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Abstract

Let X be a Banach space andA anm-accretive operator with a zero. Consider the iterative me
that generates the sequence{xn} by the algorithmxn+1 = αnu+ (1−αn)Jrnxn, where{αn} and{rn}
are two sequences satisfying certain conditions, andJr denotes the resolvent(I + rA)−1 for r > 0.
Strong convergence of the algorithm{xn} is proved assumingX either has a weakly continuou
duality map or is uniformly smooth.
 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let X be a Banach space, letC be a nonempty closed convex subset ofX, and let
T :C → C be a nonexpansive mapping (i.e.,‖T x − Ty‖ � ‖x − y‖ for all x, y ∈ C). De-
note by Fix(T ) the set of fixed points ofT (i.e., Fix(T ) = {x ∈ C: T x = x}). One classica
way to study nonexpansive mappings is to use contractions to approximate a nonex
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mapping (Browder [2] and Reich [8]). More precisely, taket ∈ (0,1) and define a contrac
tion Tt :C → C by

Ttx = tu + (1− t)T x, x ∈ C,

whereu ∈ C is a fixed point. Banach’s Contraction Mapping Principle guarantees thTt

has a unique fixed pointxt in C. It is unclear, in general, what is the behavior ofxt as
t → 0, even ifT has a fixed point. However, in the case ofT having a fixed point, Browde
[2] proved that ifX is a Hilbert space, thenxt does converges strongly to the fixed point
T that is nearest tou. Reich [8] extended Browder’s result to the setting of Banach sp
and proved that ifX is a uniformly smooth Banach space, thenxt converges strongly to
fixed point ofT and the limit defines the (unique) sunny nonexpansive retraction froC

onto Fix(T ). The first result of this paper says that Reich’s result holds in a Banach
which has a weakly continuous duality map.

Recall that an operatorA with domainD(A) and rangeR(A) in X is said to beaccretive
if, for eachxi ∈ D(A) andyi ∈ Axi (i = 1,2), there is aj ∈ J (x2 − x1) such that

〈y2 − y1, j 〉 � 0,

whereJ is the duality map fromX to the dual spaceX∗ given by

J (x) = {
x∗ ∈ X∗:

〈
x, x∗〉 = ‖x‖2 = ∥∥x∗∥∥2}

, x ∈ X.

An accretive operatorA is m-accretive ifR(I + λA) = X for all λ > 0.
Denote byF the zero set ofA; i.e.,

F := A−1(0) = {
x ∈ D(A): 0∈ Ax

}
.

Throughout the rest of this paper it is always assumed thatA is m-accretive andF is
nonempty.

Denote byJr the resolvent ofA for r > 0:

Jr = (I + rA)−1.

It is known thatJr is a nonexpansive mapping fromX toC := D(A) which will be assumed
convex (this is so providedX is uniformly smooth and uniformly convex).

An interesting topic is to find a point inF via iterative methods. In [4], the authors stu
iterative solutions ofm-accretive operators in a Banach space that is uniformly sm
and has a weakly continuous duality map. The iterative method studied in [4] gene
sequence by the algorithm

xn+1 = αnu + (1− αn)Jrnxn, n � 0, (1.1)

where{αn} is a sequence in(0,1), {rn} is a sequence of positive numbers, and the in
guessx0 ∈ C is arbitrarily chosen. Theorem 2.5 of [4] asserts that ifX is uniformly smooth
and has a weakly continuous duality map, then the sequence{xn} given in (1.1) converge
strongly to a point inF provided the sequences{αn} and{rn} satisfy certain conditions.

The main purpose of this paper is to remove either the uniform smoothness assu
or the assumption of a weak continuous duality map in the above mentioned result.
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2. Preliminaries

We require the following lemmas. The proof of Lemma 2.1 can be found in [9
Lemma 2.2 is an immediate consequence of the subdifferential inequality of the fu
1
2‖ · ‖2. Lemma 2.3 is the resolvent identity which can be found in [1]. Lemma 2.4 ca
found in [7].

Lemma 2.1. Let (an) be a sequence of nonnegative real numbers that satisfies the c
tion:

an+1 � (1− λn)an + λnµn, n � 0,

where the sequences{λn} ⊂ (0,1) and{µn} satisfy the conditions:

(i) limn→∞ λn = 0;
(ii)

∑∞
n=1 λn = ∞;

(iii) lim supn→∞ µn � 0.

