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Abstract

Under suitable conditions onf (t, y(t +θ)), the boundary value problem of higher-order functio
differential equation (FDE) of the form

(BVP)




(FDE) y(n)(t) + f (t, y(t + θ)) = 0, t ∈ [0,1], θ ∈ [−τ, a],

(BC)




y(i)(0) = 0, 0 � i � n − 3,{
αy(n−2)(t) − βy(n−1)(t) = η(t), t ∈ [−τ,0],
γy(n−2)(t) + δy(n−1)(t) = ξ(t), t ∈ [1,1+ a],

has at least one positive solution, whereθ ∈ [−τ, a] is a fixed constant. Moreover, we also app
this main result to establish several existence theorems which guarantee (BVP) has multiple
solutions.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we consider the existence of positive solutions for boundary value
lems of annth-order functional differential equation (FDE) of the form

(BVP)




(FDE) y(n)(t) + f (t, y(t + θ)) = 0, t ∈ [0,1], θ ∈ [−τ, a],

(BC)




y(i)(0) = 0, 0 � i � n − 3,{
αy(n−2)(t) − βy(n−1)(t) = η(t), t ∈ [−τ,0],
γy(n−2)(t) + δy(n−1)(t) = ξ(t), t ∈ [1,1+ a],

where

(i) τ , a, α, β , γ andδ are nonnegative constants satisfying 0� τ + a < 1 andρ = γβ +
αγ + αδ > 0. Moreover,θ ∈ [−τ, a] is a fixed constant.

(ii) η ∈ C([−τ,0],�), ξ ∈ C([1, b],�), η(0) = ξ(1) = 0, whereb = 1+ a.

Let C = Cn−2([−τ, a],�) be a space with norm‖ψ‖[−τ,a] = sup−τ�x�a |ψ(n−2)(x)|
for ψ ∈ C. Let

C+ = {
ψ ∈ C: ψ(x) � 0, x ∈ [−τ, a]},

C∗ := {ψ ∈ C+: 0 < c‖ψ‖[−τ,a] � ψ(n−2)(x) for x ∈ [−τ, a]} for some constantc ∈
(0,1) depending onψ , and letE = {t ∈ [0,1]: 0 � t + θ � 1} possesses nonzero me
sure.

In the last twenty five years, many authors considered the boundary value pr
(BVP) with n = 2 under the situation thatτ = a = 0, in this case, (BVP) becomes th
two-points boundary value problem for second-order ordinary differential equation w
has strong background in the fields of mechanics, physics, and applied mathemat
[1,4,11].

Recently, Erbe and Kong [3] investigated the boundary value problem of functiona
ferential equations of the formy ′′(t) + Q(t, y(w(t))) = 0. For example,Q(t, y) = (1/yn)

(n > 0) has singularity aty = 0. As pointed out by the authors of [3], the study of (BV
is of significance since it arises and has applications in variational problems in contr
ory and other areas of applied mathematics. In fact, the existence of positive solut
(BVP) with n = 2 had been studied by many authors; see, for example, Henderso
Hudson [5], Hong et al. [7], Lee and O’Regan [9,10], Ntouyas et al. [12] and Weng
Jiang [14].

Recently, the study of higher-order functional differential equation has received
attention from some authors; see, for example, Davis et al. [2], Henderson and Yin [
Taunton and Yin [13]. Some of them, see [2,6], examined the existence of solutio
(FDE) under the boundary conditions

(BC∗)
{

u(s) = φ(s), −τ � s � 0,

u(i)(0) = 0, 0 � i � k − 1,

u(j)(1) = 0, 0 � j � n − k − 1.

Hereφ ∈ C[−τ,0] which satisfiesφ(0) = 0 and 0� k � n is a positive integer.



16 C.-H. Hong et al. / J. Math. Anal. Appl. 297 (2004) 14–23

func-
s

follow-

two
ue to
The purpose of this paper is to establish the existence of positive solutions of the
tional differential equation (FDE) with boundary conditions(BC) under suitable condition
onf .

