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Abstract

We define the Hardy–Littlewood maximal function of τ -measurable operators and obtain weak (1,1)-
type and (p,p)-type inequalities for the Hardy–Littlewood maximal function.
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0. Introduction

Nelson [2] defined the measure topology of τ -measurable operators affiliated with a semi-
finite von Neumann algebra. Fack and Kosaki [1] studied generalized s-numbers of τ -measurable
operators, proved dominated convergence theorems for a gage and convexity (or concavity) in-
equalities.

We will study the Hardy–Littlewood maximal function of a τ -measurable operator T . More
precisely, let M be a semi-finite von Neumann algebra with a normal faithful semi-finite trace τ .
For an operator T in M, the Hardy–Littlewood maximal function of T is defined by

MT (x) = sup
r>0

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |)).
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Classically Mf (x) is defined as

Mf (x) = sup
r>0

1

m([x − r, x + r])
∫

[x−r,x+r]

∣∣f (t)
∣∣dt,

for the case f : R → R and m a Lebesgue measure on (−∞,+∞) (cf. [3]). A natural general-
ization of this is the case f : R → R and μ a Borel measure on (−∞,+∞) where

Mμf (x) = sup
r>0

1

μ([x − r, x + r])
∫

[x−r,x+r]

∣∣f (t)
∣∣dμ(t).

Let μ(A) = τ(EA(|T |)), where A is a Borel subset of (−∞,+∞). Then μ is a Borel measure
and

MT (x) = sup
r>0

1

μ([x − r, x + r])
∫

[x−r,x+r]
t dμ(t),

i.e., MT (x) is the Hardy–Littlewood maximal function Mμf (x) of f : R → R defined by

f (t) =
{

tχσ(|T |)(t), t ∈ σ(|T |),
0, t /∈ σ(|T |),

with respect to μ.
Via spectral theory |T | is represented as

f (t) =
{

tχσ(|T |)(t), t ∈ σ(|T |),
0, t /∈ σ(|T |),

and MT (|T |) is represented as MT (x). Then for T , we consider MT (|T |) as the operator ana-
logue of the Hardy–Littlewood maximal function in the classical case. We will give some results
similar to the classical case. Hence roughly speaking, MT (|T |) stands in relation to T as Mf (x)

stands in relation to f in classical analysis.
Section 1 consists of some preliminaries. In Section 2, we give some properties of the Hardy–

Littlewood maximal function of τ -measurable operators. In Section 3, we prove weak (1,1)-type
and (p,p)-type inequalities for the Hardy–Littlewood maximal function.

1. Preliminaries

Throughout this paper, we denote by M a semi-finite von Neumann algebra on the Hilbert
space H with a normal faithful semi-finite trace τ . The closed densely defined linear operator T

in H with domain D(T ) is said to be affiliated with M if and only if U∗T U = T for all unitary
operators U which belong to the commutant M′ of M. If T is affiliated with M, then T is said
to be τ -measurable if for every ε > 0 there exists a projection P ∈ M such that P(H) � D(T )

and τ(P ⊥) < ε (where for any projection P we let P ⊥ = 1 − P ). The set of all τ -measurable
operators will be denoted by M. The set M is a ∗-algebra with sum and product being the
respective closure of the algebraic sum and product. For a positive self-adjoint operator T =∫ ∞

0 λdEλ affiliated with M, we set

τ(T ) = sup
n

τ

( n∫
λdEλ

)
=

∞∫
λτ(Eλ).
0 0
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For 0 < p < ∞, Lp(M; τ) is defined as the set of all τ -measurable operators T affiliated with
M such that

‖T ‖p = τ
(|T |p)1/p

< ∞.

In addition, we put L∞(M; τ) = M and denote by ‖·‖∞ (= ‖·‖), the usual operator norm. It is
well known that Lp(M; τ) is a Banach space under ‖·‖p (1 � p � ∞) satisfying all the expected
properties such as duality.

