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Abstract

Under suitable conditions ofi(z, y(r +6)), the boundary value problem of higher-order functional
differential equation (FDE) of the form

(FDE) y™ @)+ f(t,y(t +6) =0, 1€[0.1], 6 € [~7.al,
YD) =0, 0<i<n-3
(BC) {oey<”*2><r) — By D@y =n(). 1el-1.0],
yy" A0+ 8y V) =£), e[l l+al,
has at least one positive solution, whére [—t, a] is a fixed constant. Moreover, we also apply
this main result to establish several existence theorems which guarantee (BVP) has multiple positive

solutions.
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1. Introduction

In this article, we consider the existence of positive solutions for boundary value prob-
lems of ammth-order functional differential equation (FDE) of the form

(FDE) y™(t)+ f(t,y(t+6)) =0, t€[0,1], 8 €[~1,al,
(BVP) yD(0)=0, 0<i<n-3,
(BC) ay®=2 (1) — By D) =n@t), te[-1,0]
yy "2 + 5y V) =£@1), tell,1+al,

where

() t,a,a, B,y andés are nonnegative constants satisfying® +a <1 andp = y8 +
ay +aé > 0. Moreoverg € [—1, a] is a fixed constant.
(i) neC(-1,0],R),&eC(Lb],N),n0) =£1)=0, whereb=1+a.

Let C = C"%([—7,a], M) be a space with NOrm [I[—r.qa] = SUP_, <, <, [¥"72 (x)|
fory € C. Let

Ct={yeC:y(x) >0, xe[-1,al},

C*:={y € CT: 0<c|¥l-ra < V" ?(x)forx e [-7,a]} for some constant e
(0,1) depending on/r, and letE = {r € [0,1]: 0 <t + 6 < 1} possesses honzero mea-
sure.

In the last twenty five years, many authors considered the boundary value problem
(BVP) with n = 2 under the situation that = a = 0, in this case, (BVP) becomes the
two-points boundary value problem for second-order ordinary differential equation which
has strong background in the fields of mechanics, physics, and applied mathematics; see
[1,4,11].

Recently, Erbe and Kong [3] investigated the boundary value problem of functional dif-
ferential equations of the fornV’(r) + Q(z, y(w(z))) = 0. For exampleQ(z, y) = (1/y™)

(n > 0) has singularity ay = 0. As pointed out by the authors of [3], the study of (BVP)

is of significance since it arises and has applications in variational problems in control the-
ory and other areas of applied mathematics. In fact, the existence of positive solutions of
(BVP) with n = 2 had been studied by many authors; see, for example, Henderson and
Hudson [5], Hong et al. [7], Lee and O’Regan [9,10], Ntouyas et al. [12] and Weng and
Jiang [14].

Recently, the study of higher-order functional differential equation has received more
attention from some authors; see, for example, Davis et al. [2], Henderson and Yin [6] and
Taunton and Yin [13]. Some of them, see [2,6], examined the existence of solutions of
(FDE) under the boundary conditions

u(s) =¢(s), —17<s <0,
BCH {u®0 =0 0<i<k-—1,
u(1)=0, 0<,j<n—k—1

Here¢ € C[—t, 0] which satisfieg)(0) = 0 and 0< & < n is a positive integer.
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The purpose of this paper is to establish the existence of positive solutions of the func-
tional differential equatio (FDE) with boundary condition®C) under suitable conditions
onf.

2. Definitionsand lemmas

In order to abbreviate our discussion, throughout this paper, we suppose that the follow-
ing assumptions hold:

(Cy) G(t,s) is the Green’s function of the differential equation
—u™ @) =0 in(0,1)

subject to the boundary conditions (BC) with=a = 0.
(Co) g(,s) isthe Green’s function of the differential equation

—u"(t)=0 in(0,1)
subject to the boundary conditions

au(0) — pu'(0) =0,
yu(l) +8u’(1) =0,
wherea, 8, y ands are defined as in (i).
(C3) f€C([0,1] x C*; [0, 00)).
(Cy) 0< fEM g(1/2,5)ds < oo, WwhereEy ={s € E: M <5+ 6 <1— M} for some
small enough constatd € (0, 1/2) andb € [—t, a] is given as in (ii).

