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Abstract

In this paper we study the stability of the following nonlinear drift-diffusion system modeling
large population dynamics∂t ρ + div(ρU − ε∇ρ) = 0, divU = ±ρ, with respect to the viscosit
parameterε. The sign in the second equation depends on the attractive or repulsive characte
field U . A proof of the compactness and convergence properties in the vanishing viscosity reg
given. The lack of compactness in the attractive case is caused by the blow-up of the solution
depends on the mass and on the space dimension. Our stability result is connected, depending of th
character of the potentials, with models in semiconductor theory or in biological population.
 2003 Published by Elsevier Inc.
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1. Introduction

The stochastic model governing the dynamics of many-particle systems in a surro
bath is the well-known Vlasov–Poisson–Fokker–Planck system (VPFP). In terms of t
thermal velocity and the thermal mean free path, the low-field limit of this system
analyzed by Poupaud and Soler in [13], who performed a parabolic limit which pres
the second-order diffusive term

∂

∂t
ρε + divx(ρε Uε − ε∇xρε) = 0, (t, x) ∈ [0,∞) × R

N, (1.1)
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Uε = −∇xΦε, −�xΦε = θρε, (t, x) ∈ [0,∞) × R
N, (1.2)

ρε(0, ·) = ρ0,ε, x ∈ R
N, (1.3)

whereε is a positive (viscosity) constant andθ = 1 when we consider a self-consiste
field U of electrostatic type produced by a charge densityρ (repulsive forces) orθ = −1
for the gravitational case, in which the self-consistent field is due to the mass distrib
(attractive forces).

The high-field limit corresponds to a different regime of the physical constants (th
velocity and thermal mean free path) standing in the VPFP system. This limiting beh
was analyzed in [10] by Nieto, Poupaud and Soler obtaining the equations of press
gas dynamics:

∂

∂t
ρ + divx(ρ U) = 0, (t, x) ∈ [0,∞) × R

N, (1.4)

U = −∇xΦ, −�xΦ = θρ, (t, x) ∈ [0,∞) × R
N,

ρ(0, ·) = ρ0, x ∈ R
N . (1.5)

Then, we can consider the system (1.1)–(1.3) as a perturbation of (1.4)–(1.5) in w
viscosity termε� has been introduced producing a smoothing effect on the densρ.
Therefore, in order to complete the framework of these stability results with respect
physical constants, we shall try to connect these two different regimes by showing th
former converges to the latter whenε goes to 0 or, in other words, that the second mo
is stable under the perturbative viscosity method.

In fact, as will be shown in Section 3, in one dimension, a fieldU solution of (1.4)–(1.5)
solves the Hopf–Burgers equation (to see that, at least formally, it is enough to tak
account that in 1D,U ′ = −θρ) andUε is the approximated solution given by the vanish
viscosity method. To justify the interest of the limitε → 0, let us comment some interesti
phenomena modeled by these systems.

Both systems can be seen as hydrodynamic limits of the VPFP system and, as
quence, they model macroscopic regimes of many particle systems. We can also c
the drift-diffusion system (1.1)–(1.3) with an electrochemistry model for the electr
fusion of charged ions in electrolytes filling the wholeR

N . In this direction we refer the
reader to Choi and Lui [3], where the long-time behavior of a more general model fo
species of charged particles is analyzed. Also, Biler and Dolbeault study in [1] the g
stability of steady-state solutions of a multi-valued electrochemistry model on bounded
mains. On the other hand, in the attractive case, the system (1.1)–(1.3) is a particul
of the Keller–Segel model (see [6]), which describes the aggregation of the slime
amoebae due to an attractive chemical substance that they secrete when they lack
ment. The blow-up behavior of (1.1)–(1.3) in the chemotactic case has been exte
analyzed by Herrero, Medina and Velázquez in [4,5] in dimensionN = 2 andN = 3, re-
spectively. Also, Nagai studies in [9] the blow-up of radially symmetric solutions in
dimensions for bounded domains. We remark that our system is considered in the
spaceRN in contrast with previous results concerning chemotaxis models. In the attr
case, the system (1.4)–(1.5) is also a particular case of the Keller–Segel model unde
assumptions onρ andΦ. We refer to Rascle and Ziti [15] for the analysis of these mod
specially the study of blow-up in finite time.



