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Abstract

Let X be a Banach space aAdanm-accretive operator with a zero. Consider the iterative method
that generates the sequerieg} by the algorithme,, 1 = apu + (1 — an) Jy, xn, Where{o, } and{r;, }
are two sequences satisfying certain conditions, &ndenotes the resolvelit + rA)~1 for r > 0.
Strong convergence of the algorithfr,} is proved assuming either has a weakly continuous
duality map or is uniformly smooth.
0 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a Banach space, I€t be a nonempty closed convex subsetXgfand let
T :C — C be a nonexpansive mapping (i.Tx — Ty| < |lx — y|| forall x, y € C). De-
note by FiXT) the set of fixed points df (i.e., Fix(T) = {x € C: Tx = x}). One classical
way to study nonexpansive mappings is to use contractions to approximate a nonexpansive
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mapping (Browder [2] and Reich [8]). More precisely, take (0, 1) and define a contrac-
tionT;:C — C by

Tix=tu+Q—-t)Tx, xeC,

whereu € C is a fixed point. Banach’s Contraction Mapping Principle guaranteegthat
has a unique fixed point; in C. It is unclear, in general, what is the behavioripfas
t — 0, even ifT has a fixed point. However, in the casefohaving a fixed point, Browder
[2] proved that ifX is a Hilbert space, thery does converges strongly to the fixed point of
T that is nearest ta. Reich [8] extended Browder's result to the setting of Banach spaces
and proved that i is a uniformly smooth Banach space, therconverges strongly to a
fixed point of T and the limit defines the (unique) sunny nonexpansive retraction ffom
onto Fix(T). The first result of this paper says that Reich’s result holds in a Banach space
which has a weakly continuous duality map.

Recall that an operatotr with domainD(A) and rangeR(A) in X is said to beaccretive
if, for eachx; € D(A) andy; € Ax; (i =1, 2), there is g € J(x2 — x1) such that

(y2—y1,J) 20,
where/J is the duality map fronX to the dual spac&™ given by

J0) = e X* (rx) = )2 = [}, xex.

An accretive operatod is m-accretive ifR(1 + 1A) = X forall » > 0.
Denote byF the zero set ofi; i.e.,

F:=A"Y0) = |{x e D(A): O€ Ax}.

Throughout the rest of this paper it is always assumed th& m-accretive andF is
nonempty.
Denote byJ, the resolvent ofA for r > 0:

Jo=I+rA)™L

Itis known that/, is a nonexpansive mapping frokito C := D(A) which will be assumed
convex (this is so provided is uniformly smooth and uniformly convex).

An interesting topic is to find a point iR’ via iterative methods. In [4], the authors study
iterative solutions ofn-accretive operators in a Banach space that is uniformly smooth
and has a weakly continuous duality map. The iterative method studied in [4] generates a
sequence by the algorithm

Xn41=aptt + (L —ap)Jy, xn, n =0, (1.1)

where{a,} is a sequence i, 1), {r,} is a sequence of positive numbers, and the initial
guessyg € C is arbitrarily chosen. Theorem 2.5 of [4] asserts that if uniformly smooth
and has a weakly continuous duality map, then the sequen¢given in (1.1) converges
strongly to a point inF provided the sequencés, } and{r,} satisfy certain conditions.

The main purpose of this paper is to remove either the uniform smoothness assumption
or the assumption of a weak continuous duality map in the above mentioned result.
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2. Preliminaries

We require the following lemmas. The proof of Lemma 2.1 can be found in [9,10].
Lemma 2.2 is an immediate consequence of the subdifferential inequality of the function
%H -2 Lemma 2.3 is the resolvent identity which can be found in [1]. Lemma 2.4 can be
found in [7].

Lemma 2.1. Let (a,,) be a sequence of nonnegative real numbers that satisfies the condi-
tion:
a1 < A-r)ay + Ay, n= 0,
where the sequencés,} C (0, 1) and{u,} satisfy the conditions
@) lim, oA, =0;

(i) Y2 hn = 00;
(iii) limsup,,_, o mn < 0.

Thenlim,,_, oo a, =0.