Note. It is easy to see that
n—2

atnfz

G(t,s)=g(t,s), t,se[0,1].

In order to establish our main result (Theorem 2.1 below), we need the following two
useful lemmas. The first lemma is due to Hong et al. [7]. The second lemma is due to
Krasnoselski [8].

Lemma A [7]. Suppose thag(z, s) is defined as ifC2) and M defined as ifC4). Then
we have the following results

(R) 2% <1, 1e[0,1], s €[0,1],
(Ry) 299>, re[M,1—M], se[0,1].

Lemma B (Krasnoselskii [8]).Let K be a cone in a Banach spade Assume thaf2,,
£20 are open subsets of E withe 21, £21 C £22. If

AKN(2\21) - K

is a completely continuous operator such that either
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() NAull < llull, u € KN 321 and||Aull > [lull, u € K N 0523, or
(i) NAull = llull, u € KN o2, and||Aul| < |lull, u € K N 9822,

then A has a fixed point ik N (£22\£21).

Suppose that(¢) is a solution of (BVP); then it can be written as

y(=t:10), -7 <t <0,

YO =1 fo Gt,9)f (s, y(s+0)ds, 0<r<1,

y(b; 1), 1<t <b,
wherey(—t; ) andy(b; t) satisfy

0
y("_z)(—f;t)=€%t<1/€_%sn(5)ds+y("_2)(0)), t€[-1,0],
IBI
and
1
y(“)(b;r):eg’(% / eﬁ"é(s)ds+e?y("2>(1)>, t €[1,b],
t

respectively.
Throughout this paper, we assume thats) is the solution of (BVP) withf = 0.
Clearly, it satisfies

%eﬁtfzoefﬁsn(S)ds, —1<1<0,
’ 0<r<1],
1 Yy pl Y

Te7s! [TesE(s)ds, 1<t<b.

Let y(r) be a solution of (BVP) and(¢) = y(z) — uo(¢). Note thatu(s) = y(¢) for 0 <
t <1, andu(r) satisfies

ug 2 =

o

e%’u(n—Z)(o)’ -7 <t <0,
w2y =1 [Le(t,5) f(s,uls +6) +uols +6))ds, 0<r<1,
e~ 5 =Dy =2 (1), 1<t <b,
which implies
(g)nfze%zu(nfz) (0), —7<1<0,
u(t) =1 [5 Gt.5)f(s,u(s +6) +uo(s +6)ds, 0<1<1,
(_%)"—26—%(t—l)u(n—Z)(]_)’ 1<t <b.

Now, we can state and prove our main result.

Theorem 2.1 (Main result).Assume that there exist two distinct positive constanis
such that
1

H) fep) < A(/

-1
g(s, s)ds) on[0, 1] x C[JE),A+M0]
0
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and

-1
1
(HZ) f(t7 I//) 2 M( / g(ias) dS) on EM X C[—i/_l/lﬂsli+M0]a

Em

WhereC[E)HMo] ={y € CT: 0< ¥ ll[-r.a) < A+ Mo}, C[Jlrw,wMo] ={ye C+ M <_
1Y ll=z.a1 < w+ Mo} and Mo := |luoll[—r,»)- Then(BVP) has at least one positive solution
¥ such that]| v |- 47 lies between. + Mg and . + Mp.

Proof. Without loss of generality, we may assume that u. Let E = C"~2([—1, b]; R)
with norm |ul(—z,5) = SUP_; <, <p lu"=2 (). Clearly, E is a Banach space. Define a cone
K in the Banach spacg by

K:= {u cE: min " 20> M||u||[_r,b]}, whereM is defined as ifC,).
te[M,1-M]

Define a mappingp : K — K as follows:

(£)" %eb"u-2(0), -

(@u)(t) =1 [3G(t,5) f(s,uls +0) + uols +6)) ds,
(—2) P Ee U2 ),

R O
NN A
AN
NN~
IS /AN

~

Thus,
e [2(0,5) f (5. us +6) + uols +6))ds. _
(@u) "2ty =1 [Lg(t,5)f (s, uls +6) + uols +6)) ds, 0
e 50D [Lo(1,5) (s, uls +6) +uols +0))ds, 1

~ A
NN~
A
o

NN
S P

It follows from

0< (@)™ (1) < (Pu)"2(0) for —1<r<0
and

0< (@uw) " 2(1) < (@)™ 2(1) forl<r<b

that || @u||[—z,51 = [|Pull[o,1. It follows from the definition ofk and Lemma A that
1

IPull—,p) = Pulljo,1) < /g(s, $)f (u(s +6) +uo(s +6))ds  (using(Ry)).