718 J. Nieto / J. Math. Anal. Appl. 291 (2004) 716–726

micon-
neling
uriza-
erbolic
ears as

eter
quence

e

er
etry of
eak-
This

se are
iform

ties
r of the

d.

e main
When repulsive forces occur, the system (1.1)–(1.3) has been used in modeling se
ductor devices when the typical length is large enough with respect to the typical tun
time which is for instance the case of silicium. However, due to the progressive miniat
tion of semiconductors, the system (1.1)–(1.3) stopped being useful due to the hyp
character of the equations governing the electron transport. Then, (1.4)–(1.5) app
the natural macroscopic model to describe the electron density transport.

The aim of this work is to study the behavior of (1.1)–(1.3) when the viscosity param
ε goes to zero and recover the system (1.4)–(1.5). To do that, we consider a se
of initial conditionsρ0,ε which converges toρ0 in a suitable space to be precised. W
study the associated sequenceρε of solutions to (1.1)–(1.3) with initial dataρ0,ε. We shall
apply the compactness techniques developed in [10,13] in dimension one and in high
dimensions when possible. Then, we shall prove that in the 1D case the anti-symm
the Poisson kernel and the global bound of its first derivative allow us to pass to the w�

limit in the space of finite Radon measures uniformly on bounded time intervals.
result is obtained under the assumption that the initial condition converges only in(M(R),
weak-�) and has a bounded first-order moment. In 1D, the attractive and repulsive ca
treated simultaneously. In higher dimensions, we shall pass to the limit by using a un
bound for‖ρε(t, ·)‖Lp(RN), with 1� p � ∞ andt ∈ [0, T ]. Here the time interval[0, T ]
is arbitrary in the repulsive case (θ = 1) and, in the attractive one (θ = −1), it depends on
the initial data in the formT < T ∗ = (sup‖ρ0,ε‖L∞(RN))

−1 < ∞.
The paper is structured as follows. In Section 2 we study the compactness proper

of ρε depending on the space dimension and on the attractive or repulsive characte
forces. Section 3 is devoted to the rigorous analysis of the limit.

2. Compactness properties and existence of solutions

In the previous literature some existence results for the system (1.1)–(1.3) can be foun
We present here some additional properties of the system which do not depend onε and
some answers concerning the possible blow-up of solutions in the attractive case. Th
result of this section is the following.

Theorem 2.1. Letρ0,ε be a sequence of nonnegative initial conditions satisfying

L := sup
ε>0

‖ρ0,ε‖L∞(RN) < ∞, M := sup
ε>0

‖ρ0,ε‖L1(RN) < ∞, and

∫
RN

|x|ρ0,ε(x) dx � C < ∞

whereC is a positive constant independent onε. Then, there exists a solution(ρε,Uε) of
(1.1)–(1.3)verifying:

(i) Mass conservation: Mε := ‖ρε(t, ·)‖L1(RN) = ‖ρ0,ε‖L1(RN), ∀t � 0.
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(ii) If N = 1, the inequality∫
R

|x|ρε(t, x) dx + ‖Uε(t, ·)‖L∞(R) � C T,

holds fort ∈ [0, T ] with T < ∞.
(iii) If N > 1, the inequality

‖ρε(t, ·)‖L∞(RN) + ‖Uε(t, ·)‖L∞(RN) +
∫

RN

|x|ρε(t, x) dx � C T

holds fort ∈ [0, T ] with T < ∞ if θ = 1 and withT < T ∗ = (1/L) if θ = −1.

Moreover, for a fixedε > 0, in the two-dimensional attractive case(usually known as the
critical case) this solution satisfies: if

Mε = ‖ρ0,ε‖L1(R2) < 4ε
p

(p + 1)2 , (2.6)

for 1 < p < ∞, then‖ρε(t, ·)‖Lp(R2) � ‖ρ0,ε‖Lp(R2) for all positivet .

We devote the rest of this section to prove this result. We first study a priori estima
L∞ uniformly in ε by using a maximum principle inRN . Next, we derive (uniform inε)
bounds for the field and the first-order moment.

Also, for a fixed viscosity parameterε, we study the behavior of solutions of (1.1
(1.2) in the two-dimensional attractive case. To this aim, givenε > 0, (2.6) constitutes
a sufficient condition to control the blow-up of the solutions inLp(R2). However, this
condition cannot hold for the passage to the limitε → 0.