For a positive operator T , let E(t,∞)(T ) be the spectral projection of T corresponding to the
interval (t,∞). We state for easy reference the following fact that will be applied below.

Theorem A (Besicovitch). Let F be a bounded subset of [0,∞) and suppose to each x ∈ F we
associate a number r(x) > 0. Then we can take a sequence of intervals {[xk − r(xk), xk + r(xk)]}
such that

F ⊂
⋃
k

[
xk − r(xk), xk + r(xk)

]
(1)

and ∑
k

χ[xk−r(xk),xk+r(xk)] � 4, ∀x ∈ [0,∞). (2)

2. Maximal function

Let Lloc(M; τ) be the set of all τ -measurable operators such that

τ
(|T |EI

(|T |)) < +∞,

for all bounded intervals I ∈ [0,+∞).

Definition 1. For T ∈ Lloc(M; τ), we define the maximal function of T by

MT (x) = sup
r>0

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |))
(let 0

0 = 0). M is called the Hardy–Littlewood maximal operator.

The maximal function of a τ -measurable operator has the following property.

Lemma 1. Let T ∈ Lloc(M; τ).

(i) If the map: t ∈ [0,∞) → E(t,∞)(|T |) is strongly continuous, then MT (x) is a lower semi-
continuous function on [0,∞).

(ii) For all T ∈ L∞(M; τ), we have∥∥MT
(|T |)∥∥∞ � ‖T ‖∞. (3)

Proof. (i) It needs to be proved that

FMT (t) = {
x ∈ [0,∞): MT (x) > t

}
, ∀t > 0,
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is an open set. In other words, if {xk} is a sequence in [0,∞)\FMT (t), converging to x, then
x ∈ [0,∞)\FMT (t), i.e., for all r > 0 with E[x−r,x+r](|T |) �= 0, we have

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |)) � t. (4)

Let

Tk = |T |E[xk−r,xk+r]Δ[x−r,x+r]
(|T |),

where

[xk − r, xk + r]Δ[x − r, x + r] = ([xk − r, xk + r]\[x − r, x + r])
∪ ([x − r, x + r]\[xk − r, xk + r])

and k = 1,2,3, . . . . It is clear that

Tk � λE[xk−r,xk+r]Δ[x−r,x+r], (5)

for some λ > 0 and all k.
(a) If τ is finite, we use σ -strong continuity of the trace and the fact that the strong and

σ -strong topologies agree on the unit ball of M, to obtain the continuity of

[0,∞) → [0,∞) : s → τ
(
E(s,∞)

(|T |)).
By (5) and the previous continuity, we get

lim
k→∞

1

τ(E[x−r,x+r](|T |))τ
(|Tk|E[x−r,x+r]

(|T |)) = 0,

lim
k→∞ τ

(
E[xk−r,xk+r]

(|T |)) = τ
(
E[x−r,x+r]

(|T |)).
Hence, for δ > 0, there exists k0 such that

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[xk−r,xk+r]

(|T |))
= τ(E[xk−r,xk+r](|T |))

τ (E[x−r,x+r](|T |))
1

τ(E[xk−r,xk+r](|T |))τ
(|T |E[xk−r,xk+r]

(|T |))
� τ(E[xk−r,xk+r](|T |))

τ (E[x−r,x+r](|T |)) t < t + δ, ∀k � k0.

Thus for k � k0, we have

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |))
� 1

τ(E[x−r,x+r](|T |))τ
(|T |E[xk−r,xk+r]Δ[x−r,x+r]

(|T |))
+ 1

τ(E[x−r,x+r](|T |)) τ
(|T |E[xk−r,xk+r]

(|T |))
� 1

τ(E[x−r,x+r](|T |))τ
(|Tk|E[x−r,x+r]

(|T |)) + t + δ.

Letting k → ∞, δ → 0, one obtains that

1
τ
(|T |E[x−r,x+r]

(|T |)) � t.