0
It follows from
1
min (@) 2@ = min /g(t,s)f(s,u(s+9)+u0(s+9))ds
M<i<1-M M<i<1-M
0

1
2M/g(s,s)f(s,u(s+9)+uo(s+9))ds (usingR2))
0
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that

min  (@uw) "2 (t) > M| ®ulljo.1) = M| Pullj—z.p),
M<t<1-M

which implies® (K) € K. Itis easy to see thab : K — K is completely continuous.
In order to complete the proof, we separate the rest of the proof into the following two
steps.
Step(l). Let 21 :={u € K: ||ullj—r.p) < A}. If u € 3821, then|u(s + 6) + uo(s + 0)| <
A4+ Mo, i.e.,u(s+60)+uo(s+6)e C[J{)’HMO] for all s € [0, 1]. It follows from (Hy) that,
foru € 9§21 andr € [0, 1],

1

(@u) "2 (t) = / g(t,5) f(s,u(s +6) 4+ uo(s +6))ds

0
1

< /g(s, s)f(s, u(s +60) + uo(s —1—9)) ds

0
1

-1 1
lulli—c.o
< A(fg(s, $) ds) (/ g(s. 5) ds) =

0 0
Hence

Pull—c.p) < lullj—rp) foru e ds2;.
Step(ll). Let £22:={u € K: |lull[—r.p) < u}. If u € 3822, then

u D@ +0)> min u"2() > M|ul_rp=Mp forte Ey.
se[M,1-M]

Thus
Mpu<u" 2@ +0)<u forteEy,
and hence
(n—2) (n—2)
Mup<u t+60)+uy “(t+0)<u+My forteEy.

Then
1

(@u)("2)<1') =/g<} s>f(s u(s +0) +uo(s +0))ds
2 27 £
0
1
2/g(E,S)f(s,u(s+9)+uo(s+9))ds
Em

-1
1 1 ull—
o)) ([

Em Em
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It follows from (Hy) that
Pulli—z.6) = ull{—zp) fOru e 0.

Therefore, by the first part of Lemma B, the proof is completa.

Remark 2.2. Let

. t,
max fo := lim M
Vel [¥llj—r.aq—0" 1€[0.1] |¥ |l[—7,a]
. t,
min fo := lim Sy
YeC*, W ll—r.a—0* 1€l0.1] | ll[—r.a]
t
max foo := lim f( 1#)
el I li—ra—oc 1€0.3] [ ¥ [[[—r.a]
. t,
Min foo = S w)

lim
Y eC*, ¥ ll{—r.aq—>o0 r€[0.1] || ||[—

( 1 - 1 -1
/G(s,s)ds :=D; and /G(E,s) ds = D».
0 Ey

Then, we have the following results.

(a) Suppose that(r) = 0,&(¢r) = 0 and maxfp := C1 € [0, D1). Itis clear that«o(z) =0
for t € [—1, b], thusMp = 0. Takinge := D1 — C1 (> 0), there exists.; > 0 (A1 can be
chosen arbitrarily small) such that

X S, ¥)
1€[0.1] | ¥ l{—7.q]
Hence

f@, ) <Dill¥ll{—r,a) < D1A1 0ON[O, 1]xC(OA

which satisfies the hypothegid1) of Theorem 2.1.
(b) Suppose that mifiy, := C2 € (D2/M, 00). Takinge := C2 — D2/M (> 0), there
existsu1 > 0 (11 can be chosen arbitrarily large) such that