Thenlimn→∞ an = 0.

Lemma 2.2. In a smooth Banach spaceX there holds the inequality

‖x + y‖2 � ‖x‖2 + 2
〈
y,J (x + y)

〉
, x, y ∈ X.

Lemma 2.3 (The Resolvent Identity). For λ,µ > 0, there holds the identity:

Jλx = Jµ

(
µ

λ
x +

(
1− µ

λ

)
Jλx

)
, x ∈ X.

Lemma 2.4. Assume thatc2 � c1 > 0. Then‖Jc1x − x‖ � 2‖Jc2x − x‖ for all x ∈ X.

Recall that ifC andD are nonempty subsets of a Banach spaceX such thatC is non-
empty closed convex andD ⊂ C, then a mapQ :C → D is called a retraction fromC
onto D providedQ(x) = x for all x ∈ D. A retractionQ :C → D is sunny provided
Q(x + t (x − Q(x))) = Q(x) for all x ∈ C and t � 0 wheneverx + t (x − Q(x)) ∈ C.
A sunny nonexpansive retraction is a sunny retraction which is also nonexpansive.
nonexpansive retractions are characterized as follows (cf. [5]): IfX is a smooth Banac
space, thenQ :C → D is a sunny nonexpansive retraction if and only if there holds
inequality〈

x − Qx,J (y − Qx)
〉
� 0 for all x ∈ C andy ∈ D. (2.1)

Reich [8] showed that ifX is uniformly smooth and ifD is the fixed point set of a non
expansive mapping fromC into itself, then there is a unique sunny nonexpansive retra
from C ontoD and it can be constructed as follows.

Lemma 2.5 [8]. Let X be a uniformly smooth Banach space and letT :C → C be a
nonexpansive mapping with a fixed point. For each fixedu ∈ C and everyt ∈ (0,1), the
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unique fixed pointxt ∈ C of the contractionC 	 x 
→ tu+ (1− t)T x converges strongly a
t → 0 to a fixed point ofT . DefineQ :C → Fix(T ) byQu = s − limt→0 xt . ThenQ is the
unique sunny nonexpansive retract fromC ontoFix(T ); that is,Q satisfies the property:〈

u − Qu,J (z − Qu)
〉
� 0, u ∈ C, z ∈ Fix(T ). (2.2)

Recall that a gauge is a continuous strictly increasing functionϕ : [0,∞) → [0,∞)

such thatϕ(0) = 0 andϕ(t) → ∞ ast → ∞. Associated to a gaugeϕ is the duality map
Jϕ :X → X∗ defined by

Jϕ(x) = {
x∗ ∈ X∗:

〈
x, x∗〉 = ‖x‖ϕ(‖x‖), ∥∥x∗∥∥ = ϕ

(‖x‖)}, x ∈ X.

Following Browder [3], we say that a Banach spaceX has a weakly continuous duality ma
if there exists a gaugeϕ for which the duality mapJϕ is single-valued and weak-to-wea∗
sequentially continuous (i.e., if{xn} is a sequence inX weakly convergent to a pointx,
then the sequence{Jϕ(xn)} converges weak∗ly to Jϕ(x)). It is known thatlp has a weakly
continuous duality map for all 1< p < ∞. Set

Φ(t) =
t∫

0

ϕ(τ) dτ, t � 0.

Then

Jϕ(x) = ∂Φ
(‖x‖), x ∈ X,

where∂ denotes the subdifferential in the sense of convex analysis. The first part
next lemma is an immediate consequence of the subdifferential inequality and the p
the second part can be found in [6].

Lemma 2.6. Assume thatX has a weakly continuous duality mapJϕ with gaugeϕ.

(i) For all x, y ∈ X, there holds the inequality

Φ
(‖x + y‖) � Φ

(‖x‖) + 〈
y,Jϕ(x + y)

〉
.

(ii) Assume a sequence{xn} in X is weakly convergent to a pointx. Then there holds th
identity

lim sup
n→∞

Φ
(‖xn − y‖) = lim sup

n→∞
Φ

(‖xn − x‖) + Φ
(‖y − x‖), x, y ∈ X.

