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Abstract

Let T be a bounded linear operator acting on a Banach space X such that T or its adjoint 7* has the
single-valued extension property. We prove that the spectral mapping theorem holds for the B-Weyl spec-
trum, and we show that generalized Browder’s theorem holds for f(T') for every analytic function f defined
on an open neighborhood U of ¢ (T'). Moreover, we give necessary and sufficient conditions for such T to
satisfy generalized Weyl’s theorem. Some applications are also given.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Throughout this note, X denotes an infinite dimensional complex Banach space and £(X)
denotes the algebra of all bounded linear operators on X. For an operator 7' € £(X), write T*,
o(T), p(T), 0,(T), isoc(T) and acco (T) for the adjoint, spectrum, resolvent set, point spec-
trum of T, isolated points and accumulation points of o (T'), respectively. By «(T) and 8(T) we
denote the dimension of the Kernel N (7') and the codimension of the range R(T'), respectively.
If both «(T') and B(T) are finite, then T is called a Fredholm operator and the index of T is
defined by

ind(T) = a(T) — B(T).
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A bounded linear operator 7 € £(X) is said to be a Weyl operator if it is Fredholm of index 0.
Recall that the ascent p := p(T) of an operator T is the smallest nonnegative integer p such that
N(TP) = N(TPtH. If such integer does not exist we put p(7T) = oo. Analogously, the descent
g :=q(T) of an operator T is the smallest nonnegative integer ¢ such that R(T%) = R(T4*1),
and if such integer does not exist we put g(7) = oo. It is well known that if p(T) and ¢g(T)
are both finite then p(T) = q(T), see [15, Proposition 38.3]. T € L(X) is said to be a Browder
operator if T is Fredholm with p(T) = q(T) < oo. Note that if T is Browder then T is Weyl,
see [15, Proposition 38.5]. We shall henceforth abbreviate T — A1 to T — A. The Weyl spectrum
oy (T) and the Browder spectrum o (7') are defined by (see [14])

ow(T):={reC: T — X isnot Weyl}
and
op(T) :={A € C: T — A is not Browder}.

For a bounded linear operator T and a nonnegative integer n define 7}, to be the restriction of
T to R(T") viewed as a map from R(T") into R(T") (in particular Tp = T'). If for some integer
n the range space R(T") is closed and 7}, is a Fredholm operator then 7T is called a B-Fredholm
operator. The class of B-Fredholm operators contains the class of Fredholm operators as a proper
subclass [4]. Let T be a B-Fredholm operator and let n be any integer such that 7}, is a Fredholm
operator. Then Ty, is a Fredholm operator and ind(7,) = ind(T,,) for each m > n. The index
of T, ind(T), is defined to be the index of the Fredholm operator 7, see [4, Definition 2.3]. If T
is a B-Fredholm operator of index 0, then T is called a B-Weyl operator. The B-Weyl spectrum
opw(T) of T is defined by (see [5])

opw(T) = {1 € C: T — A is not B-Weyl operator}.

We write pgw(T) := C \ opw(7T') for the resolvent B-Weyl set.

In [4, Theorem 2.7] it is proved that T is B-Fredholm if and only if there exists two closed
T-invariant subspaces M and N of X such that X = M @& N and Ty is a Fredholm operator
and T|y is a nilpotent operator. The proof is based on the decomposition of quasi-Fredholm
operators of Labrousse [18] which was proved only for Hilbert-spaces operators. This gap was
subsequently filled by Miiller in [26, Theorem 7].

The classical Weyl’s theorem initiated by Hermann Weyl in [29], asserts that if T is a self-
adjoint operator acting on Hilbert space, then we have 0,,(T) = o (T) \ Eo(T), where Eo(T) is
the set of isolated eigenvalues of finite multiplicity of T. Note that 7' € L£(X) satisfies Weyl’s
theorem if

ow(T) =0 (T) \ Eo(T).
Analogously T satisfies Browder’s theorem if
ow(T) =0 (T) \ mo(T),

where o(T) is the set of poles of the resolvent of T of finite rank. A generalization of these
two notions to the class of B-Fredholm operators are given in [8]; precisely, T € L(X) satisfies
generalized Weyl’s theorem if

