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Abstract

We define the Hardy-Littlewood maximal function of t-measurable operators and obtain weak (1, 1)-
type and (p, p)-type inequalities for the Hardy—Littlewood maximal function.
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0. Introduction

Nelson [2] defined the measure topology of t-measurable operators affiliated with a semi-
finite von Neumann algebra. Fack and Kosaki [1] studied generalized s-numbers of t-measurable
operators, proved dominated convergence theorems for a gage and convexity (or concavity) in-
equalities.

We will study the Hardy—Littlewood maximal function of a T-measurable operator 7. More
precisely, let M be a semi-finite von Neumann algebra with a normal faithful semi-finite trace 7.
For an operator 7' in M, the Hardy-Littlewood maximal function of T is defined by

MT (x) =sup T
r>0 I(E[x—r,x+r](|T|))

(|T|E[x7r,x+r](|T|))'
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Classically M f(x) is defined as

1
MPG) =sup——— / f@oldr,
rsom(x —r,x+r]) ‘ ‘
[x—r,x+r]
for the case f:R — R and m a Lebesgue measure on (—oo, +00) (cf. [3]). A natural general-
ization of this is the case f:R — R and u a Borel measure on (—o0, +00) where

1
S T ) / NOlduto
X—r,x+r

Let w(A) =t(EA(|T])), where A is a Borel subset of (—oo, +00). Then u is a Borel measure
and

1
MIC) = —rx 47D / rdp(@).

[x—rx+r]

i.e., MT (x) is the Hardy-Littlewood maximal function M, f(x) of f:R — R defined by

tXU(|T|)(t), teo—(lTD’
0, t¢o(T)),

with respect to .
Via spectral theory |T| is represented as

| txeqrp(®), tea(T),
1= {o, t¢a(T)),

and MT (|T]) is represented as M T (x). Then for T, we consider M T (|T|) as the operator ana-
logue of the Hardy—Littlewood maximal function in the classical case. We will give some results
similar to the classical case. Hence roughly speaking, M T (|T|) stands in relation to T as M f (x)
stands in relation to f in classical analysis.

Section 1 consists of some preliminaries. In Section 2, we give some properties of the Hardy—
Littlewood maximal function of r-measurable operators. In Section 3, we prove weak (1, 1)-type
and (p, p)-type inequalities for the Hardy—Littlewood maximal function.

f(t)={

1. Preliminaries

Throughout this paper, we denote by M a semi-finite von Neumann algebra on the Hilbert
space ‘H with a normal faithful semi-finite trace . The closed densely defined linear operator T
in H with domain D(T') is said to be affiliated with M if and only if U*TU = T for all unitary
operators U which belong to the commutant M’ of M. If T is affiliated with M, then T is said
to be t-measurable if for every ¢ > 0 there exists a projection P € M such that P(H) & D(T)
and 7(PL) < & (where for any projection P we let P =1— P). The set of all r-measurable
operators will be denoted by M. The set M is a x-algebra with sum and product being the
respective closure of the algebraic sum and product. For a positive self-adjoint operator 7 =
Jo~ AdE; affiliated with M, we set

n o0

r(T):supr(/kdE;) =/AI(E;L).

0 0
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For 0 < p < 0o, LP(M, 1) is defined as the set of all T-measurable operators 7T affiliated with
M such that

171, =7(1T1”)"" < oc.

In addition, we put L*°(M; ) = M and denote by ||-||cc (= |I-]|), the usual operator norm. It is
well known that L” (M 7) is a Banach space under ||-|| , (1 < p < 00) satisfying all the expected
properties such as duality.

For a positive operator T', let E «)(T) be the spectral projection of T corresponding to the
interval (¢, 00). We state for easy reference the following fact that will be applied below.