Notation: ‘⇀’ stands for weak convergence and ‘→’ for strong convergence.

3. Weakly continuous duality map and sunny nonexpansive retraction

Recall thatC is a nonempty closed convex subset of a Banach spaceX andT :C → C

is a nonexpansive mapping with a nonempty fixed point set. Recall also that fort ∈ (0,1)

andu ∈ C, xt is the unique solution to the fixed point equation

xt = tu + (1− t)T xt . (3.1)
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It is known that (Reich [8]) ifX is a uniformly smooth Banach space, thenxt converges
strongly to a fixed point ofT and the limit defines the sunny nonexpansive retraction f
C onto Fix(T ). Our first result shows that Reich’s result holds in a Banach space w
has a weakly continuous duality map.

Theorem 3.1. Let X be a reflexive Banach space and have a weakly continuous d
map Jϕ with gaugeϕ. Let C be a closed convex subset ofX and let T :C → C be a
nonexpansive mapping. Fixu ∈ C and t ∈ (0,1). Letxt ∈ C be the unique solution inC to
Eq. (3.1). ThenT has a fixed point if and only if{xt } remains bounded ast → 0+, and in
this case,{xt } converges ast → 0+ strongly to a fixed point ofT .

Proof. Assume first thatF(T ) �= ∅. Takep ∈ F(T ) to deduce that, fort ∈ (0,1),

‖xt − p‖ = ∥∥t (u − p) + (1− t)(T xt − p)
∥∥

� t‖u − p‖ + (1− t)‖T xt − p‖
� t‖u − p‖ + (1− t)‖xt − p‖.

Hence

‖xt − p‖ � ‖u − p‖
and{xt } is bounded.

Next assume that{xt } is bounded ast → 0+. Assumetn → 0+ and{xtn} is bounded.
SinceX is reflexive, we may assume thatxtn ⇀ z for somez ∈ C. SinceJϕ is weakly
continuous, we have by Lemma 2.6,

lim sup
n→∞

Φ
(‖xtn − x‖) = lim sup

n→∞
Φ

(‖xtn − z‖) + Φ
(‖x − z‖), ∀x ∈ X.

Put

f (x) = lim sup
n→∞

Φ
(‖xtn − x‖), x ∈ X.

It follows that

f (x) = f (z) + Φ
(‖x − z‖), x ∈ X.

Since

‖xtn − T xtn‖ = tn

1− tn
‖u − xtn‖ → 0,

we obtain

f (T z) = lim sup
n→∞

Φ
(‖xtn − T z‖) = lim sup

n→∞
Φ

(‖T xtn − T z‖)

� lim sup
n→∞

Φ
(‖xtn − z‖) = f (z). (3.2)

On the other hand, however,

f (T z) = f (z) + Φ
(‖T z − z‖). (3.3)
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Combining Eqs. (3.2) and (3.3) yields

Φ
(‖T z − z‖) � 0.

HenceT z = z andz ∈ F(T ).
Finally we prove that{xt } converges strongly to a fixed point ofT provided it remains

bounded whent → 0.
Let {tn} be a sequence in(0,1) such thattn → 0 andxtn ⇀ z asn → ∞. Then the

argument above shows thatz ∈ F(T ). We next show thatxtn → z. As a matter of fact, we
have by Lemma 2.6,

Φ
(‖xtn − z‖) = Φ

(∥∥tn(T xtn − z) + (1− tn)(u − z)
∥∥)

� Φ
(
tn‖T xtn − z‖) + (1− tn)

〈
u − z, Jϕ(xtn − z)

〉
� tnΦ

(‖xtn − z‖) + (1− tn)
〈
u − z, Jϕ(xtn − z)

〉
.

This implies that

Φ
(‖xtn − z‖) �

〈
u − z, Jϕ(xtn − z)

〉
.

Now observing thatxtn ⇀ z impliesJϕ(xtn − z) ⇀ 0, we conclude from the last inequali
that

Φ
(‖xtn − z‖) → 0.

Hencextn → z.
We finally prove that the entire net{xt } converges strongly. Towards this end, we assu

that two null sequences{tn} and{sn} in (0,1) are such that

xtn → z and xsn → z′.