opw(T) =ao(T)\ E(T),

where E(T) is the set of all isolated eigenvalues of T, and T satisfies generalized Browder’s
theorem if

opw(T) =0 (T) \n(T),
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where 7 (T') is the set of all poles of the resolvent of 7. Note that if 7" satisfies generalized Weyl’s
theorem then 7 satisfies generalized Browder’s theorem, see [5, Corollary 2.6]. Moreover, in [8]
it is shown that if T satisfies generalized Weyl’s theorem, then it satisfies Weyl’s theorem, and if
T satisfies generalized Browder’s theorem, then it satisfies Browder’s theorem.

Generalized Weyl’s theorem has been studied in [5,8]. It has been established for operators T
acting on a Hilbert space such that T is hyponormal [7]. In this paper, we study generalized
Weyl’s theorem and generalized Browder’s theorem for operators 7 acting on a Banach space
such that T or T* has the SVEP. In Section 2, we prove that the spectral mapping theorem holds
for the B-Weyl spectrum ogw(7'), and we show that generalized Browder’s theorem holds for
f(T) forevery f € H(o(T)), where H (o (T)) denotes the set of all analytic functions defined on
an open neighborhood U of o (T'). Section 3 is devoted to an application of the results obtained
in the previous section.

2. Main results

Let T be a bounded linear operator on X. We say that 7 has the single-valued extension
property at Ao, SVEP (for short), if for every open neighborhood U of A¢, the only analytic
function f:U — X which satisfies the equation

(T =2 fO)=0 forallreU

is the function f = 0. We say that 7" has the SVEP if T has the SVEP at every point A € C
(see [20]).

In [7] it is shown that the spectral mapping theorem holds for the B-Weyl spectrum opw (T")
whenever T is hyponormal. In the following we will give more for Banach space operators. For
this we start with the next result.

Proposition 2.1. Let T € L(X). Then

(i) If T has the SVEP, then ind(T — 1) < 0 for every A € pgp(T).
(i) If T* has the SVEP, then ind(T — 1) = 0 for every A € pgp(T).

Proof. (i) If A € pgr(T), then T — X is B-Fredholm. For some n large enough, T — (A + %)
is a Fredholm operator and ind(7 — (A + %)) =ind(T — A), see [6, Remark A]. If T has the
SVEP, then T — (A + %) also has the SVEP. By virtue of [3, Theorem 2.6], we conclude that
ind(T — (A + %)) < 0. Thus ind(T — A) < 0, which prove (i).

(ii) Follows from [3, Theorem 2.6] and the fact that ind(7T*) > 0 whenever T* has the
SVEP. 0O

Theorem 2.1. If T or T* has the SVEP, then f(ogw(T)) = ow(f(T)), forevery f € H(o(T)).
Proof. This follows directly from Proposition 2.1 and [7, Theorem 2.4]. O

The analytic core of an operator T € £(X) is the subspace

K(T):={x€X: Txpp1 =xp, Tx1 =2x, |Ixa] <" llx]|

(n=1,2,...) for some ¢ > 0, x, € X}.
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The quasi-nilpotent part of T is the subspace
1
" =0},

The spaces K (T') and Hy(T') are hyperinvariant under 7 and satisfy 7" (0) C Hyo(T), K(T) C
T"(X) foralln e Nand T K (T) = K(T), see the recent book of Aiena [1] and [23,25] for more
information about these subspaces.

Next, we shall consider the class of operators 7 € £(X) for which the condition K (7)) = {0}
holds. This class was introduced by Mbekhta in [24] in the case of Hilbert space and studied
in more general setting of Banach spaces, see [1]. Such condition is verified by every weighted
unilateral right shift 7 on /7 (N) (1 < p < 00) defined by

Ho(T) = {x e X: lim |T"x
n—oo

Tey, = wpepy,

where the weight (w,),en i @ bounded sequence of positive numbers, and (e,),eN Stands for
the canonical basis of /7 (N). In fact, for these operators it is easily seen that K (7) = {0}.

