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Abstract

Let T be a bounded linear operator acting on a Banach space X such that T or its adjoint T ∗ has the
single-valued extension property. We prove that the spectral mapping theorem holds for the B-Weyl spec-
trum, and we show that generalized Browder’s theorem holds for f (T ) for every analytic function f defined
on an open neighborhood U of σ(T ). Moreover, we give necessary and sufficient conditions for such T to
satisfy generalized Weyl’s theorem. Some applications are also given.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this note, X denotes an infinite dimensional complex Banach space and L(X)

denotes the algebra of all bounded linear operators on X. For an operator T ∈ L(X), write T ∗,
σ(T ), ρ(T ), σp(T ), isoσ(T ) and accσ(T ) for the adjoint, spectrum, resolvent set, point spec-
trum of T , isolated points and accumulation points of σ(T ), respectively. By α(T ) and β(T ) we
denote the dimension of the Kernel N(T ) and the codimension of the range R(T ), respectively.
If both α(T ) and β(T ) are finite, then T is called a Fredholm operator and the index of T is
defined by

ind(T ) = α(T ) − β(T ).
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A bounded linear operator T ∈ L(X) is said to be a Weyl operator if it is Fredholm of index 0.
Recall that the ascent p := p(T ) of an operator T is the smallest nonnegative integer p such that
N(T p) = N(T p+1). If such integer does not exist we put p(T ) = ∞. Analogously, the descent
q := q(T ) of an operator T is the smallest nonnegative integer q such that R(T q) = R(T q+1),
and if such integer does not exist we put q(T ) = ∞. It is well known that if p(T ) and q(T )

are both finite then p(T ) = q(T ), see [15, Proposition 38.3]. T ∈ L(X) is said to be a Browder
operator if T is Fredholm with p(T ) = q(T ) < ∞. Note that if T is Browder then T is Weyl,
see [15, Proposition 38.5]. We shall henceforth abbreviate T − λI to T − λ. The Weyl spectrum
σw(T ) and the Browder spectrum σb(T ) are defined by (see [14])

σw(T ) := {λ ∈ C: T − λ is not Weyl}
and

σb(T ) := {λ ∈ C: T − λ is not Browder}.
For a bounded linear operator T and a nonnegative integer n define Tn to be the restriction of

T to R(T n) viewed as a map from R(T n) into R(T n) (in particular T0 = T ). If for some integer
n the range space R(T n) is closed and Tn is a Fredholm operator then T is called a B-Fredholm
operator. The class of B-Fredholm operators contains the class of Fredholm operators as a proper
subclass [4]. Let T be a B-Fredholm operator and let n be any integer such that Tn is a Fredholm
operator. Then Tm is a Fredholm operator and ind(Tn) = ind(Tm) for each m � n. The index
of T , ind(T ), is defined to be the index of the Fredholm operator Tn, see [4, Definition 2.3]. If T

is a B-Fredholm operator of index 0, then T is called a B-Weyl operator. The B-Weyl spectrum
σBW(T ) of T is defined by (see [5])

σBW(T ) = {λ ∈ C: T − λ is not B-Weyl operator}.
We write ρBW(T ) := C \ σBW(T ) for the resolvent B-Weyl set.

In [4, Theorem 2.7] it is proved that T is B-Fredholm if and only if there exists two closed
T-invariant subspaces M and N of X such that X = M ⊕ N and T |M is a Fredholm operator
and T |N is a nilpotent operator. The proof is based on the decomposition of quasi-Fredholm
operators of Labrousse [18] which was proved only for Hilbert-spaces operators. This gap was
subsequently filled by Müller in [26, Theorem 7].

The classical Weyl’s theorem initiated by Hermann Weyl in [29], asserts that if T is a self-
adjoint operator acting on Hilbert space, then we have σw(T ) = σ(T ) \ E0(T ), where E0(T ) is
the set of isolated eigenvalues of finite multiplicity of T . Note that T ∈ L(X) satisfies Weyl’s
theorem if

σw(T ) = σ(T ) \ E0(T ).