We have to showz = z′. Indeed, forp ∈ F(T ), it is easy to see that〈
xt − T xt , Jϕ(xt − p)

〉 = Φ
(‖xt − p‖) + 〈

p − T xt , Jϕ(xt − p)
〉

� Φ
(‖xt − p‖) − ‖p − T xt‖ · ∥∥Jϕ(xt − p)

∥∥
� Φ

(‖xt − p‖) − Φ
(‖xt − p‖)

= 0.

On the other hand, since

xt − T xt = t

1− t
(u − xt ),

we get fort ∈ (0,1) andp ∈ F(T ),〈
xt − u,Jϕ(xt − p)

〉
� 0.

In particular,〈
xtn − u,Jϕ(xtn − p)

〉
� 0 and

〈
xsn − u,Jϕ(xsn − p)

〉
� 0.

Passing on to the limits asn → ∞, we obtain〈
z − u,Jϕ(z − v)

〉
� 0 and

〈
z′ − u,Jϕ(z′ − v)

〉
� 0.
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Adding up gets〈
z − z′, Jϕ(z − z′)

〉
� 0.

Hencez = z′ and{xt } converges strongly. �
Under the condition of Theorem 3.1, we can define a mapQ :C → F(T ) by

Q(u) := lim
t→0

xt , u ∈ C.

The next result shows thatQ is the sunny nonexpansive retraction fromC onto Fix(T ).

Theorem 3.2. Under the conditions of Theorem3.1, Q defines the sunny nonexpans
retraction fromC ontoF(T ).

Proof. Since we have proved that, for allt ∈ (0,1) andp ∈ F(T ),〈
xt − u,Jϕ(xt − p)

〉
� 0,

letting t → 0, we obtain that〈
Q(u) − u,Jϕ

(
Q(u) − p

)〉
� 0.

This implies that〈
Q(u) − u,J

(
Q(u) − p

)〉
� 0

sinceJϕ(x) = (ϕ(‖x‖)/‖x‖)J (x) for x �= 0. Now by the characterization inequality (2.
of Lemma 2.5 we see thatQ is sunny nonexpansive.�

4. Zeros of m-accretive operators

Next consider the problem of finding a zero of anm-accretive operatorA in a Banach
spaceX,

0∈ Ax. (4.1)

Recall that the resolvent and Yosida approximation ofA are respectively defined by

Jr = (I + rA)−1 and Ar = 1

r
(I − Jr).

Assume

F := {x ∈ X: 0∈ Ax} = A−1(0) �= ∅.

Write C = D(A). Consider the following algorithm

xn+1 = αnu + (1− αn)Jrnxn, n � 0, (4.2)

whereu ∈ C is arbitrarily fixed,{αn} is a sequence in(0,1), and {rn} is a sequence o
positive numbers.

Algorithm (4.2) has been investigated in [4] in which strong convergence is proved
vided the spaceX is uniformly smooth and has a weakly continuous duality map maJϕ
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for some gaugeϕ. The purpose of this section is to remove either the uniform smooth
assumption or the weak continuous duality map assumption.

Theorem 4.1. Suppose thatX is reflexive and has a weakly continuous duality mapJϕ with
gaugeϕ. Suppose thatA is anm-accretive operator inX such thatC = D(A) is convex.
Assume

(i) αn → 0 and
∑∞

n=0 αn = ∞;
(ii) rn → ∞.

Then{xn} converges strongly to a point inF .

Proof. First notice that{xn} is bounded. Indeed, takep ∈ F to get

‖xn+1 − p‖ � αn‖u − p‖ + (1− αn)‖Jrnxn − p‖
� αn‖u − p‖ + (1− αn)‖xn − p‖.

An induction gives that

‖xn − p‖ � max
{‖u − p‖, ‖x0 − p‖} for all n � 0.

This implies that{xn} is bounded and hence

‖xn+1 − Jrnxn‖ = αn‖u − Jrnxn‖ → 0.