2. Definitions and lemmas

In order to abbreviate our discussion, throughout this paper, we suppose that the
ing assumptions hold:

(C1) G(t, s) is the Green’s function of the differential equation

−u(n)(t) = 0 in (0,1)

subject to the boundary conditions (BC) withτ = a = 0.
(C2) g(t, s) is the Green’s function of the differential equation

−u′′(t) = 0 in (0,1)

subject to the boundary conditions{
αu(0) − βu′(0) = 0,

γ u(1) + δu′(1) = 0,

whereα, β , γ andδ are defined as in (i).
(C3) f ∈ C([0,1] × C+; [0,∞)).

(C4) 0 <
∫
EM

g(1/2, s) ds < ∞, whereEM = {s ∈ E: M � s + θ � 1 − M} for some
small enough constantM ∈ (0,1/2) andθ ∈ [−τ, a] is given as in (ii).

Note. It is easy to see that

∂n−2

∂tn−2 G(t, s) = g(t, s), t, s ∈ [0,1].

In order to establish our main result (Theorem 2.1 below), we need the following
useful lemmas. The first lemma is due to Hong et al. [7]. The second lemma is d
Krasnoselski [8].

Lemma A [7]. Suppose thatg(t, s) is defined as in(C2) andM defined as in(C4). Then
we have the following results:{

(R1)
g(t,s)
g(s,s)

� 1, t ∈ [0,1], s ∈ [0,1],
(R2)

g(t,s)
g(s,s)

� M, t ∈ [M,1− M], s ∈ [0,1].

Lemma B (Krasnoselskii [8]).Let K be a cone in a Banach spaceE. Assume thatΩ1,
Ω2 are open subsets of E with0 ∈ Ω1, Ω̄1 ⊂ Ω2. If

A :K ∩ (Ω̄2\Ω1) → K

is a completely continuous operator such that either
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(i) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2, or
(ii) ‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω1 and‖Au‖ � ‖u‖, u ∈ K ∩ ∂Ω2,

then A has a fixed point inK ∩ (Ω̄2\Ω1).

Suppose thaty(t) is a solution of (BVP); then it can be written as

y(t) =



y(−τ ; t), −τ � t � 0,∫ 1
0 G(t, s)f (s, y(s + θ)) ds, 0 � t � 1,

y(b; t), 1 � t � b,

wherey(−τ ; t) andy(b; t) satisfy

y(n−2)(−τ ; t) = e
α
β
t

(
1

β

0∫
t

e
− α

β
s
η(s) ds + y(n−2)(0)

)
, t ∈ [−τ,0],

and

y(n−2)(b; t) = e− γ
δ t

(
1

δ

1∫
t

e
γ
δ sξ(s) ds + e

γ
δ y(n−2)(1)

)
, t ∈ [1, b],

respectively.
Throughout this paper, we assume thatu0(t) is the solution of (BVP) withf ≡ 0.

Clearly, it satisfies

u
(n−2)
0 (t) =




1
β
e

α
β t ∫ 0

t e
− α

β s
η(s) ds, −τ � t � 0,

0, 0 � t � 1,
1
δ
e− γ

δ t
∫ 1
t e

γ
δ sξ(s) ds, 1 � t � b.

Let y(t) be a solution of (BVP) andu(t) = y(t) − u0(t). Note thatu(t) ≡ y(t) for 0 �
t � 1, andu(t) satisfies

u(n−2)(t) =




e
α
β
t
u(n−2)(0), −τ � t � 0,∫ 1

0 g(t, s)f (s, u(s + θ) + u0(s + θ)) ds, 0� t � 1,

e− γ
δ
(t−1)u(n−2)(1), 1� t � b,

which implies

u(t) =




(β
α

)n−2
e

α
β t

u(n−2)(0), −τ � t � 0,∫ 1
0 G(t, s)f (s, u(s + θ) + u0(s + θ)) ds, 0 � t � 1,(− δ

γ

)n−2
e− γ

δ
(t−1)u(n−2)(1), 1 � t � b.

Now, we can state and prove our main result.