Analogously T satisfies Browder’s theorem if

σw(T ) = σ(T ) \ π0(T ),

where π0(T ) is the set of poles of the resolvent of T of finite rank. A generalization of these
two notions to the class of B-Fredholm operators are given in [8]; precisely, T ∈ L(X) satisfies
generalized Weyl’s theorem if

σBW(T ) = σ(T ) \ E(T ),

where E(T ) is the set of all isolated eigenvalues of T , and T satisfies generalized Browder’s
theorem if

σBW(T ) = σ(T ) \ π(T ),
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where π(T ) is the set of all poles of the resolvent of T . Note that if T satisfies generalized Weyl’s
theorem then T satisfies generalized Browder’s theorem, see [5, Corollary 2.6]. Moreover, in [8]
it is shown that if T satisfies generalized Weyl’s theorem, then it satisfies Weyl’s theorem, and if
T satisfies generalized Browder’s theorem, then it satisfies Browder’s theorem.

Generalized Weyl’s theorem has been studied in [5,8]. It has been established for operators T

acting on a Hilbert space such that T is hyponormal [7]. In this paper, we study generalized
Weyl’s theorem and generalized Browder’s theorem for operators T acting on a Banach space
such that T or T ∗ has the SVEP. In Section 2, we prove that the spectral mapping theorem holds
for the B-Weyl spectrum σBW(T ), and we show that generalized Browder’s theorem holds for
f (T ) for every f ∈ H(σ(T )), where H(σ(T )) denotes the set of all analytic functions defined on
an open neighborhood U of σ(T ). Section 3 is devoted to an application of the results obtained
in the previous section.

2. Main results

Let T be a bounded linear operator on X. We say that T has the single-valued extension
property at λ0, SVEP (for short), if for every open neighborhood U of λ0, the only analytic
function f :U → X which satisfies the equation

(T − λ)f (λ) = 0 for all λ ∈ U

is the function f ≡ 0. We say that T has the SVEP if T has the SVEP at every point λ ∈ C

(see [20]).
In [7] it is shown that the spectral mapping theorem holds for the B-Weyl spectrum σBW(T )

whenever T is hyponormal. In the following we will give more for Banach space operators. For
this we start with the next result.

Proposition 2.1. Let T ∈ L(X). Then

(i) If T has the SVEP, then ind(T − λ) � 0 for every λ ∈ ρBF(T ).
(ii) If T ∗ has the SVEP, then ind(T − λ) � 0 for every λ ∈ ρBF(T ).

Proof. (i) If λ ∈ ρBF(T ), then T − λ is B-Fredholm. For some n large enough, T − (λ + 1
n
)

is a Fredholm operator and ind(T − (λ + 1
n
)) = ind(T − λ), see [6, Remark A]. If T has the

SVEP, then T − (λ + 1
n
) also has the SVEP. By virtue of [3, Theorem 2.6], we conclude that

ind(T − (λ + 1
n
)) � 0. Thus ind(T − λ) � 0, which prove (i).

(ii) Follows from [3, Theorem 2.6] and the fact that ind(T ∗) � 0 whenever T ∗ has the
SVEP. �
Theorem 2.1. If T or T ∗ has the SVEP, then f (σBW(T )) = σBW(f (T )), for every f ∈ H(σ(T )).

Proof. This follows directly from Proposition 2.1 and [7, Theorem 2.4]. �
The analytic core of an operator T ∈ L(X) is the subspace

K(T ) := {
x ∈ X: T xn+1 = xn, T x1 = x, ‖xn‖ � cn‖x‖

(n = 1,2, . . .) for some c > 0, xn ∈ X
}
.
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The quasi-nilpotent part of T is the subspace

H0(T ) :=
{
x ∈ X: lim

n→∞
∥∥T nx

∥∥ 1
n = 0

}
.