We next prove that

lim sup
n→∞

〈
u − p,Jϕ(xn − p)

〉
� 0, p ∈ F. (4.3)

By Theorem 3.1, we have the sunny nonexpansive retractionQ :C → Fix(T ). Put p =
Q(u) and take a subsequence{xnk

} of {xn} such that

lim sup
n→∞

〈
u − p,Jϕ(xn − p)

〉 = lim
k→∞

〈
u − p,Jϕ(xnk

− p)
〉
. (4.4)

SinceX is reflexive, we may further assume thatxnk
⇀ x̃. Moreover, since

‖xn+1 − Jrnxn‖ → 0,

we obtain

Jrnk−1xnk−1 ⇀ x̃.

Taking the limit ask → ∞ in the relation

[Jrnk−1xnk−1,Arnk−1xnk−1] ∈ A,

we get[x̃,0] ∈ A. That is,x̃ ∈ F. Hence by (4.4) and (2.1) we have

lim sup
n→∞

〈
u − p,Jϕ(xn − p)

〉 = 〈
u − p,Jϕ(x̃ − p)

〉
� 0.

That is, (4.3) holds. Finally to prove thatxn → p, we apply Lemma 2.6 to get
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(‖xn+1 − p‖) = Φ

(∥∥(1− αn)(Jrnxn − p) + αn(u − p)
∥∥)

� Φ
(
(1− αn)‖Jrnxn − p‖) + αn

〈
u − p,Jϕ(xn+1 − p)

〉
� (1− αn)Φ

(‖xn − p‖) + αn

〈
u − p,Jϕ(xn+1 − p)

〉
.

An application of Lemma 2.1 yields thatΦ(‖xn − p‖) → 0; that is,‖xn − p‖ → 0. �
Another result which differs from Theorem 2.5 of [4] in terms of the conditions on{αn}

and{rn}.

Theorem 4.2. Suppose thatX is reflexive and has a weakly continuous duality mapJϕ with
gaugeϕ. Suppose thatA is anm-accretive operator inX such thatC = D(A) is convex.
Assume

(i) αn → 0,
∑∞

n=0 αn = ∞, and
∑∞

n=1 |αn+1 − αn| < ∞ (e.g.,αn = 1
n
);

(ii) rn � ε for all n and
∑∞

n=1 |rn+1 − rn| < ∞ (e.g.,rn = 1+ 1
n
).

Then{xn} converges strongly to a point inF .

Proof. We only include the differences. We have

xn+1 = αnu + (1− αn)Jrnxn, xn = αn−1u + (1− αn−1)Jrn−1xn−1.

Thus,

xn+1 − xn = (αn − αn−1)(u − Jrn−1xn−1) + (1− αn)(Jrnxn − Jrn−1xn−1). (4.5)

If rn−1 � rn, using the resolvent identity

Jrnxn = Jrn−1

(
rn−1

rn
xn +

(
1− rn−1

rn

)
Jrnxn

)
,

we obtain

‖Jrnxn − Jrn−1xn−1‖ � rn−1

rn
‖xn − xn−1‖ +

(
1− rn−1

rn

)
‖Jrnxn − xn−1‖

� ‖xn − xn−1‖ +
(

rn − rn−1

rn

)
‖Jrnxn − xn−1‖

� ‖xn − xn−1‖ + (1/ε)|rn−1 − rn|‖Jrnxn − xn−1‖.
It follows from (4.5) that

‖xn+1 − xn‖ � M
(|αn − αn−1| + |rn+1 − rn|

) + (1− αn)‖xn − xn−1‖, (4.6)

whereM > 0 is some appropriate constant. Similarly we can prove (4.6) ifrn−1 � rn. By
assumptions (i) and (ii) and Lemma 2.1, we conclude that

‖xn+1 − xn‖ → 0.

This implies that

‖xn − Jrnxn‖ � ‖xn+1 − xn‖ + ‖xn+1 − Jrnxn‖ → 0 (4.7)
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since‖xn+1 − Jrnxn‖ = αn‖u − Jrnxn‖ → 0. It follows that

‖Arnxn‖ = 1

rn
‖xn − Jrnxn‖ � 1

ε
‖xn − Jrnxn‖ → 0.

Now if {xnk
} is a subsequence of{xn} converging weakly to a point̃x, then taking the limit

ask → ∞ in the relation

[Jrnk
xnk

,Arnk
xnk

] ∈ A,

we get[x̃,0] ∈ A; i.e., x̃ ∈ F . We therefore conclude that all weak limit points of{xn} are
zeros ofA.