Theorem 2.1 (Main result).Assume that there exist two distinct positive constantsλ,µ

such that

(H1) f (t,ψ) � λ

( 1∫
g(s, s)ds

)−1

on [0,1] × C+
[0,λ+M0]
0
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n

ne
and

(H2) f (t,ψ) � µ

( ∫
EM

g

(
1

2
, s

)
ds

)−1

onEM × C+
[Mµ,µ+M0],

whereC+
[0,λ+M0] := {ψ ∈ C+: 0 � ‖ψ‖[−τ,a] � λ+M0}, C+

[Mµ,µ+M0] := {ψ ∈ C+: Mµ �
‖ψ‖[−τ,a] � µ+M0} andM0 := ‖u0‖[−τ,b]. Then(BVP) has at least one positive solutio
ψ such that‖ψ‖[−τ,a] lies betweenλ + M0 andµ + M0.

Proof. Without loss of generality, we may assume thatλ < µ. LetE = C(n−2)([−τ, b];R)

with norm‖u‖[−τ,b] = sup−τ�t�b |u(n−2)(t)|. Clearly,E is a Banach space. Define a co
K in the Banach spaceE by

K :=
{
u ∈ E: min

t∈[M,1−M]u
(n−2)(t) � M‖u‖[−τ,b]

}
, whereM is defined as in(C4).

Define a mappingΦ :K → K as follows:

(Φu)(t) :=




(β
α

)n−2
e

α
β
t
u(n−2)(0), −τ � t � 0,∫ 1

0 G(t, s)f (s, u(s + θ) + u0(s + θ)) ds, 0 � t � 1,(− δ
γ

)n−2
e− γ

δ (t−1)u(n−2)(1), 1 � t � b.

Thus,

(Φu)(n−2)(t) =




e
α
β
t ∫ 1

0 g(0, s)f (s, u(s + θ) + u0(s + θ)) ds, −τ � t � 0,∫ 1
0 g(t, s)f (s, u(s + θ) + u0(s + θ)) ds, 0 � t � 1,

e− γ
δ
(t−1)

∫ 1
0 g(1, s)f (s, u(s + θ) + u0(s + θ)) ds, 1 � t � b.

It follows from

0 � (Φu)(n−2)(t) � (Φu)(n−2)(0) for − τ � t � 0

and

0 � (Φu)(n−2)(t) � (Φu)(n−2)(1) for 1 � t � b

that‖Φu‖[−τ,b] = ‖Φu‖[0,1]. It follows from the definition ofK and Lemma A that

‖Φu‖[−τ,b] = ‖Φu‖[0,1] �
1∫

0

g(s, s)f
(
u(s + θ) + u0(s + θ)

)
ds (using(R1)).

It follows from

min
M�t�1−M

(Φu)(n−2)(t) = min
M�t�1−M

1∫
0

g(t, s)f
(
s, u(s + θ) + u0(s + θ)

)
ds

� M

1∫
g(s, s)f

(
s, u(s + θ) + u0(s + θ)

)
ds (using(R2))
0
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g two
that

min
M�t�1−M

(Φu)(n−2)(t) � M‖Φu‖[0,1] = M‖Φu‖[−τ,b],

which impliesΦ(K) ⊆ K. It is easy to see thatΦ :K → K is completely continuous.
In order to complete the proof, we separate the rest of the proof into the followin

steps.
Step(I). Let Ω1 := {u ∈ K: ‖u‖[−τ,b] < λ}. If u ∈ ∂Ω1, then|u(s + θ) + u0(s + θ)| �

λ + M0, i.e.,u(s + θ) + u0(s + θ) ∈ C+
[0,λ+M0] for all s ∈ [0,1]. It follows from (H1) that,

for u ∈ ∂Ω1 andt ∈ [0,1],

(Φu)(n−2)(t) =
1∫

0

g(t, s)f
(
s, u(s + θ) + u0(s + θ)

)
ds

�
1∫

0

g(s, s)f
(
s, u(s + θ) + u0(s + θ)

)
ds

� λ

( 1∫
0

g(s, s) ds

)−1( 1∫
0

g(s, s) ds

)
‖u‖[−τ,b]

λ
= ‖u‖[−τ,b].

Hence

‖Φu‖[−τ,b] � ‖u‖[−τ,b] for u ∈ ∂Ω1.