_ +
<e+Ci=D1 on C(O,Al]'

t, D
HM>—6+C2=—2 OnCJIFVI
t€Ey | ¥ l[=1,a] M [Mp1.00)°
Hence
D>
fay) > —||¢||[ ra]/ﬁMﬂl_DZMl

onEy x C[Jjwﬂl’ﬂlJrMo] C Ey x C[MM_OO), which satisfies the hypothesidl) of Theo-
rem 2.1. '
(c) Suppose that mify := C3 € (D2/M, 00). Takinge := C3 — D2/M (> 0), there
existsu2 > 0 (u2 can be chosen arbitrarily small) such that
S ¥) D2

- > —-€+(C3=— onCHh
t€Ey | ll—r.a] M Oupeal”
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Hence
£ > 221w > 22 Mpp =D
V)2 57 [-r.al 2 5 Mz = Dapt2
+ + ; Lo
on Ey x C[Muz.,uz] CEyx C[OM], which satisfies the hypothegid,) of Theorem 2.1.

(d) Suppose thaty(r) = 0, £(r) = 0 and maxfs, := C4 € [0, D1). It is clear that
uo(t) =0 for ¢t € [—1, b], thusMp = 0. Takinge := D1 — C4 (> 0), there exists. > 0
(1 can be chosen large arbitrarily) such that

ax f@¥)
t€[0,1] ”w”[fr,a]
Hence, we have the following two cases.
Case(l). Assume that maxo,1) f (¢, ¥) is bounded, say,

f(t,¥) <L onl0,1] x c(gm).

Taking A1 = L/Dj (since L can be chosen arbitrarily largg, can be chosen arbitrarily
large, too),
[, ¥)<L=Dirx on[0,1]x Ci, S0, 11 xCf
Case(ll). Assume that maxo.1; f (¢, ¥) is unbounded, hence, there exigis> p
(A2 can be chosen arbitrarily large) ande [0, 1] such that

f@,¥) < flto,2) on[0, 1] x C; 0.
It follows from A2 > p that
[, ¥) < fto, 22) < D1rz on[0,1] x Cg, .
By Cases (I) and (ll), the hypothegid;) of Theorem 2.1 is satisfied.

<e+Cs=D; onC[j{OO).

By Remark 2.2, we have the following three corollaries.

Corollary 2.3. Let D1 and D, be defined as in Rematk2 and £(¢) = n(¢t) = 0. Then,
(BVP) has at least one positive solutioroifie of the following conditions hald

(1) maxfo=C1<[0, D7) andmin foo = C2 € (D2/M, <], Or
(2) minfp=C3z € (D2/M,o00] andmaxfo = C4 € [0, D1).

Proof. It follows from Remark 2.2 and Theorem 2.1 that the desired result holds, imme-
diately. O

Corollary 2.4. Let D1 and D2 be defined as in Remagk2. If the following hypotheses
hold:

(H1) min foo = C2, min fo = C3 € (D2/M, o],
(H2) there exists.* > 0 such that

f@ ) <D onl0,1] X Cif 4o
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then(BVP) has at least two positive solutiong andy, such that
0 < |lYrall <A™ + Mo < [[¥2].

Proof. It follows from Remark 2.2 that there exist two real numbefsandu, satisfying

0<p2 <A™ <pa,
f@, )= Dapa 0onl0, 1 % Clyur 1w
and
f @, ¥) = Doz on[0,1] x [Mpuz, u2 + Mol
Hence, by Theorem 2.1, we see that (BVP) has two positive solutipasidy-» such that
m2 + Mo < [l < A% + Mo < [|[2]l < ua+ Mo.

Thus, we complete the proof.c

Corollary 2.5. Let D1 and D2 be defined as in Remagk2. If the following hypotheses
hold:

(Hs) maxfo=C1, maxfo = Ca € [0, D1) andé&(r) =n(t) =0,
(Hg) there existg.* > 0 such that

f@.9) > Dop* on[0, 11 x Cfhy e oy

then(BVP) has at least two positive solutiong andvr, such that
O <yl <pn* < lly2ll.

Proof. It follows from Remark 2.2 that there exist two real numberandi, satisfying
0<i1<pu™ <z,
f@.¥)<Diry on[0,1] x Cg,, .

and
f(t,¥) < D1x2 onl0,1] x c[g)m.

Hence, by Theorem 2.1, (BVP) has two positive solutighsandy» such that
A<yl < w* < lIy2ll < Az

Thus, we complete the proof.0
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