Lemma 2.2. In a smooth Banach spacé there holds the inequality

Ix+yI2< Ixl2+ 20y, J(x +y), x,yeX.

Lemma 2.3 (The Resolvent Identity)or A, u > 0O, there holds the identity

Jix =JM<%x+ (1— %)m), xeX.

Lemma 2.4. Assume thats > ¢1 > 0. Then||Jo,x — x| < 2| Je,x — x| forall x € X.

Recall that ifC and D are nonempty subsets of a Banach sp#cgich thatC is non-
empty closed convex anB C C, then a mapQ :C — D is called a retraction fronC
onto D provided Q(x) = x for all x € D. A retractionQ:C — D is sunny provided
Ox +t(x — 0(x)) =0Q() for all x e C andr > 0 wheneverx +t(x — Q(x)) € C.
A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive. Sunny
nonexpansive retractions are characterized as follows (cf. [5F: i§ a smooth Banach
space, therQ :C — D is a sunny nonexpansive retraction if and only if there holds the
inequality

(x—0x,J(y— 0x))<0 forallx e Candy € D. (2.1)

Reich [8] showed that i is uniformly smooth and iD is the fixed point set of a non-
expansive mapping from@ into itself, then there is a unigue sunny nonexpansive retraction
from C onto D and it can be constructed as follows.

Lemma 2.5 [8]. Let X be a uniformly smooth Banach space andTetC — C be a
nonexpansive mapping with a fixed point. For each fixedC and everyr € (0, 1), the
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unique fixed point; € C of the contractiorC > x — ru + (1—t)T x converges strongly as
t — 0to afixed point off". DefineQ : C — Fix(T) by Qu =s — lim,_.ox;. ThenQ is the
unigue sunny nonexpansive retract frahontoFix(7T); that is, Q satisfies the property

(u—Qu,J(z—Qu)<0, ueC, zeFixT). (2.2)

Recall that a gauge is a continuous strictly increasing funciofD, co) — [0, co)
such thaip(0) = 0 andg(t) — oo ast — oo. Associated to a gaugeis the duality map
J,: X — X* defined by

Jox) = {x* e X*: (x, x*) = |Ixlle(lIxl). [x*]| =e(IxI)}, xeX.

Following Browder [3], we say that a Banach spachas a weakly continuous duality map
if there exists a gauge for which the duality map/,, is single-valued and weak-to-weak
sequentially continuous (i.e., {f,} is a sequence iX weakly convergent to a point,
then the sequendd, (x,)} converges wedaly to J,(x)). It is known that’” has a weakly
continuous duality map for all £ p < co. Set

t

@(t):/(p(f)dt, t>0.
0

Then
Jox)=d®(Ix[), xeX,

whered denotes the subdifferential in the sense of convex analysis. The first part of the
next lemma is an immediate consequence of the subdifferential inequality and the proof of
the second part can be found in [6].

Lemma 2.6. Assume thak has a weakly continuous duality map with gaugey.

(i) Forall x,y e X, there holds the inequality
@ (I1x + yll) < @ (IIxll) + (v, Jp (x + ).

(i) Assume a sequenge,} in X is weakly convergent to a point Then there holds the
identity

IimsupcD(Hx,, - y||) =lim supq§(||xn — x||) + <D(||y — x||), x,yeX.

n—oo n—o0

Notation: ‘—~' stands for weak convergence ang' for strong convergence.

3. Weakly continuous duality map and sunny nonexpansive retraction

Recall thatC is a nonempty closed convex subset of a Banach sfaaed7T :C — C
is a nonexpansive mapping with a nonempty fixed point set. Recall also that f@; 1)
andu € C, x; is the unique solution to the fixed point equation

xi=tu+QA—-0Tx;. (3.1)
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It is known that (Reich [8]) ifX is a uniformly smooth Banach space, therconverges
strongly to a fixed point of” and the limit defines the sunny nonexpansive retraction from
C onto FixT). Our first result shows that Reich’s result holds in a Banach space which
has a weakly continuous duality map.