Theorem A (Besicovitch). Let F be a bounded subset of [0, 00) and suppose to each x € F we
associate a number r(x) > 0. Then we can take a sequence of intervals {[xy —r(xx), xx +7r(xx)]}
such that

F |l = oo, xi+ra)] )
k
and
Z Xl —r () xp+r ()] S 4, Vx €[0,00). 2)

k

2. Maximal function

Let Lioc(M; 7) be the set of all T-measurable operators such that
t(ITIE(IT1)) < +oo0,

for all bounded intervals I € [0, +00).
Definition 1. For T € L1, (M; t), we define the maximal function of 7' by

MT (x) =sup T
r>0 T(E[x—r,x+r](|T|))

(IT1Epx—rx4n(IT1))
(let 2 =0). M is called the Hardy-Littlewood maximal operator.

The maximal function of a T-measurable operator has the following property.
Lemma 1. Let T € Ligc.(M; T).

(1) If the map: t € [0,00) = E¢.00)(IT|) is strongly continuous, then MT (x) is a lower semi-
continuous function on [0, 00).
(ii) Forall T € L*®°(M; 1), we have

|MT (7)) <IT lloo- 3)

o
Proof. (i) It needs to be proved that

Fur(t)={x €[0,00): MT(x)>t}, Vt>0,
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is an open set. In other words, if {x;} is a sequence in [0, 0c0)\ Fy 7 (2), converging to x, then
x €[0,00)\Fyr(t),ie., forall r > 0 with E[y_, x4+-(|T]) # 0, we have

1
T(E[xfr,x+r](|T|))

T(ITIE—rxn(IT1)) <1 “)
Let

Tie = |T| Epy—ron+r atx—ra+r1 (IT1)
where

[xk —r,xx +r]Alx —r,x +r] = ([xk —rxg+r\[x—r,x+ r])

U ([x —r,x +r\[xg —r, xp + r])

and k=1,2,3,....Itis clear that

Tk < AE[x—rxp+r1 Al —r,x+r]> %)

for some A > 0 and all k.
(a) If 7 is finite, we use o-strong continuity of the trace and the fact that the strong and
o -strong topologies agree on the unit ball of M, to obtain the continuity of

[0, 00) = [0, 00) : 5 = T(E(5,00)(IT1))-
By (5) and the previous continuity, we get

1
lim T(|Tk| Ex—r, 7)) =0,
k»oor(E[x_r,x+r](|T|)>( st (IT1)

k]l>rrolo T(E[xk—r,xk+r] (|T|)) =T (E[x—r,x+r] (|T|))

Hence, for § > 0, there exists ko such that

T|\E[x,— T
T reany U Ets=rsesn (IT1)

_ 1By (TD) ! .
T(E[xfr,x+r](|T|)) T(E[xkfr,xk+r](|T|))
< T(E[xkfr,xk+r](|T|))
T(Epx—rx+r1(T1)
Thus for k > ko, we have
1
T(E[xfr,x+r](|T|))

(IT1Epg—r 1 (IT1))

t<t+38, YkZ=ko.

T(|T|E[x—r,x+r] (|T|))

S TUTEpy—rx+r1ate—rx+r1 (T
h T(Ex—rx+r1(T1])) ( [k —rxe+r]Alx—r.x r]( ))

+ 1 -c(|T|E (|T|))
T(Epe—r e (IT]) L=l

t(I1Tk| Epx—r,xr1 (IT1)) +1 +38.

<
T(Epx—rx+1UT1)
Letting k — 0o, § — 0, one obtains that
1
T
T(E[x—r,x+r](|T|))

(|T|E[x—r,x+r] (|T|)) <t
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(b) In the general case, for T € Lioc.(M; t), for any ¢ > 0 and any bounded interval I C
[e, 00), we have that

et(Er(IT1)) < t(IT1E;(1T1)) < oo.

On the other hand, we may assume t(E[x— x+-](|T|)) < 0o (since otherwise the inequality (4)
automatically holds). Hence 7(Ex_;—gq x4r+¢01(IT])) < 0o for g9 > 0 small enough. Since
x; — x (k — 00), for the above gy > 0 there exists an integer K > 0 such that

[xk —roxk+r]Ux —r,x+r]Clx —r—eo,x+r+el, k=K.
Without loss of generality we can replace M by
E[x—r—ao,x+r+£0](lT|)ME[x—r—80,x+r+80](|T|)-