2.1. Uniform bounds and existence of solutions

We first observe that the field defined by (1.2) can be equivalently rewritten in con
tion formUε(t, x) = θKN ∗x ρε(t, x), where

KN = CN
x

|x|N , (2.7)

whereCN is a positiveconstant depending on the space dimension. We defineT ∗ as in
Theorem 2.1, that is, the maximum time until which we expect that the uniform bo
hold in the attractive case. Now, we fixε > 0 andT > 0 (by choosingT < T ∗ when
θ = −1) and take, for any natural numbern ∈ N and for anyj = 0, . . . , n, the partition
tj = jT /n. We consider the retarded-in-time sequence of Cauchy problems

∂

∂t
ρn,j

ε = ε�xρn,j
ε − divx

(
Un,j−1

ε ρn,j
ε

)
, t ∈ [tj−1, tj ], (2.8)

ρn,j
ε (tj−1) = ρn,j−1

ε (tj−1), j = 1, . . . , n,

where
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Un,j
ε (t, x) := θ

[
(KN ∗x ζ n) ∗x ρn,j

ε

(
t − T

n
, ·

)]
(x),

ρn,0
ε (t, x) = (ζ n ∗x ρ0,ε)(x).

Note that, in order to regularize the fieldand the initial condition, we have introduced
standard nonnegative mollifierζ n(x) = nNζ(nx) with ζ ∈ C∞

0 (RN) and
∫

ζ = 1. Expand-

ing the second term of (2.8) and using that divx(U
n,j−1
ε (t, ·)) = θ ζ n ∗x ρ

n,j−1
ε (t − T/n, ·)

we find
∂

∂t
ρn,j

ε + (
Un,j−1

ε · ∇x

)
ρn,j

ε − ε�xρ
n,j
ε = −θ

(
ζ n ∗ ρn,j−1

ε

)
ρn,j

ε , (2.9)

in [tj−1, tj ] × R
N whereρ

n,j−1
ε is valued in(t − T/n, ·). In order to study this retarded

in-time linear equation, let us focus our attention on ageneric parabolic linear equation
the type

∂p

∂t
+ (a · ∇x)p − ε�xp = −θf, p(s0, x) = p0(x), (2.10)

with given regular dataa, f andp0, wheref is nonnegative ands0 is fixed. A classical
result based on the construction of the fundamental solution associated with (2.10
for example, [8]), gives the existence of a smooth solution which is uniformly bound
[s0, s0 + T ]. But this bound is a priori strongly dependent on the coefficientε and on the
functiona. To skip this dependence, we use a maximum principle as follows: definep̄ as

p̄(t, x) =




p(t, x) − ‖p0‖L∞(RN), if θ = 1,

p(t, x) −
(

‖p0‖L∞(RN) +
t∫

s0

‖f (s, ·)‖L∞(RN) ds

)
, if θ = −1.

In both cases̄p verifies
∂p̄

∂t
+ a · ∇p̄ − ε�xp̄ � 0, with p̄(s0, x) = p0(x) − ‖p0‖L∞(RN) � 0.

Now, using the uniform bound forp, we deduce the following weak decreasing condit
at infinity:

lim inf
R→∞

(
e−R2

sup
{
p̄(t, x): t ∈ [s0, T ], |x| � R

}) = 0,

which allows to conclude that̄p(t, x) � 0 in [s0, T ] × R
N (see [14, Theorem 10, §3]) o

equivalently, that a solution of (2.10) verifies:

if θ = 1, p(t, x) � ‖p0‖L∞(RN), (2.11)

if θ = −1, p(t, x) � ‖p0‖L∞(RN) +
t∫

t0

‖f (s, ·)‖L∞(RN) ds. (2.12)

We can apply this bound to the solutions of (2.9) withp = ρ
n,j
ε , a = U

n,j−1
ε , andf =

−θ(ζ n ∗ ρ
n,j−1
ε )ρ

n,j
ε . Then, we conclude that there existsρ

n,j
ε in C(tj−1, tj ;L∞(RN))

solution of (2.9) verifying∥∥ρn,j
ε (t, ·)∥∥ ∞ N �

∥∥ρn,j−1
ε

∥∥ ∞ N � · · · � ‖ρ0,ε‖L∞(RN), (2.13)

L (R ) L (R )
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(2.13)
in the repulsive case and∥∥ρn,j
ε (t, ·)∥∥

L∞(RN)
�

∥∥ρn,j−1
ε (tj−1, ·)

∥∥
L∞(RN)

+
t∫

tj−1

∥∥∥∥ρn,j−1
ε

(
s − T

n
, ·

)∥∥∥∥
L∞(RN)