Theorem 3.1. Let X be a reflexive Banach space and have a weakly continuous duality
map J, with gaugegp. Let C be a closed convex subset ¥fand let7:C — C be a
nonexpansive mapping. Fixe C and¢ € (0, 1). Letx, € C be the unique solution i@ to
Eq.(3.1). ThenT has a fixed point if and only {fx,;} remains bounded as— 0", and in

this case{x;} converges as— 0% strongly to a fixed point of .

Proof. Assume first that' (T) # @. Takep € F(T) to deduce that, for € (0, 1),

Ix: = pll =t = p) + A= )(Tx; — p) |
Stlu—pll+ A =DITx — pl
Stlu—pll+ @A =0)llx; — pll.
Hence

lx: = pll < llu = pll

and{x;} is bounded.

Next assume thatx,} is bounded as — 0*. Assumer, — 0™ and{x;,} is bounded.
Since X is reflexive, we may assume thg} — z for somez € C. SinceJ, is weakly
continuous, we have by Lemma 2.6,

limsup® (|lx;, — x|) = limsup® (|lx,, — zll) + @ (Ilx —zll), Vx € X.
n—0o0

n—0o0

Put
f(x)=Ilim Sup@(”xtn —xll), x € X.

n—oo

It follows that
f@)=f@+@(lx—zll), xeX.

Since

In

1—1,

”xt,, - Txt,, | = [l — Xty | — 0O,
we obtain

f(Tz)=limsup® (|lx,, — Tz|) =limsup® (| Tx,, — Tz|)

n—00 n—00
< limsup® ([lx;, — zll) = £ (2). (3.2)
n—oo

On the other hand, however,

f(T2)=f@)+P(ITz—zll). (3.3)
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Combining Egs. (3.2) and (3.3) yields
?(ITz—z|) <O.

HenceTz =z andz € F(T).

Finally we prove tha{x,} converges strongly to a fixed point &f provided it remains
bounded whem — 0.

Let {#,} be a sequence i(D, 1) such that;, — 0 andx,, — z asn — oo. Then the
argument above shows that F(T). We next show that, — z. As a matter of fact, we
have by Lemma 2.6,

@ (lIxy, —zll) = D(|tn(Txs, —2) + A=) —2) )
LD (1l Ty, — 2ll) + (A — 1)1 — 2. Sy (x1, — 2))
<ta® ([, — zll) + (L= 1)1t — 2, Jy(xs, — 2)).
This implies that
¢(||'xtn - Z”) g (u - Za J(p(xtn - Z))'

Now observing that,, — z implies J, (x,, — z) — 0, we conclude from the last inequality
that

@ (llx;, —zll) > 0.

Hencex;, — z.
We finally prove that the entire nét;} converges strongly. Towards this end, we assume
that two null sequencds,} and{s,} in (0, 1) are such that

x, >z and x;, — 7.
We have to show = 7’. Indeed, forp € F(T), it is easy to see that
(xt —Txs, Jp(xs — p)) = <P(||Xz - PII) + (P —Tx¢, Jp(x — p))
>®(lxi—pll) = llp = Txill - | Jp (i — p)|
= ¢(|IXz - pll) - ¢(||xt - P||)
0.

On the other hand, since

xr—Txy = t(u—xt),

1—
we get fort € (0,1) andp € F(T),
(x, —u, Jp(x; — p)) <0.
In particular,
(x,n —u, Jp(x;, — p)) <0 and (xsn —u, Jy(xs, — p)) <0.
Passing on to the limits as— oo, we obtain

(Z —u, Jy(z — v)) <0 and (z’ —u, Jy(z — v)) <0.
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Adding up gets
(=7, Jz=2"H) <0
Hencez = 7’ and{x,} converges strongly. O

Under the condition of Theorem 3.1, we can define a @a@ — F(T) by

Q) :=limx,, wueCcC.
t—0
The next result shows th& is the sunny nonexpansive retraction fréhonto Fix(T).