The spaces K(T ) and H0(T ) are hyperinvariant under T and satisfy T −n(0) ⊂ H0(T ), K(T ) ⊂
T n(X) for all n ∈ N and T K(T ) = K(T ), see the recent book of Aiena [1] and [23,25] for more
information about these subspaces.

Next, we shall consider the class of operators T ∈ L(X) for which the condition K(T ) = {0}
holds. This class was introduced by Mbekhta in [24] in the case of Hilbert space and studied
in more general setting of Banach spaces, see [1]. Such condition is verified by every weighted
unilateral right shift T on lp(N) (1 � p < ∞) defined by

T en = ωnen+1,

where the weight (wn)n∈N is a bounded sequence of positive numbers, and (en)n∈N stands for
the canonical basis of lp(N). In fact, for these operators it is easily seen that K(T ) = {0}.

Lemma 2.1. Let T ∈ L(X). If T is a quasi-nilpotent and B-Fredholm, then T is a nilpotent.

Proof. Suppose that T is a B-Fredholm operator. Then there exists two closed T -invariant sub-
spaces M and N of X such that X = M ⊕ N and T |M is a Fredholm operator and T |N is a
nilpotent operator [26, Theorem 7]. If T is quasi-nilpotent, then T |M is quasi-nilpotent, and by
[23, Corollary 2.15] we conclude that T |M is nilpotent. So T is a nilpotent operator. �
Proposition 2.2. Let T ∈ L(X). If K(T ) = {0}, then

σ(T ) = σBW(T ).

Proof. Suppose that K(T ) = {0}. Since we have σBW(T ) ⊆ σ(T ), then it suffices to show that
σ(T ) ⊆ σBW(T ). If λ /∈ σBW(T ), then T − λ is a B-Fredholm operator of index 0, and hence
by [26, Theorem 7] there exists two closed T -invariant subspaces M and N of X such that
X = M ⊕ N and (T − λ)|M is a Fredholm operator and (T − λ)|N is a nilpotent operator. By
the argument used in the proof of [6, Lemma 4.1], we conclude that (T − λ)|M is a Fredholm
operator of index 0. If λ �= 0, then

N(T − λ) ⊆ K(T ) = {0}.
Hence N = 0 and T − λ = (T − λ)|M is a Fredholm operator of index 0. From [1, Theo-
rem 3.116], we get that λ /∈ σ(T ).

If λ = 0, then T |M , is Fredholm of index 0, and hence 0 /∈ σw(T |M). Since K(T |M) = {0},
then σw(T |M) = σ(T |M) and 0 ∈ σ(T |M), see [1, Theorem 3.116] and [1, Theorem 2.82]. Hence
0 ∈ σw(T |M), which is a contradiction. This implies that 0 ∈ σBW(T ). Since 0 ∈ σ(T ) (see [1,
Theorem 2.82]), then we conclude that σ(T ) ⊆ σBW(T ). �
Theorem 2.2. Let T ∈ L(X). If there exists a complex number λ0 ∈ accσ(T ) such that K(T −
λ0) = {0} or K(T ∗ − λ0) = {0}, then the generalized Weyl’s theorem holds for both f (T ) and
f (T ∗) for every f ∈ H(σ(T )).

Proof. If K(T ) = {0} or K(T ∗) = {0}, then T or T ∗ has the SVEP and σ(T ) is connected and
contains 0, see [1, Theorem 2.82] and [1, Theorem 3.116]. Also, if 0 ∈ accσ(T ), then σ(T ) does
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not have any isolated point, otherwise σ(T ) = {0}. Let f ∈ H(σ(T )). Since the identity operator
satisfies generalized Weyl’s theorem, we may assume that the function f is nonconstant. Hence

f
(
σ(T )

) = σ
(
f (T )

) = σ
(
f (T ∗)

)
is a connected subset of C without isolated points. So

E
(
f (T )

) = E
(
f (T ∗)

) = ∅.