The rest of the proof follows that of Theorem 4.1.�
Finally, we consider the framework of uniformly smooth Banach spaces. Assumern � ε

for someε > 0 (not necessarilyrn → ∞). SinceF is the fixed point set of the nonexpansi
mappingJr for all r > 0, there exists a unique sunny nonexpansive retractionQ from C

onto F and this retractionQ can be constructed as in Reich [8]. In particular, for e
integern � 1, we have

Q(u) = lim
t→0

zt,n, u ∈ C, (4.8)

wherezt,n ∈ C is the unique point inC such that

zt,n = tu + (1− t)Jrnzt,n. (4.9)

Note that{zt,n} is uniformly bounded; indeed,‖zt,n −p‖ � ‖u−p‖ for all t ∈ (0,1), n � 1
andp ∈ F . A key component of the proof of the next theorem is the following lemma

Lemma 4.3. The limit in(4.8) is uniform forn � 1.

Proof. It suffices to show that for any positive integernt (which may depend ont ∈ (0,1)),
if zt,nt ∈ C is the unique point inC that satisfies the property

zt,nt = tu + (1− t)Jrnt
zt,nt , (4.10)

then{zt,nt } converges ast → 0 to a point inF . For simplicity put

wt = zt,nt and Vt = Jrnt
.

It follows that

wt = tu + (1− t)Vtwt . (4.11)

Note that Fix(Vt ) = F for all t . Note also that{wt } is bounded; indeed, we have‖wt −p‖ �
‖u − p‖ for all t ∈ (0,1) andp ∈ F. Since{Vtwt } is bounded, it is easy to see that

‖wt − Vtwt‖ = t‖u − Vtwt‖ → 0, ast → 0.

Sincern � ε for all n, by Lemma 2.4, we have

‖wt − Jεwt‖ � 2‖wt − Jrn wt‖ = 2‖wt − Vtwt‖ → 0. (4.12)

t



H.-K. Xu / J. Math. Anal. Appl. 314 (2006) 631–643 641

ansive

ts,

-

Let {tk} be a sequence in (0,1) such thattk → 0 ask → ∞. Define a functionf onC by

f (w) = LIM k

1

2
‖wtk − w‖2, w ∈ C,

where LIM denotes a Banach limit onl∞. Let

K := {
w ∈ C: f (w) = min

{
f (y): y ∈ C

}}
.

ThenK is a nonempty closed convex bounded subset ofC. We claim thatK is also invari-
ant under the nonexpansive mappingJε. Indeed, noting (4.12), we have forw ∈ K ,

f (Jεw) = LIM k

1

2
‖wtk − Jεw‖2 = LIM k

1

2
‖Jεwtk − Jεw‖2

� LIM k

1

2
‖wtk − w‖2 = f (w).

Since a uniformly smooth Banach space has the fixed point property for nonexp
mappings and sinceJε is a nonexpansive self-mapping ofC, Jε has a fixed point inK ,
sayw′. Now sincew′ is also a minimizer off overC, it follows that, forw ∈ C,

0 � f (w′ + λ(w − w′)) − f (w′)
λ

= LIM k

1
2‖(wtk − w′) + λ(w′ − w)‖2 − 1

2‖wtk − w′‖2

λ
.

SinceX is uniformly smooth, the duality mapJ is uniformly continuous on bounded se
lettingλ → 0+ in the last equation yields

0� LIM k

〈
w′ − w,J (wtk − w′)

〉
, w ∈ C. (4.13)

Since

wtk − w′ = tk(u − w′) + (1− tk)(Vtkwtk − w′),

we obtain

‖wtk − w′‖2 = tk
〈
u − w′, J (wtk − w′)

〉 + (1− tk)
〈
Vtkwtk − w′, J (wtk − w′)

〉
� tk

〈
u − w′, J (wtk − w′)

〉 + (1− tk)‖Vtkwtk − w′‖ · ∥∥J (wtk − w′)
∥∥

� tk
〈
u − w′, J (wtk − w′)

〉 + (1− tk)‖wtk − w′‖2.