Theorem 3.2. Under the conditions of Theorefl, Q defines the sunny nonexpansive
retraction fromC onto F(T).
Proof. Since we have proved that, for ale (0, 1) andp € F(T),
(xt —u, J(p(xt - P)) <0,
lettingz — 0, we obtain that
(@) —u, J,(Qw) — p))<O0.
This implies that
(@) —u, J(Qw) — p)) <0

sinceJ,(x) = (p(lxID/llx])J (x) for x # 0. Now by the characterization inequality (2.2)
of Lemma 2.5 we see tha@ is sunny nonexpansive.ti

4. Zerosof m-accretive operators

Next consider the problem of finding a zero of/araccretive operatod in a Banach
spaceX,
O€ Ax. (4.1)

Recall that the resolvent and Yosida approximatior @fre respectively defined by
J,=(I+rA)"1 and A, = %(1 —J).

Assume
F:={xeX:0cAx}=A"20) #0.

Write C = D(A). Consider the following algorithm

X1 =apu + L —ap)dy,xp, n=0, 4.2)

whereu € C is arbitrarily fixed,{«,} is a sequence K0, 1), and{r,} is a sequence of
positive numbers.

Algorithm (4.2) has been investigated in [4] in which strong convergence is proved pro-
vided the spacg is uniformly smooth and has a weakly continuous duality map thay
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for some gauge. The purpose of this section is to remove either the uniform smoothness
assumption or the weak continuous duality map assumption.

Theorem 4.1. Suppose thaX is reflexive and has a weakly continuous duality igvith

gaugey. Suppose thafl is anm-accretive operator inX such thatC = D(A) is convex.
Assume

(i) on — 0andd 2 gor, = 00;
(iiy r, = oo.

Then{x, } converges strongly to a point iA.

Proof. First notice tha{x,} is bounded. Indeed, takee F to get

[¥n+1 — Pl S @nllu — pll + A =) 1 1, %0 — pl
Sapllu —pll+ @ — o) llx, — pll.
An induction gives that
llxn = pll <max{llu — pll, lxo— pll} foralln>0.
This implies that{x, } is bounded and hence
[Xn+1 = Jr, Xnll = anllu = Jy, xn | = O.
We next prove that

lim Sup(u —p, Jp(xn — p)) <0, peF. (4.3)

n—oo

By Theorem 3.1, we have the sunny nonexpansive retraglio@ — Fix(T). Putp =
Q(u) and take a subsequenps, } of {x,} such that

lim Suqu —p,Jp(x, — p)) = kli_)moo(u — P, Jp(xp, — p)). (4.4)

n—oo

SinceX is reflexive, we may further assume that — x. Moreover, since
I Xn+1 — Jr,Xnll = O,

we obtain

J,

nk—lx”k_l — X.

Taking the limit ask — oo in the relation
(ry—1%n—15 A, 1 X —1] € A,

we get[x, 0] € A. That is,x € F. Hence by (4.4) and (2.1) we have
lim Suqu —p, Jp(x, — p)) = <u —p, Jp(X — p)) <0.

n— oo

That is, (4.3) holds. Finally to prove that — p, we apply Lemma 2.6 to get
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@ (xn+1 = pll) = (| X = @)y, 0 = p) + an(u = p)|)
< D((L— an)llJr, X0 — pll) + atnfu — p, Jp(xns1— p))
< A= an)@(llxn — pll) + ctnlu — p, Jy(Xns1— p)).
An application of Lemma 2.1 yields thdt(||x, — p||) — O; thatis,||x, — p|| = 0. O

Another result which differs from Theorem 2.5 of [4] in terms of the condition&gmh
and{r,}.

Theorem 4.2. Suppose thaX is reflexive and has a weakly continuous duality migwvith
gaugeg. Suppose thatl is anm-accretive operator inX such thatC = D(A) is convex.
Assume

(1) on— 0,22 gy =00, and ) o2 otyi1 — o] < 00 (€.9.,000 = %);
(i) ry>eforallnand} 02 [rys1 —ral <00 (€.0.,r =1+ 1).

Then{x,} converges strongly to a point iA.