Hence, by the case (a), we obtain (4).
(ii) From

t(ITIEp—rar(IT1)) < I oo,
T(Epr—rxsr(ITD) (71 B (ITD) < 1Tl

we get MT (x) < ||T |00 Hence (3) follows from
(MT(IT1)y,y) = / MTt)d(E/(IT1)y,y) < / IT oo d(E:(IT1)y, )
o(IT|) o(IT))

=T loo / d(E(IT1)y,y) =T lloc(y,¥), VyeD(T). O
a(IT))

3. Inequalities of the Hardy-Littlewood maximal function

For a t-measurable operator 7 and a positive function f, we define
Fr(1) ={x €[0,00): f(x)>1}

and
£(TN) O =1(EF, ) (IT1))-

Lemma 2. Let T be a t-measurable operator and f be a positive function on [0, 00).

(1) f«(T)) is non-increasing on [0, 00).
G) If f(T)) e LP(M; 1), 1 < p < 00, then

Jim o2 £ (1T1) (1) = lim 17 £ (1T1) (1) = 0. (©6)
(i) If [~ 1P~ f(IT (1) dt < 00, then

Jim o7 £ (1T1) (1) = lim 17 £ (1T1) (1) = 0. )
Proof. (i) Follows immediately from the definition of f.(|T|).

(i1) From

? f(IT1) <t(Er, o (IT1) £(T1)7) < (£(T1)P),
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we get fi(|IT1)(t) = T(EF;0)(IT])) = 0 (t — o0). Hence, we obtain that
lim o (Er, o) (IT1)£(IT1)7) =0,

so that
t? f(IT) () >0 (1 — 00).

Fix § > 0. Then for ¢t < §, we have
rlig(l)lpf*(ITl)(t) =t1i33)t”(f*(|T|)(t) — £:(IT1)(©®)

= lim tpr(E{xe[o,oo): 6>f(X)>t}(|T|))
t—0

< T(Egxeo,00n 53 £=01(IT1) £ (IT1)").-
Letting § — 0, we obtain
t? £ (IT)) @) -0 (t— 0).
(iii) Follows immediately from the following fact:
: : p
p/sp_‘f*(lTl)(s)ds > p/sf"lf*(lTl)(t)ds = f*(ITI)(t)<t” — (%) )
t/2 t/2

= f(IT) @17 (1 =27P). |
Lemma 3. Let 1 < p < o0.

(1) Iffort >0, we have f(|T|)(t) < oo, then

+00
(7)) == [ arqrie. ®)
0
(i) If T is a measurable operator, then

+00

r(f(ITI)p)Zp/t”‘lf*(ITl)(t)dt- ©)

0

Proof. (i) Let
O<e<2e<---<ne<---

and

Ej = Eixel0.00y je>f>G-ve)(IT1),  J=12,....
Then we get

mmmﬂ=fﬂmmwﬂm)
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+o0
= lim i —De) r(E;
HO_X;(U e) "t (E;)
j=

= —mf(u = Do) [£(T1)Ge) = £(T1)(G = De)]

+00
_ / 2 df(IT1) ).
0

(i) If two sides of (9) are infinity, then the result follows. Let one side of (9) be finite. Then
by Lemma 2 we have f,(|T])(¢) < oo, YVt > 0. Therefore (8) holds. On the other hand, by (6),
(7), we get

+00 +00
—ft”df*(lTl)(t)=p/t”‘lf*(ITI)(t)dt—t”f*(ITI)(t)|8°
0 0
+00
=p/tp71f*(|T|)(t)dt~
0

Thus we obtain (9). O
Theorem 1. For all t > 0 and T € LY (M; 1), we have
4
T(Efxef0,00): MT )= (1T1)) < ?||T||1~

Proof. Let
Fur(t) ={x €[0,00): MT(x) > t}.
Then from the definition of M T (x), for every x € Fyr(t), there is a r(x) > 0, such that
1

T
T(Ex—r@)x+r1UT])
Take

F,=Fyr®)N[0,n], n=1,2,3,....

