b, v
a 2///{2|x—yl<ax 0= 5 (t’y))}Ps(f’X)ps(t,y)dydxdt,
0 R,R,

which can be taken as tieeakdefinition of the producp, U.. Note that the function under
brackets is continuous and bounded, and then, the duality with the meagure) o, (¢, y)
gives sense to this expression. Using here (3.21), we can easily conclude that

Pe(t, x)pe(t,y) = p(t,x)p(t,y), In C(O, T; (M(Rx x Ry), Weak-k)).

Finally, a truncature argument as the one used in [10] together with the bound for the first-
order moment given by Theorem 2.1 allow us to pass to the limit in (3.23). Then, defining
the producipU in this weak sense (as in [10]), we recover the system (1.4)—(15).

Remark 3. The techniques of anti-symmetry have allowed to pass to the limit in the density
pe and give sense to the prodyd? . But we can skip the role of the density and study only
the behavior of the field/,. Convoluting Eq. (1.1) witl$ K1, we formally obtain

0

U,
5U£ = _ax(GKN *x (psUs)) + €0xxUs = =00 U + €052 Us = _8x78 + €0 x Us

which is the Hopf—Burger equation. The technique of vanishing viscosity has been used
to prove the existence of admissible solutions in the class of bounded solutions and the
unigueness in the senseaftropy solutiongjiven by Stanislav Kruzskov [7] or the equiv-
alent concept ohdmissible solutiogiven by Olga Oleinik [12] (see also [11] for expla-
nation). Then, in the one-dimensional case, the anti-symmetry method presented here is
equivalent to the classical vanishing viscosity method.
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