τ(E[x−r,x+r](|T |))
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(b) In the general case, for T ∈ Lloc(M; τ), for any ε > 0 and any bounded interval I ⊂
[ε,∞), we have that

ετ
(
EI

(|T |)) � τ
(|T |EI

(|T |)) < ∞.

On the other hand, we may assume τ(E[x−r,x+r](|T |)) < ∞ (since otherwise the inequality (4)
automatically holds). Hence τ(E[x−r−ε0,x+r+ε0](|T |)) < ∞ for ε0 > 0 small enough. Since
xk → x (k → ∞), for the above ε0 > 0 there exists an integer K > 0 such that

[xk − r, xk + r] ∪ [x − r, x + r] ⊂ [x − r − ε0, x + r + ε0], k � K.

Without loss of generality we can replace M by

E[x−r−ε0,x+r+ε0]
(|T |)ME[x−r−ε0,x+r+ε0]

(|T |).
Hence, by the case (a), we obtain (4).

(ii) From

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |)) � ‖T ‖∞,

we get MT (x) � ‖T ‖∞. Hence (3) follows from

(
MT

(|T |)y, y
) =

∫
σ(|T |)

MT (t) d
(
Et

(|T |)y, y
)
�

∫
σ(|T |)

‖T ‖∞ d
(
Et

(|T |)y, y
)

= ‖T ‖∞
∫

σ(|T |)
d
(
Et

(|T |)y, y
) = ‖T ‖∞(y, y), ∀y ∈ D(T ). �

3. Inequalities of the Hardy–Littlewood maximal function

For a τ -measurable operator T and a positive function f , we define

Ff (t) = {
x ∈ [0,∞): f (x) > t

}
and

f∗
(|T |)(t) = τ

(
EFf (t)

(|T |)).
Lemma 2. Let T be a τ -measurable operator and f be a positive function on [0,∞).

(i) f∗(|T |) is non-increasing on [0,∞).
(ii) If f (|T |) ∈ Lp(M; τ), 1 < p < ∞, then

lim
t→∞ tpf∗

(|T |)(t) = lim
t→0

tpf∗
(|T |)(t) = 0. (6)

(iii) If
∫ ∞

0 tp−1f∗(|T |)(t) dt < ∞, then

lim
t→∞ tpf∗

(|T |)(t) = lim
t→0

tpf∗
(|T |)(t) = 0. (7)

Proof. (i) Follows immediately from the definition of f∗(|T |).
(ii) From

tpf∗(t)
(|T |) � τ

(
EFf (t)

(|T |)f (|T |)p)
� τ

(
f

(|T |)p)
,
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we get f∗(|T |)(t) = τ(EFf (t)(|T |)) → 0 (t → ∞). Hence, we obtain that

lim
t→∞ τ

(
EFf (t)

(|T |)f (|T |)p) = 0,

so that

tpf∗
(|T |)(t) → 0 (t → ∞).

Fix δ > 0. Then for t < δ, we have

lim
t→0

tpf∗
(|T |)(t) = lim

t→0
tp

(
f∗

(|T |)(t) − f∗
(|T |)(δ))

= lim
t→0

tpτ
(
E{x∈[0,∞): δ�f (x)>t}

(|T |))
� τ

(
E{x∈[0,∞): δ�f (x)>0}

(|T |)f (|T |)p)
.

Letting δ → 0, we obtain

tpf∗
(|T |)(t) → 0 (t → 0).

(iii) Follows immediately from the following fact:

p

t∫
t/2

sp−1f∗
(|T |)(s) ds � p

t∫
t/2

sp−1f∗
(|T |)(t) ds = f∗

(|T |)(t)(tp −
(

t

2

)p)

= f∗
(|T |)(t)tp(

1 − 2−p
)
. �

Lemma 3. Let 1 < p < ∞.