Proof. We only include the differences. We have
Xppr=0azu+ (1 — an)-]r,,xna Xp=ap—1u+ (11— an—l)‘lrn_lxn—l-
Thus,
Xn4+l — Xn = (o —otp—1)(u — Jr,,_lxn—l) +(1- an)(-]rnxn - Jrn_lxn—l)- (45)

If r,_1 <., using the resolvent identity

JryXn = Jrn1<rl;1xn + <1 - r,;l>~]rnxn>v
n n

we obtain

n—1 n—1

lx, — xp—1ll + (l_ )”Jr,,xn — Xp—1ll

”Jr,,xn - Jrn,lxnfln <

n n

) ”]r,,xn — Xp—1ll
< lxn — xp-all + (1/5)|rn—1 - rn|||-]r,1xn — Xp—1ll-
It follows from (4.5) that

'n —TI'n-1
< lxn — xp—1ll + <7

n

lXn+1 — xnll < M(|an — 1|+ a1 — Vn|) + A —an)llxn — xn-1lls (4.6)

whereM > 0 is some appropriate constant. Similarly we can prove (46)if > r,. By
assumptions (i) and (ii) and Lemma 2.1, we conclude that

lxp41 — xnll — O.
This implies that

llx, — Jr,lxn” < X1 — xall + X041 — Jr,lxn” -0 (4-7)
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since||xp4+1 — Jp, xnll = anllu — Jy, xn |l — O. It follows that

”Ar,lxn” = r_”xn - Jr,,xn” < g”xn - Jrnxn” — 0.
n

Now if {x,, } is a subsequence f,} converging weakly to a point, then taking the limit
ask — oo in the relation

[Jr,,kxnk , Ar,,kxnk] €A,

we get[x,0] € A; i.e.,x € F. We therefore conclude that all weak limit points{ef,} are
zeros ofA.
The rest of the proof follows that of Theorem 4.1

Finally, we consider the framework of uniformly smooth Banach spaces. Assume
for somes > 0 (not necessarily, — o0). SinceF is the fixed point set of the nonexpansive
mappingJ, for all » > 0, there exists a unique sunny nonexpansive retragdrom C
onto F and this retractionQ can be constructed as in Reich [8]. In particular, for each
integern > 1, we have

Q) = J@OZz,n, uecC, (4.8)

wherez; , € C is the unique point irC such that

n=tu+ A —=1)J, 2 n. (4.9
Note that{z; ,,} is uniformly bounded; indeedz; , — p|l < lu— p|l forallr € (0,1),n > 1
andp € F. A key component of the proof of the next theorem is the following lemma.
Lemma4.3. The limitin(4.8)is uniform forn > 1.
Proof. It suffices to show that for any positive integgr(which may depend one (0, 1)),
if z;», € C is the unique point irC that satisfies the property

Zen =tu+ Q=0 20, (4.10)
then{z ,,} converges as— 0 to a point inF. For simplicity put

wy =2, and V,=J, .
It follows that

wy=tu+ (1 —1)V,wy. (4.11)

Note that FixV;) = F for all . Note also thatw, } is bounded; indeed, we hajle; — p|| <
lu — p|l forall r € (0,1) andp € F. Since{V;w,} is bounded, it is easy to see that

|w; — Vowe|| =t|ju — V,wy|| > 0, ast— 0.
Sincer, > ¢ for all n, by Lemma 2.4, we have

lwe = Jewe || < 2||we — Iy, we |l = 2[|lwy — Vew, || — 0. (4.12)
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Let {#} be a sequence in (0,1) such that> 0 ask — oco. Define a functionf on C by
1 2
fw) = LleEIIwzk —wl*, weC,

where LIM denotes a Banach limit dff. Let
K:={weC: f(w)y=min{f(»): yeC}}.

ThenK is a nonempty closed convex bounded subsét.diVe claim thatk is also invari-
ant under the nonexpansive mappihg Indeed, noting (4.12), we have fore K,

1 2 1 2
fUew) = LMy Sllwy, = Jew]” = LM 5 [ Jewy, — Jewll

1 2
< LleEIIer —w|” = f(w).

Since a uniformly smooth Banach space has the fixed point property for nonexpansive
mappings and sincé, is a honexpansive self-mapping 6f J. has a fixed point ink,
sayw’. Now sincew’ is also a minimizer off overC, it follows that, forw € C,

31wy, —w') + 2w’ — w)[|> — Fllwy, —w'|?
)\’ .