∥∥ρn,j
ε (s, ·)∥∥

L∞(RN)
ds,

in the attractive one. Here, Gronwall’s Lemma and an inductive argument allow us to
that ∥∥ρn,j

ε (t, ·)∥∥
L∞(RN)

�
‖ρ0,ε‖L∞(RN)

1− t ‖ρ0,ε‖L∞(RN)

. (2.14)

Now, we define

ρn
ε (t, x) = ρn,j

ε (t, x) in [tj−1, tj ],
which is a continuous function in[0, T ]. Analogously we define alsoUn

ε asU
n,j
ε on the

corresponding time interval. Then, using the weak formulation of (2.8) we can write

T∫
0

∫
RN

(
∂ψ

∂t
+ �xψ + Un

ε · ∇xψ

)
ρn

ε dx dt =
∫

RN

ρ0,ε(x)ψ(0, x) dx, (2.15)

for everyψ ∈ D([0, T ) × R
N).

Now, in order to take the limitn → ∞ in (2.15), we need some additional bounds forρn
ε .

Firstly, using the same maximum principle as before, we deduce thatρn
ε � 0 so that we can

estimate itsL1 norm by integrating in (2.8). In fact, the mass conservation property∥∥ρn
ε (t, ·)∥∥

L1(RN)
= ∥∥ρn

0,ε

∥∥
L1(RN)

� Mε � M,

holds. These bounds imply that theρn
ε is bounded inL∞(0, T ;Lp(RN)) for 1 � p � ∞

and then, thatUn
ε is bounded inL∞(0, T ; (W1,p(RN))N) for 2 � p < ∞. Using now

Eq. (2.8), we deduce that∂tρ
n
ε (t, ·) is bounded inW−2,∞(RN) ⊆ D′(RN) uniformly with

respect tot andn. SinceD(RN) is separable and dense inLp′
(RN) (p 
= 1) we can then

assure, by using standard arguments from the general theory of conservation laws,ρn
ε

lives in a compact set ofC([0, T ]; (Lp(RN),weak-�)) for all 1 < p � ∞ (this argumen
shall be carried out in detail in the next section).

Then, up to a subsequence,ρn
ε converges inC([0, T ]; (L2(RN),weak-�)) andUn

ε con-
verges inL2

loc([0, T ] × R
N) whenn → ∞. Combining the convergence ofρn

ε andUn
ε , we

can pass to the limit in (2.15) to find a solution of (1.1). Finally, we can use estimates
and (2.14) to find the uniform bounds:

for θ = −1, ‖ρε(t, ·)‖L∞(RN) � L

1− t L
, ∀ 0 � t < T ∗ = 1

L
,

for θ = 1, ‖ρε(t, ·)‖L∞(RN) � L, ∀ 0 � t .

Clearly (see [10]) this uniformbound is optimal because in the limitε → 0 it is satisfied
by the solutions of the limiting system (1.4)–(1.5).
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Remark 1. Even in the 2D attractive case (θ = −1), but for fixedε > 0, we can say some
thing more about the absence of blow-up inLp(R2). N = 2 is known as the critical cas
because there is a mass threshold for chemotactic collapse that seems to be absent
N � 3 (see [4] and references therein and [9] for the study on bounded domains). U
Sobolev–Gagliardo–Nirenberg inequality (see [2, Chapter IX.3]),∫

R2

ρp+1(x) dx � (p + 1)2

p2

( ∫
R2

ρ(x) dx

)( ∫
R2

∣∣∇(
ρp/2)(x)

∣∣2 dx

)
,

multiplying (1.1) byρ
p−1
ε and integrating, we find

1

p − 1

∂

∂t

∫
R2

ρp
ε dx �

(
(p + 1)2

p2
Mε − 4ε

p

)∫
R2

∣∣∇(
ρp/2

ε

)∣∣2 dx (2.16)

for 1 < p < ∞. Here we observe that the control of the mass implies the estimat
variation of‖ρε(t, ·)‖Lp(R2). In fact, if (2.6) holds, then the second term of (2.16) beco
negative and we conclude that‖ρε(t, ·)‖Lp(R2) � ‖ρ0,ε‖Lp(R2) for all t � 0.