(i) If for t > 0, we have f∗(|T |)(t) < ∞, then

τ
(
f

(|T |)p) = −
+∞∫
0

tp df∗
(|T |)(t). (8)

(ii) If T is a measurable operator, then

τ
(
f

(|T |)p) = p

+∞∫
0

tp−1f∗
(|T |)(t) dt. (9)

Proof. (i) Let

0 < ε < 2ε < · · · < nε < · · ·
and

Ej = E{x∈[0,∞): jε�f (x)>(j−1)ε}
(|T |), j = 1,2, . . . .

Then we get

τ
(
f

(|T |)p) =
+∞∫

f (t)p dτ
(
Et

(|T |))

0
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= lim
ε→0

+∞∑
j=1

(
(j − 1)ε

)p
τ(Ej )

= − lim
ε→0

+∞∑
j=1

(
(j − 1)ε

)p[
f∗

(|T |)(jε) − f∗
(|T |)((j − 1)ε

)]

= −
+∞∫
0

tp df∗
(|T |)(t).

(ii) If two sides of (9) are infinity, then the result follows. Let one side of (9) be finite. Then
by Lemma 2 we have f∗(|T |)(t) < ∞, ∀t > 0. Therefore (8) holds. On the other hand, by (6),
(7), we get

−
+∞∫
0

tp df∗
(|T |)(t) = p

+∞∫
0

tp−1f∗
(|T |)(t) dt − tpf∗

(|T |)(t)∣∣∞0

= p

+∞∫
0

tp−1f∗
(|T |)(t) dt.

Thus we obtain (9). �
Theorem 1. For all t > 0 and T ∈ L1(M; τ), we have

τ
(
E{x∈[0,∞): MT (x)>t}

(|T |)) � 4

t
‖T ‖1.

Proof. Let

FMT (t) = {
x ∈ [0,∞): MT (x) > t

}
.

Then from the definition of MT (x), for every x ∈ FMT (t), there is a r(x) > 0, such that

1

τ(E[x−r(x),x+r(x)](|T |)) τ
(|T |E[x−r(x),x+r(x)]

(|T |)) > t. (10)

Take

Fn = FMT (t) ∩ [0, n], n = 1,2,3, . . . .

We apply Theorem A to Fn, to obtain a sequence of intervals {[xk − r(xk), xk + r(xk)]} such that

Fn ⊂
⋃
k

[
xk − r(xk), xk + r(xk)

]
and

∑
k

χ[xk−r(xk),xk+r(xk)] � 4.

Notice that every [xk − r(xk), xk + r(xk)] satisfies (10), so

τ
(
EFn

(|T |)) � τ
(
E⋃

k[xk−r(xk),xk+r(xk)]
(|T |))

�
∑

k

τ
(
E[xk−r(xk),xk+r(xk)]

(|T |))

�
∑ 1

t
τ
(|T |E[xk−r(xk),xk+r(xk)]

(|T |))

k
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= 1

t

∑
k

τ
(|T |E[xk−r(xk),xk+r(xk)]

(|T |))

= 1

t

∑
k

τ

( ∞∫
0

sχ[xk−r(xk),xk+r(xk)] dEs

(|T |)
)

= 1

t
τ

( ∞∫
0

s
∑

k

χ[xk−r(xk),xk+r(xk)] dEs

(|T |)
)

� 4

t
τ

( ∞∫
0

s dEs

(|T |)
)

= 4

t
τ
(|T |) = 4

t
‖T ‖1,

i.e.,

τ
(
EFn

(|T |)) � 4

t
‖T ‖1.

On the other hand, we have

F1 ⊂ F2 ⊂ · · · ⊂ Fn · · · and FMT (t) ⊂
∞⋃

n=1

Fn.