It follows that

‖wtk − w′‖2 �
〈
u − w′, J (wtk − w′)

〉
. (4.14)

Upon lettingw = u in (4.13), we see that the last equation implies

LIM k‖wtk − w′‖2 � 0. (4.15)

Therefore{wtk } contains a subsequence, still denoted{wtk }, converging strongly tow1
(say). By virtue of (4.12),w1 is a fixed point ofJε; i.e., a point inF .

To prove that the entire net{wt } converges strongly, assume{sk} is another null subse
quence in(0,1) such thatws → w2 strongly. Thenw2 ∈ F .
k
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Repeating the argument of (4.14) we obtain

‖wt − w′‖2 �
〈
u − w′, J (wt − w′)

〉
, ∀w′ ∈ F. (4.16)

In particular,

‖w2 − w1‖2 �
〈
u − w1, J (w2 − w1)

〉
(4.17)

and

‖w1 − w2‖2 �
〈
u − w2, J (w1 − w2)

〉
. (4.18)

Adding up the last two equations gives

‖w1 − w2‖2 � 0.

That is,w1 = w2. This concludes the proof.�
We conclude this paper with the main result of this section which removes the as

tion of a weak continuous duality map of Theorem 2.5 of [4].

Theorem 4.4. Suppose thatX is a uniformly smooth Banach space. Suppose thatA is an
m-accretive operator inX such thatC = D(A) is convex. Assume

(i) αn → 0,
∑∞

n=0 αn = ∞, and
∑∞

n=1 |αn+1 − αn| < ∞ (e.g.,αn = 1
n
);

(ii) rn � ε for all n and
∑∞

n=1 |rn+1 − rn| < ∞ (e.g.,rn = 1+ 1
n
).

Then{xn} converges strongly to a point inF .

Proof. Sincezt,n = tu + (1− t)Jrnzt,n, we have

zt,n − xn = t (u − xn) + (1− t)(Jrnzt,n − xn).

Thus by Lemma 2.2,

‖zt,n − xn‖2 � (1− t)2‖Jrnzt,n − xn‖2 + 2t
〈
u − xn, J (zt,n − xn)

〉
� (1− t)2(‖Jrnzt,n − Jrnxn‖ + ‖Jrnxn − xn‖

)2

+ 2t
〈
u − zt,n, J (zt,n − xn)

〉 + 2t‖zt,n − xn‖2

�
(
1+ t2)‖zt,n − xn‖2 + ‖Jrnxn − xn‖

(
2‖zt,n − xn‖ + ‖Jrnxn − xn‖

)
+ 2t

〈
u − zt,n, J (zt,n − xn)

〉
.

It follows that〈
u − zt,n, J (xn − zt,n)

〉
� t

2
‖zt,n − xn‖2 + 1

2t
‖Jrnxn − xn‖

(
2‖zt,n − xn‖ + ‖Jrnxn − xn‖

)
.

Remember that Eq. (4.7) still holds. Lettingn → ∞ in the last inequality, we obtain

lim sup
〈
u − zt,n, J (xn − zt,n)

〉
� lim sup

t ‖zt,n − xn‖2 � µt,

n→∞ n→∞ 2
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whereµ > 0 is a constant such thatµ � 2‖zt,n − xn‖2 for all n � 1 andt ∈ (0,1). Hence

lim sup
t→0

lim sup
n→∞

〈
u − zt,n, J (xn − zt,n)

〉
� 0. (4.19)

Furthermore, noticing the fact that the duality mapJ is uniformly continuous on
bounded sets and the uniform convergence of{zt,n} to Q(u) (Lemma 4.3), we can in
terchange the two limits above and deduce that

lim sup
n→∞

〈
u − z, J (xn − z)

〉
� 0, (4.20)

wherez = limt→0 zt,n = Q(u).

Finally to prove thatxn → z strongly, we write

xn+1 − z = αn(u − z) + (1− αn)(Jrnxn − z).

Apply Lemma 2.2 to get

‖xn+1 − z‖2 � (1− αn)
2‖Jrnxn − z‖2 + 2αn

〈
u − z, J (xn+1 − z)

〉
� (1− αn)‖xn − z‖2 + 2αn

〈
u − z, J (xn+1 − z)

〉
.

By Lemma 2.1 and (4.20), we see thatxn → z. �
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