Moreover, by Theorem 2.1 and Proposition 2.2 above we have that

σ
(
f (T )

) = f
(
σ(T )

) = f
(
σBW(T )

) = σBW
(
f (T )

) = σBW
(
f (T ∗)

)
.

Finally, f (T ) and f (T ∗) satisfy generalized Weyl’s theorem. This completes the proof, since
generalized Weyl’s theorem is translation-invariant. �

As a consequence of this theorem we have the following result.

Corollary 2.1. If T ∈ L(X) is a non-quasi-nilpotent weighted unilateral right shift T on lp(N)

(1 � p < ∞), then T satisfies generalized Weyl’s theorem.

In general, we cannot expect that generalized Weyl’s theorem holds for an operator satisfying
the SVEP.

Example 1. If T ∈ l2(N) is defined by

T (x0, x1, . . .) =
(

1

2
x1,

1

3
x2, . . .

)
for all (xn) ∈ l2(N),

then T is quasi-nilpotent and hence has the SVEP. But T does not satisfy generalized Weyl’s
theorem, since σ(T ) = σBW(T ) = {0} and E(T ) = {0}.

However, for generalized Browder’s theorem we have the following theorem.

Remark 2.1. In [5, Theorem 2.4] it is shown that if T is a bounded linear operator acting on a
Hilbert space then T satisfies generalized Browder’s theorem if and only if T ∗ does. This result
is also valid in more general setting of Banach spaces. Since the proof of this assertion is based
on the fact that T is B-Fredholm if and only if T ∗ is B-Fredholm (see [6, Remark B]), which is
also valid in Banach spaces by [20, Theorem A.1.10].

Theorem 2.3. If T or T ∗ has the SVEP, then generalized Browder’s theorem holds for f (T ) for
every f ∈ H(σ(T )).

Proof. Suppose that T has the SVEP. λ ∈ σ(T ) \ σBW(T ) implies that T − λ is a B-Fredholm
operator of index 0. By [26, Theorem 7] there exists two closed T -invariant subspaces M and N

of X such that X = M ⊕ N and (T − λ)|M is a Fredholm operator and (T − λ)|N is a nilpotent
operator. By the argument used in the proof of [6, Lemma 4.1], we conclude that (T − λ)|M is
a Fredholm operator of index 0. Since T |M has the SVEP, then λ is a pole of T |M of finite rank
(see [27, Theorem 2.9]), and hence λ is isolated in σ(T |M). This implies that if μ ∈ C is such
that |λ−μ| < ε, then T −μ|M is invertible. Since T −μ|N is invertible then T −μ is invertible.
Hence λ is isolated in σ(T ). From [5, Theorem 2.3], we conclude that λ ∈ π(T ). Hence σ(T ) \
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σBW(T ) ⊆ π(T ). For the reverse inclusion, if λ ∈ π(T ), then λ ∈ E(T ), and hence λ is isolated
in σ(T ). From [5, Theorem 2.3], we conclude that T − λ is B-Fredholm of index 0. So

λ ∈ σ(T ) \ σBW(T ).

Consequently, σ(T ) \σBW(T ) = π(T ). That is T satisfies generalized Browder’s theorem. If T ∗
has the SVEP, then by the above argument generalized Browder’s theorem holds for T ∗, hence
it holds for T , see Remark 2.1. Finally, if f ∈ H(σ(T )), then by [20, Theorem 3.3.6], f (T )

or f (T ∗) satisfies the SVEP, and hence the above argument implies that generalized Browder’s
theorem holds for f (T ). �

Let T ∈ L(X). By Remark 2.1, generalized Browder’s theorem holds for T if and only if it
holds for T ∗. However, generalized Weyl’s theorem does not pass from an operator to its adjoint
as shown by the following example:

Example 2. Let us consider the weighted unilateral right shift T on l2(N), defined by

T en = ωnen+1,

where the bounded weight sequence (ωn)n∈N of positive real numbers satisfying limn→∞(supk |
ωkωk+1 · · ·ωk+n−1|)1/n = 0. Since T is quasi-nilpotent, then K(T ) = 0, and hence by Proposi-
tion 2.2,

σ(T ) = σBW(T ) = {0}.
Since E(T ) = ∅, then T satisfies generalized Weyl’s theorem. However the adjoint T ∗ of T

defined by

T ∗e0 = 0 and T ∗en = ωn−1en−1

does not satisfy generalized Weyl’s theorem, since E(T ∗) = {0}.