SinceX is uniformly smooth, the duality map is uniformly continuous on bounded sets,
letting . — 0T in the last equation yields

O<LIMi(w —w, J(w, —w)), weC. (4.13)

—LIMy

Since
wy, —w =i —w)+ L — 1) (Vew, —w),
we obtain
l|wy, — w'|? = tk<u —w', J(wy, — w/)) +(1- fk)(Vzszk —w', J(wy, — w’))
<tilu —w', T(wy, — w))+ A= 1) | Vigwy, — /[l - || (wy, — w)|
Sl —w', I (wy, —w))+ (1 — ) |wy, — w12
It follows that
| wy, — w'|1? < (u —w', J(wy, — w’)). (4.14)
Upon lettingw = u in (4.13), we see that the last equation implies
LIM ¢ J|wy, — w'[|? < 0. (4.15)

Therefore{w, } contains a subsequence, still denofed, }, converging strongly tavy
(say). By virtue of (4.12)w, is a fixed point of/;; i.e., a pointinF'.

To prove that the entire nétv,;} converges strongly, assurig } is another null subse-
guence in(0, 1) such thatw,, — wo strongly. Thenw; € F.
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Repeating the argument of (4.14) we obtain

lw, — w2 < (u—w', J(w, —w)), Yu'eF. (4.16)
In particular,

lwz — w1ll? < (u — w1, J (w2 — w)) (4.17)
and

lw1 — wal® < {u — w2, J (w1 — w2)). (4.18)

Adding up the last two equations gives
lwi — w2]|* <O.

That is,w1 = w». This concludes the proof.0

We conclude this paper with the main result of this section which removes the assump-

tion of a weak continuous duality map of Theorem 2.5 of [4].

Theorem 4.4. Suppose thaX is a uniformly smooth Banach space. Suppose thist an
m-accretive operator inX such thatC = D(A) is convex. Assume

(i) on— 0, X0 gan =00, andY 0% 41 — | < 00 (6.9, = 2);
(i) rn>eforallnandy 52, |ry1—ral <00 (€.9.1 =1+ 2).

Then{x, } converges strongly to a point if.

Proof. Sincez; , =tu+ (1 —1)J,z;.n, We have
Zn —Xp =t —x,) + A= 1)(Jr,2t,n — Xn).
Thus by Lemma 2.2,
1200 = Xl < (L= D21, 200 = X IZ + 2t (0 = X0, T (21,0 — %)
<@- t)Z(IIJran,n = JrXnll + 1, X0 — xnll)z
+2t(u =z, I @on — X)) + 2t 2en — X2
<(1+ t2) Izem = Xull® 4 1, X — Xl (2lztn = xall + 19, X0 — xall)
+2t(u — 202 T (2in — Xn))-
It follows that
(= zem, I Gen = 2e.))
< %”Zt,n —xnll? + 2_];||Jrnxn — Xl (2llzs.0 = Xnll + 17, X0 — Xal).

Remember that Eq. (4.7) still holds. Letting— oo in the last inequality, we obtain

. . t
limsup(u — z;.n, J (60 — 21,0)) < lim SUp 1211 = X 12 < t,

n—0o0 n—o00
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wherep > 0 is a constant such that> 2||z; , — x, |2 for all » > 1 andr € (0, 1). Hence

lim suplim sup(u — z;,n. J (xn — 2¢.0)) < 0. (4.19)
t—0 n—oo
Furthermore, noticing the fact that the duality mdpis uniformly continuous on
bounded sets and the uniform convergencdzof,} to O(u) (Lemma 4.3), we can in-
terchange the two limits above and deduce that

limsup(u — z, J (x, —2)) <0, (4.20)
n—oo
wherez =lim;0z;., = Q(u).
Finally to prove that, — z strongly, we write

Xpp1— =0 —2)+ (1 - Oln)(‘]r,,xn —2).

Apply Lemma 2.2 to get

Ixn1 — 212 < X = )21, 0 — 2lI? + 20 (u — 2, J (X1 — 2)
<@ —ap)llxn — 2l + 206 {1 — 2, J (Xp 41 — 2))-

By Lemma 2.1 and (4.20), we see that— z. O
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