2.2. Field and moment estimates

To estimate the fieldUε, we use the well-known bound

‖Uε(t, ·)‖L∞(RN) � C
(‖ρε(t, ·)‖L1(RN) + ‖ρε(t, ·)‖Lr(RN)

)
, r > N. (2.17)

In particular, in the one-dimensional case, by using that∇K1 = 1
2 sign(x) is bounded, we

have

‖Uε(t, ·)‖L∞(R) � 1

2
‖ρε(t, ·)‖L1(R), (2.18)

which gives, forN = 1, a global uniform bound independent of the attractive or repu
character of the Coulomb forces.

Finally, we shall find a bound for the first-order moment ofρε to control the loss of mas
at infinity and consequently to get compactness inL1. To do that, we take an auxiliar
functiong ∈ C2(RN) such thatg(x) � |x| for all x andg(x) = |x| for |x| � 1 (note that
this implies that∇g and�g are bounded). Then, using Eq. (1.1) we find∫

RN

|x|ρε(t, x) dx �
∫

RN

g(x)ρε(t, x) dx

=
∫

RN

g(x)ρε,0(x) dx +
t∫

0

∫
RN

(
Uε · ∇g + ε�g

)
ρε(s, x) dx ds.

As consequence, for some constantC depending only ong, we have

∫
N

|x|ρε(t, x) dx � C

( ∫
N

|x|ρ0,ε dx + Mε

)
+ C Mε

t∫ (‖Uε(s, ·)‖L∞(RN) + 1
)
ds,
R R 0
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which gives an estimate in[0, T ] provided thatUε is bounded. Then, following (2.17) an
(2.18) and the bounds forρε , we have finally done with (ii) and (iii) of Theorem 2.1.

The following step is to pass to the limit rigorously in the sequenceρε and in (1.1)–(1.3)
in a weak sense asε → 0 and show that the limitρ satisfies the system (1.4)–(1.5).

3. Passage to the limit

We first state the main result of this paper.

Theorem 3.1. Under the same hypotheses of Theorem2.1, the associated solution(ρε,Uε)

to the system(1.1)–(1.3)verify

ρε ⇀ ρ, in C
(
0, T ; (

Lp
(
R

N
)
,weak-�

)) ∩ (
L1(

R
N

)
,weak

)
, p � ∞,

Uε → U, in Lq
(
0, T ;Lp(Ω)N ∩ C(Ω)N

)
, 1 � q < ∞, 2 � p < ∞,

for every compact subsetΩ ⊂ R
N andT > 0 in the case of repulsive forces(θ = 1) and

for T < T ∗ in the case of attractive forces(θ = −1).
The limit(ρ,U) is the unique solution of(1.4)–(1.5). Moreover, in the one-dimension

case we have

ρε ⇀ ρ, in C
(
0, T ;M(R)-weak-�

)
for everyT > 0, independently ofθ .

Proof. In the following T > 0 will be a fixed time as before, that is,T < T ∗ = 1/L in
the attractive case andT < ∞ in the repulsive one or when we work in dimension o
(independently onθ ).

We first consider the system (1.1)–(1.3) in a weak form, i.e., for every test fun
ψ ∈ D([0, T ) × R

N) we write

∫
RN

ρ0,ε(x)ψ(0, x) dx =
∞∫

0

∫
RN

ρε

(
∂ψ

∂t
+ ε�xψ + Uε · ∇ψ

)
dx dt. (3.19)

We observe that theL1 bound is enough to pass to the limit, weakly as measures, i
three first terms but not in the last one: the nonlinear term. Let us specify how to p
the limit in the nonlinear term by studying the convergence ofρε. For that we first take a
test functionφ ∈D(RN) and observe that

αε[φ](t) :=
N∫

R

ρε(t, x)φ(x) dx � ‖ρε(t, ·)‖L1(RN)‖φ‖L∞(RN),

∂

∂t
αε[φ](t) =

∫
N

ρε(εφ
′′ + Uεφ

′) dx � C‖ρε(t, ·)‖L1(RN)

(
1+ ‖Uε(t, ·)‖L∞(RN)

)
.

R
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Using Theorem 2.1, we conclude thatαε[φ](·) is anε-equi-continuous and bounded fam
of C(0, T ) and therefore, there existsa sub-sequence (depending onφ) such thatαε[φ](·)
converges to someα[φ](·) in C(0, T ). But using the separability ofD(RN), we know that
this sub-sequence can be chosen independently of the testφ.