Let T ∈ L(X) such that T or T ∗ has the SVEP. In what follows, we will give a necessary and
sufficient conditions for T to satisfy generalized Weyl’s theorem.

Proposition 2.3. If T or T ∗ has the SVEP, then

(i) generalized Weyl’s theorem holds for T if and only if

E(T ) = π(T ),

(ii) generalized Weyl’s theorem holds for T ∗ if and only if

E(T ∗) = π(T ∗).

Proof. If T or T ∗ has the SVEP, then by Theorem 2.3,

σBW(T ) = σ(T ) \ π(T ).

(i) If T satisfies generalized Weyl’s theorem, then E(T ) = π(T ), see [5, Corollary 2.6]. Con-
versely, if E(T ) = π(T ), then we have

σBW(T ) = σ(T ) \ π(T ) = σ(T ) \ E(T ),

which completes the proof of (i).
Using the same argument we prove (ii). �
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Recall that T ∈ L(X) is said to have growth condition Gd (d � 1) [28], if there is a constant
c > 0 such that

∥∥(T − λ)−1
∥∥ � c

dis(λ,σ (T ))d
for λ /∈ σ(T ).

The condition Gd does not generally, ensure that T has the SVEP, see [21]. But from the proof
of [27, Corollary 2.14], we conclude that if T satisfies Gd , then for all λ ∈ isoσ(T ) there exists
an integer dλ � 1 such that H0(T − λ) = N(T − λ)dλ and T is isoloid. Here, we recall that T

is called isoloid if every isolated point of σ(T ) is an eigenvalue of T . This leads us to give the
following result.

Proposition 2.4. If T or T ∗ has the SVEP and for all λ ∈ isoσ(T ) there exists an integer dλ � 1
such that H0(T − λ) = N(T − λ)dλ , then T satisfies generalized Weyl’s theorem.

Proof. Suppose that T or T ∗ has the SVEP. From Proposition 2.3, it suffices to show that

E(T ) = π(T ).

If λ ∈ E(T ), then λ ∈ isoσ(T ). Since H0(T − λ) = N(T − λ)dλ for dλ � 1, then by [23, Theo-
rem 1.6] and [17, Theorem 3.4] we conclude that λ is a pole of T of order dλ. Thus, λ ∈ π(T ).
Hence E(T ) ⊆ π(T ). As we always have π(T ) ⊆ E(T ), then we get the desired equality. �
Theorem 2.4. Let T ∈ L(X) such that T or T ∗ has the SVEP and for all λ ∈ isoσ(T ) there
exists an integer dλ � 1 such that H0(T − λ) = N(T − λ)dλ , then generalized Weyl’s theorem
holds for f (T ), for every f ∈ H(σ(T )).

Proof. Under the hypothesis and from Theorem 2.1 and Proposition 2.4, we conclude that

σBW
(
f (T )

) = f
(
σBW(T )

)
and σBW(T ) = σ(T ) \ E(T ).

Hence

σBW
(
f (T )

) = f
(
σBW(T )

) = f
[
σ(T ) \ E(T )

]
.

Since T is isoloid, then by [7, Lemma 2.9] we have

f
[
σ(T ) \ E(T )

] = σ
(
f (T )

) \ E
(
f (T )

)
.

So

σBW
(
f (T )

) = f
(
σBW(T )

) = f
[
σ(T ) \ E(T )

] = σ
(
f (T )

) \ E
(
f (T )

)
.