Step(II). Let Ω2 := {u ∈ K: ‖u‖[−τ,b] < µ}. If u ∈ ∂Ω2, then

u(n−2)(t + θ) � min
s∈[M,1−M]u

(n−2)(s) � M‖u‖[−τ,b] = Mµ for t ∈ EM.

Thus

Mµ � u(n−2)(t + θ) � µ for t ∈ EM,

and hence

Mµ � u(n−2)(t + θ) + u
(n−2)
0 (t + θ) � µ + M0 for t ∈ EM.

Then

(Φu)(n−2)

(
1

2

)
=

1∫
0

g

(
1

2
, s

)
f

(
s, u(s + θ) + u0(s + θ)

)
ds

�
∫

EM

g

(
1

2
, s

)
f

(
s, u(s + θ) + u0(s + θ)

)
ds

� µ

( ∫
g

(
1

2
, s

)
ds

)−1( ∫
g

(
1

2
, s

)
ds

)
‖u‖[−τ,b]

µ
= ‖u‖[−τ,b].
EM EM
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It follows from (H2) that

‖Φu‖[−τ,b] � ‖u‖[−τ,b] for u ∈ ∂Ω2.

Therefore, by the first part of Lemma B, the proof is complete.�
Remark 2.2. Let

maxf0 := lim
ψ∈C∗,‖ψ‖[−τ,a]→0+ max

t∈[0,1]
f (t,ψ)

‖ψ‖[−τ,a]
,

minf0 := lim
ψ∈C∗,‖ψ‖[−τ,a]→0+ min

t∈[0,1]
f (t,ψ)

‖ψ‖[−τ,a]
,

maxf∞ := lim
ψ∈C∗,‖ψ‖[−τ,a]→∞ max

t∈[0,1]
f (t,ψ)

‖ψ‖[−τ,a]
,

minf∞ := lim
ψ∈C∗,‖ψ‖[−τ,a]→∞ min

t∈[0,1]
f (t,ψ)

‖ψ‖[−τ,a]
,

( 1∫
0

G(s, s) ds

)−1

:= D1 and

( ∫
EM

G

(
1

2
, s

)
ds

)−1

:= D2.

Then, we have the following results.
(a) Suppose thatη(t) ≡ 0,ξ(t) ≡ 0 and maxf0 := C1 ∈ [0,D1). It is clear thatu0(t) ≡ 0

for t ∈ [−τ, b], thusM0 = 0. Takingε := D1 − C1 (> 0), there existsλ1 > 0 (λ1 can be
chosen arbitrarily small) such that

max
t∈[0,1]

f (t,ψ)

‖ψ‖[−τ,a]
� ε + C1 = D1 onC+

(0,λ1].

Hence

f (t,ψ) � D1‖ψ‖[−τ,a] � D1λ1 on [0,1] × C+
(0,λ1],

which satisfies the hypothesis(H1) of Theorem 2.1.
(b) Suppose that minf∞ := C2 ∈ (D2/M,∞). Taking ε := C2 − D2/M (> 0), there

existsµ1 > 0 (µ1 can be chosen arbitrarily large) such that

min
t∈EM

f (t,ψ)

‖ψ‖[−τ,a]
� −ε + C2 = D2

M
onC+

[Mµ1,∞).

Hence

f (t,ψ) � D2

M
‖ψ‖[−τ,a] � D2

M
Mµ1 = D2µ1

on EM × C+
[Mµ1,µ1+M0] ⊆ EM × C+

[Mµ1,∞), which satisfies the hypothesis(H2) of Theo-
rem 2.1.

(c) Suppose that minf0 := C3 ∈ (D2/M,∞). Taking ε := C3 − D2/M (> 0), there
existsµ2 > 0 (µ2 can be chosen arbitrarily small) such that

min
f (t,ψ) � −ε + C3 = D2 onC+

(0,µ2].
t∈EM ‖ψ‖[−τ,a] M
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y
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Hence

f (t,ψ) � D2

M
‖ψ‖[−τ,a] � D2

M
Mµ2 = D2µ2

onEM × C+
[Mµ2,µ2] ⊆ EM × C+

[0,µ2], which satisfies the hypothesis(H2) of Theorem 2.1.