Now, in a general dimensionN , we use thatD(RN) is dense inLp′
(RN) for 1 < p � ∞

and then, thatαε[ · ](t) defines a bounded family of linear continuous operators on
spaceLp′

(RN). Moreover, using the density and the previous convergence, we can
conclude in terms ofρε (and identifying the limitα with a functionρ) that

ρε ⇀ ρ, in C
(
0, T ; (

Lp
(
R

N
)
,weak-�

))
, 1 < p � ∞. (3.20)

Analogously, in dimension one we observe thatD(R) is dense inC00(R) and therefore
that αε[ · ](t) become linear continuous operators on the spaceC00(R) for any t . In this
case the convergence holds in the measure sense and the limit can be identified with
measure that we callρ(t). We have just proved that, up to a sub-sequence,

ρε ⇀ ρ, in C
(
0, T ; (

M(R)-weak-�
))

. (3.21)

Remark 2. We observe that (3.20) is also valid forp = 1 (with the weak topology) al
thoughD(RN) is not dense inL∞(RN). This can be proved (see [13]) by using so
results based on the Egorov Theorem and the bound for the first-order moment.

3.1. Passage to the limit in the general case

To pass to the limit in an arbitrary dimensionN we will use the uniform estimates o
ρε to have the strong convergence of the fieldUε. From (3.20), Theorem 2.1(iii), and th
estimates of harmonic analysis we know that

Uε is uniformly bounded inL∞(
0, T ; (

W1,p
(
R

N
))N )

, 2 � p < ∞.

ThusUε(t ·) is relatively compact inLp(Ω) ∩ C(Ω̄), for every compact setΩ ⊂ R
N and

for everyt ∈ [0, T ]. Then, for everyt ∈ [0, T ] there exists a sub-sequence convergin
someU(t, ·) in Lp(Ω) ∩ C(Ω̄). Now, using Eq. (1.3) and the convergence ofρε (3.20),
we find the form of the limitU(t, x) = KN ∗x ρ(t, x) and conclude that all the sequen
converges independently ont . Therefore, the dominated convergence theorem assure

Uε → U, in Lq
(
0, T ;Lp(Ω)N ∩ C(Ω)N

)
, (3.22)

for 1 � q < ∞ and 2� p < ∞. The convergence (3.20) and (3.22) suffices to take
limit in (3.19) and find the announced system. Finally, the uniqueness of weak sol
of (1.4)–(1.5) inL1 ∩ L∞ (see [10]) concludes that the whole sequence converges an
result is proved.

3.2. Passage to the limit in dimension one

In this case we can use the techniques introduced in [10,13] based on the anti-sym
properties of the kernel. Using the convolution form ofUε in terms of the kernelK1, we
rewrite the nonlinear term of (3.19) as follows:
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6)
∞∫
0

∫
R

ρε(t, x)Uε(t, x)
∂

∂x
ψ(t, x) dx dt (3.23)

= θ

2

∞∫
0

∫
Rx

∫
Ry

{
x − y

2|x − y|
(

∂ψ

∂x
(t, x) − ∂ψ

∂x
(t, y)

)}
ρε(t, x)ρε(t, y) dy dx dt,

which can be taken as theweakdefinition of the productρε Uε. Note that the function unde
brackets is continuous and bounded, and then, the duality with the measureρε(t, x)ρε(t, y)

gives sense to this expression. Using here (3.21), we can easily conclude that

ρε(t, x)ρε(t, y) ⇀ ρ(t, x)ρ(t, y), in C
(
0, T ; (

M(Rx × Ry),weak-�
))

.

Finally, a truncature argument as the one used in [10] together with the bound for th
order moment given by Theorem 2.1 allow us to pass to the limit in (3.23). Then, de
the productρU in this weak sense (as in [10]), we recover the system (1.4)–(1.5).�
Remark 3. The techniques of anti-symmetry have allowed to pass to the limit in the de
ρε and give sense to the productρU . But we can skip the role of the density and study o
the behavior of the fieldUε. Convoluting Eq. (1.1) withθK1, we formally obtain

∂

∂t
Uε = −∂x

(
θKN ∗x (ρεUε)

) + ε∂xxUε = −θρεUε + ε∂xxUε = −∂x
Uε

2
+ ε∂xxUε

which is the Hopf–Burger equation. The technique of vanishing viscosity has been
to prove the existence of admissible solutions in the class of bounded solutions a
uniqueness in the sense ofentropy solutionsgiven by Stanislav Kruzskov [7] or the equi
alent concept ofadmissible solutiongiven by Olga Oleinik [12] (see also [11] for expl
nation). Then, in the one-dimensional case, the anti-symmetry method presented
equivalent to the classical vanishing viscosity method.
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