(IT1Epe—r (o, xren (IT1)) > 1. (10)

We apply Theorem A to F,,, to obtain a sequence of intervals {[x; — r(xx), xx + 7 (xx)]} such that

Foc s —rGn), s+ )] and ) Xig—ra) ot <4
k k

Notice that every [xx — r(xx), xx + r(xx)] satisfies (10), so

T(EF,(IT1) < T (EU i —rootraon (1T1))

Z T(Ep—rw.n+r ol (IT1))
k
k

<
33

~ | =

T(|T|E[xk7r(xk),xk+r(xk)] (| Tl))
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1
= > o (IT) Eg—rie xetreson (1T1))
k

[e.e]

~ | —_

8 X —r (o), e+ ()] dEs(|T|)>

-5

—

0

o0
1
=T (/s X —r (x) x4+ ()1 4 Es (|T|)>
0
oo
4 4
<t sdEs(IT)) r(|T|)=;IIT||1,
0

ie.,

T(Epn(|T|))<§||T||1.

On the other hand, we have

o0
FiCF,C--CFy--- and Fyr() | F.

n=1

Hence, we get

_ 4
“(Eryro(IT1) = lim «(E5 (IT) < ZITH. O

Lemmad. Let T € Lioc(M; 1). Then
8
(EFMT(f)(|T|)) _T(|T|E( +oo)(|T|)) Vi >0.

Proof. We set
T =TEqy(Tl), T=T-T.

Then since
1

T(Ep—rx+r1(IT1)

T(|T|E[x7r,x+r] (|T|))

< t(ITIEg 11 Epe—roer (1T
T(Ex—rx+r1(T1)) ( [0, 5] = lx—rx ’]( ))

o(|T|E Epv—rxarn(IT
+‘L'(E[x_r’x+r](|T|)) (| | (5, +o0) Elx ,x+](| |))

< ! t(ITiE (IT1))
S T(Eprain (T VT

ey (TS
'C(E[x—r,x+r](|T|)) 2| E[x—r,x+r] ,

it follows that
MT (x) < MT(x) + MT(x) < MTz(x)+§

(1)
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Hence,

T(Eryr o (IT1) < T(Efrefo.00: M- 1) (IT1))

8 8 8
<;|IT2II1=;T(ITzl)=;T(IT|E(%,+OO)(|T|))- 0

Theorem 2. Let 1 < p < oo. Then there is a constant C = C(p) > 0 such that
”MT(|T|)HP <C|Tllp, VT eLP(M;7).

Proof. For MT (x) we use Lemmas 3 and 4 to obtain that

||MT(|T|)||§ =t(MT(IT))") = t(/MT(s)pd(Es(|T|))>
:/MT(s)pdr(Es(|T|))

o0
—p [ e(Ergro (1) d
0

e ¢]

< 8p/t”_zr(lTlE(%’+oo)(|T|))dt

0

(0.¢] o0
Sp/tﬂ—2|:/SX(§’+oo)dr(Es(|T|)):| di

0 0

S

spfs[/zzp—zdt} dt(E(IT1))

o0
8<2” ! )/spdt (IT1))
0

—8(2” lp )||T||p O

Theorem 3. For T € Lioc (M 1), r > 0 define

/

L. T(x)= ! t(ITIE (IT1))
T T B (TD) Lot

(let % =0). Then we have

€3] rli_r)r(l)LrT(X)=xxn(\T\)(X),
(i) |TI<MT(|T]).

95

(12)
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Proof. If x € o (|T]), then for all r > 0, we have E[x_, x4+,](IT]) # 0. So from

Xt
(1B rn(IT)) = [ sax(E(T1).
o
we obtain
*ors r(E[x_r,j+r](|T|>)’('T'E“"’”’]('T')) sr
Hence,

lim L, T(x) =x.
r—0
If x ¢ o (|T]), then for enough small r > 0, we have E[x_, x4+,(IT]) =0, so that
lim L, T(x)=0.
r—0
(i) It follows from
(IT]x.x) = / td(E,(1T)x. x)
a(IT])

<1iminf/ L, T@)d(E(IT])x,x)

r—0
a(IT)

< / MT(t)d(E,(IT1)x, x)
o (1))
=(MT(IT|)x,x), VxeD(T). O
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