(d) Suppose thatη(t) ≡ 0, ξ(t) ≡ 0 and maxf∞ := C4 ∈ [0,D1). It is clear that
u0(t) ≡ 0 for t ∈ [−τ, b], thusM0 = 0. Takingε := D1 − C4 (> 0), there existsλ > 0
(λ can be chosen large arbitrarily) such that

max
t∈[0,1]

f (t,ψ)

‖ψ‖[−τ,a]
� ε + C4 = D1 onC+

[λ,∞).

Hence, we have the following two cases.
Case(I). Assume that maxt∈[0,1] f (t,ψ) is bounded, say,

f (t,ψ) � L on [0,1] × C+
(0,∞).

Takingλ1 = L/D1 (since L can be chosen arbitrarily large,λ1 can be chosen arbitraril
large, too),

f (t,ψ) � L = D1λ1 on [0,1] × C+
(0,λ1] ⊆ [0,1] × C+

(0,∞).

Case(II). Assume that maxt∈[0,1] f (t,ψ) is unbounded, hence, there existsλ2 � ρ

(λ2 can be chosen arbitrarily large) andt0 ∈ [0,1] such that

f (t,ψ) � f (t0, λ2) on [0,1] × C+
(0,λ2].

It follows from λ2 � ρ that

f (t,ψ) � f (t0, λ2) � D1λ2 on [0,1] × C+
(0,λ2].

By Cases (I) and (II), the hypothesis(H1) of Theorem 2.1 is satisfied.

By Remark 2.2, we have the following three corollaries.

Corollary 2.3. Let D1 and D2 be defined as in Remark2.2 and ξ(t) ≡ η(t) ≡ 0. Then,
(BVP) has at least one positive solution ifone of the following conditions hold:

(1) maxf0 = C1 ∈ [0,D1) andminf∞ = C2 ∈ (D2/M,∞], or
(2) minf0 = C3 ∈ (D2/M,∞] andmaxf∞ = C4 ∈ [0,D1).

Proof. It follows from Remark 2.2 and Theorem 2.1 that the desired result holds, im
diately. �
Corollary 2.4. Let D1 and D2 be defined as in Remark2.2. If the following hypothese
hold:

(H1) minf∞ = C2, minf0 = C3 ∈ (D2/M,∞],
(H2) there existsλ∗ > 0 such that

f (t,ψ) � D1λ
∗ on [0,1] × C+

[0,λ∗+M0],
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a-
then(BVP) has at least two positive solutionsψ1 andψ2 such that

0 < ‖ψ1‖ < λ∗ + M0 < ‖ψ2‖.

Proof. It follows from Remark 2.2 that there exist two real numbersµ1 andµ2 satisfying

0 < µ2 < λ∗ < µ1,

f (t,ψ) � D2µ1 on [0,1] × C+
[Mµ1,µ1+M0],

and

f (t,ψ) � D2µ2 on [0,1] × [Mµ2,µ2 + M0].
Hence, by Theorem 2.1, we see that (BVP) has two positive solutionsψ1 andψ2 such that

µ2 + M0 < ‖ψ1‖ < λ∗ + M0 < ‖ψ2‖ < µ1 + M0.

Thus, we complete the proof.�
Corollary 2.5. Let D1 and D2 be defined as in Remark2.2. If the following hypothese
hold:

(H3) maxf0 = C1, maxf∞ = C4 ∈ [0,D1) andξ(t) ≡ η(t) ≡ 0,

(H4) there existsµ∗ > 0 such that

f (t,ψ) � D2µ
∗ on [0,1] × C+

[Mµ∗,µ∗],

then(BVP) has at least two positive solutionsψ1 andψ2 such that

0 < ‖ψ1‖ < µ∗ < ‖ψ2‖.

Proof. It follows from Remark 2.2 that there exist two real numbersλ1 andλ2 satisfying

0 < λ1 < µ∗ < λ2,

f (t,ψ) � D1λ1 on [0,1] × C+
[0,λ1],

and

f (t,ψ) � D1λ2 on [0,1] × C+
[0,λ2].

Hence, by Theorem 2.1, (BVP) has two positive solutionsψ1 andψ2 such that

λ1 < ‖ψ1‖ < µ∗ < ‖ψ2‖ < λ2.

Thus, we complete the proof.�
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