Thus f (T ) satisfies generalized Weyl’s theorem. �
As a consequence of this theorem we have the following result:

Corollary 2.2. Let T ∈ L(X) such that T or T ∗ has the SVEP. If T satisfies the growth condition
Gd (d � 1), then generalized Weyl’s theorem holds for f (T ), for every f ∈ H(σ(T )).
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3. Applications

One such class which has attracted the attention of a number of authors is the set P(X) of
all operators T ∈ L(X) such that for every complex number λ there exists an integer dλ � 1 for
which the following condition holds

H0(T − λ) = N(T − λ)dλ .

The class P(X) contains the classes of subscalar, algebraically totally paranormal and
transaloid operators on a Banach space, ∗-totally paranormal, M-hyponormal, p-hyponormal
(0 < p < 1) and log-hyponormal operators on a Hilbert space (see [9,10,12,13,16,22,27]).

It is known that if H0(T − λ) is closed for every complex number λ, then T has the SVEP,
see [2,19]. So that, the SVEP is shared by all the operators of P(X).

For an hyponormal operator T , it is shown in [7] that generalized Weyl’s theorem hold for
f (T ) for every f ∈ H(σ(T )). In the following we give more.

Corollary 3.1. If T ∈ P(X). Then f (T ) satisfies generalized Weyl’s theorem for every f ∈
H(σ(T )).

Proof. Apply Theorem 2.4. �
Now, let us consider an elementary operator dA,B ∈ L(L(H)), where H is a Hilbert space,

A,B ∈ L(H), and dA,B is either the generalized derivation δA,B(X) = AX −XB or the elemen-
tary operator �A,B(X) = AXB − X (X ∈ H).

The following corollary extends [11, Theorem 3.1].

Corollary 3.2. Let A,B ∈ L(H). If A and B∗ are hyponormal operators, then f (dA,B) satisfies
generalized Weyl’s theorem for every f ∈ H(σ(T )).

Proof. From [11, Corollary 2.4], we have p(dA,B) � 1 for all complex numbers λ, hence dA,B

has the SVEP. On the other hand, from the proof of [11, Theorem 2.7] we can deduce that
H0(dA,B − λ) = N(dA,B − λ) for all λ ∈ isoσ(dA,B). Applying Theorem 2.4, we get the desired
result. �
Acknowledgments

The author thanks the referee for several helpful suggestions concerning this paper. This work was done during the
author’s visit at the UFR of Mathmatics, Lille 1 University, Villeneuve d’Ascq, France (June 2004). He thanks for the
warm hospitality and perfect working conditions there.

References

[1] P. Aiena, Fredholm Theory and Local Spectral Theory, with Applications to Multipliers, Kluwer Academic, 2004.
[2] P. Aiena, M.L. Colasante, M. González, Operators which have a closed quasi-nilpotent part, Proc. Amer. Math.

Soc. 130 (2002) 2701–2710.
[3] P. Aiena, O. Monsalve, The single valued extension property and the generalized Kato decomposition property,

Acta Sci. Math. (Szeged) 67 (2001) 461–477.
[4] M. Berkani, On a class of quasi-Fredholm operators, Integral Equations Operator Theory 34 (1999) 244–249.
[5] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Appl. 272 (2002) 596–603.



1484 M. Amouch / J. Math. Anal. Appl. 326 (2007) 1476–1484
[6] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130
(2002) 1717–1723.

[7] M. Berkani, A. Arroud, Generalized Weyl’s theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004)
291–302.

[8] M. Berkani, J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003)
359–376.

[9] L.A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966) 285–288.
[10] R.E. Curto, Y.M. Han, Weyl’s theorem, a-Weyl’s theorem, and local spectral theory 2002, J. London Math. Soc.

(2) 67 (2003) 499–509.
[11] B.P. Duggal, Weyl’s theorem for a generalized derivation and an elementary operator derivation, Math. Vestnik 54

(2002) 71–81.
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