Hence, we get

τ
(
EFMT (t)

(|T |)) = lim
n→∞ τ

(
EFn

(|T |)) � 4

t
‖T ‖1. �

Lemma 4. Let T ∈ Lloc(M; τ). Then

τ
(
EFMT (t)

(|T |)) � 8

t
τ
(|T |E( t

2 ,+∞)

(|T |)), ∀t > 0. (11)

Proof. We set

T1 = T E[0, t
2 ]

(|T |), T2 = T − T1.

Then since

1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |))
� 1

τ(E[x−r,x+r](|T |))τ
(|T |E[0, t

2 ]E[x−r,x+r]
(|T |))

+ 1

τ(E[x−r,x+r](|T |)) τ
(|T |E( t

2 ,+∞)E[x−r,x+r]
(|T |))

� 1

τ(E[x−r,x+r](|T |))τ
(|T1|E[x−r,x+r]

(|T |))
+ 1

τ(E[x−r,x+r](|T |)) τ
(|T2|E[x−r,x+r]

(|T |)),
it follows that

MT (x) � MT1(x) + MT2(x) � MT2(x) + t
.

2
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Hence,

τ
(
EFMT (t)

(|T |)) � τ
(
E{x∈[0,∞): MT2(x)> t

2 }
(|T |))

� 8

t
‖T2‖1 = 8

t
τ
(|T2|

) = 8

t
τ
(|T |E( t

2 ,+∞)

(|T |)). �
Theorem 2. Let 1 < p < ∞. Then there is a constant C = C(p) > 0 such that∥∥MT

(|T |)∥∥
p

� C‖T ‖p, ∀T ∈ Lp(M; τ). (12)

Proof. For MT (x) we use Lemmas 3 and 4 to obtain that

∥∥MT
(|T |)∥∥p

p
= τ

(
MT

(|T |)p) = τ

( ∞∫
0

MT (s)pd
(
Es

(|T |))
)

=
∞∫

0

MT (s)p dτ
(
Es

(|T |))

= p

∞∫
0

tp−1τ
(
EFMT (t)

(|T |))dt

� 8p

∞∫
0

tp−2τ
(|T |E( t

2 ,+∞)

(|T |))dt

= 8p

∞∫
0

tp−2

[ ∞∫
0

sχ( t
2 ,+∞) dτ

(
Es

(|T |))
]

dt

= 8p

∞∫
0

s

[ 2s∫
0

tp−2 dt

]
dτ

(
Es

(|T |))

= 8

(
2p−1 p

p − 1

) ∞∫
0

sp dτ
(
Es

(|T |))

= 8

(
2p−1 p

p − 1

)
‖T ‖p

p. �
Theorem 3. For T ∈ Lloc(M; τ), r > 0 define

LrT (x) = 1

τ(E[x−r,x+r](|T |)) τ
(|T |E[x−r,x+r]

(|T |))
(let 0

0 = 0). Then we have

(i) lim
r→0

LrT (x) = xχσ(|T |)(x),

(ii) |T | � MT
(|T |).
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Proof. If x ∈ σ(|T |), then for all r > 0, we have E[x−r,x+r](|T |) �= 0. So from

τ
(|T |E[x−r,x+r]

(|T |)) =
x+r∫

x−r

s dτ
(
Es

(|T |)),
we obtain

x − r � 1

τ(E[x−r,x+r](|T |))τ
(|T |E[x−r,x+r]

(|T |)) � x + r.

Hence,

lim
r→0

LrT (x) = x.

If x /∈ σ(|T |), then for enough small r > 0, we have E[x−r,x+r](|T |) = 0, so that

lim
r→0

LrT (x) = 0.

(ii) It follows from

(|T |x, x
) =

∫
σ(|T |)

t d
(
Et

(|T |)x, x
)

� lim inf
r→0

∫
σ(|T |)

LrT (t) d
(
Et

(|T |)x, x
)

�
∫

σ(|T |)
MT (t) d

(
Et

(|T |)x, x
)

= (
MT

(|T |)x, x
)
, ∀x ∈ D(T ). �
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