Lemma 2.1. Let T € L(X). If T is a quasi-nilpotent and B-Fredholm, then T is a nilpotent.

Proof. Suppose that T is a B-Fredholm operator. Then there exists two closed T -invariant sub-
spaces M and N of X such that X = M & N and Ty is a Fredholm operator and T'|y is a
nilpotent operator [26, Theorem 7]. If T is quasi-nilpotent, then T'|j; is quasi-nilpotent, and by
[23, Corollary 2.15] we conclude that 7’|/ is nilpotent. So T is a nilpotent operator. [

Proposition 2.2. Let T € L(X). If K(T) = {0}, then
o(T) =osw(T).

Proof. Suppose that K (T') = {0}. Since we have ogw(7T') C o (T), then it suffices to show that
o(T) Copw(T). If A ¢ ogw(T), then T — X is a B-Fredholm operator of index 0, and hence
by [26, Theorem 7] there exists two closed T -invariant subspaces M and N of X such that
X =M®® N and (T — X)|p is a Fredholm operator and (T — A)|y is a nilpotent operator. By
the argument used in the proof of [6, Lemma 4.1], we conclude that (T — X)| is a Fredholm
operator of index 0. If A # 0, then

N(T — ) C K(T) = {0}.

Hence N =0and T — A = (T — A)|y is a Fredholm operator of index 0. From [1, Theo-
rem 3.116], we get that & ¢ o (7).

If A =0, then T|y,, is Fredholm of index 0, and hence O ¢ oy, (T |pr). Since K (T'|p) = {0},
then o, (T |p) =0 (T |p) and 0 € o (T | 1), see [1, Theorem 3.116] and [1, Theorem 2.82]. Hence
0 € 0y (T |pm), which is a contradiction. This implies that O € ogw(7T'). Since 0 € o (T) (see [1,
Theorem 2.82]), then we conclude that o (T) Cogw(T). O

Theorem 2.2. Let T € L(X). If there exists a complex number Lo € acco (T) such that K(T —
ro) = {0} or K(T* — Xo) = {0}, then the generalized Weyl’s theorem holds for both f(T) and
f(T*) for every f € H(o(T)).

Proof. If K(T) = {0} or K(T*) = {0}, then T or T* has the SVEP and o (T) is connected and
contains 0, see [1, Theorem 2.82] and [1, Theorem 3.116]. Also, if 0 € acco (T'), then o (T') does
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not have any isolated point, otherwise o (T') = {0}. Let f € H(o(T)). Since the identity operator
satisfies generalized Weyl’s theorem, we may assume that the function f is nonconstant. Hence

flo(M)=0o(f(D)=0(f(T)

is a connected subset of C without isolated points. So

E(f(T)) = E(f(T*)=0.

Moreover, by Theorem 2.1 and Proposition 2.2 above we have that

o (f(D) = f(a(D) = f(osw(T)) = osw(f(T)) = opw(f(T")).

Finally, f(T) and f(T*) satisfy generalized Weyl’s theorem. This completes the proof, since
generalized Weyl’s theorem is translation-invariant. 0O

As a consequence of this theorem we have the following result.

Corollary 2.1. If T € L(X) is a non-quasi-nilpotent weighted unilateral right shift T on [P (N)
(1< p <o), then T satisfies generalized Weyl’s theorem.

In general, we cannot expect that generalized Weyl’s theorem holds for an operator satisfying
the SVEP.

Example 1. If 7 € [*(N) is defined by

11
T(xo, X1,...) = <5x1, 34 ) for all (x,) € I2(N),

then T is quasi-nilpotent and hence has the SVEP. But T' does not satisfy generalized Weyl’s
theorem, since o (T) = ogw(7T) = {0} and E(T) = {0}.

However, for generalized Browder’s theorem we have the following theorem.

Remark 2.1. In [5, Theorem 2.4] it is shown that if 7 is a bounded linear operator acting on a
Hilbert space then T satisfies generalized Browder’s theorem if and only if 7* does. This result
is also valid in more general setting of Banach spaces. Since the proof of this assertion is based
on the fact that 7 is B-Fredholm if and only if 7* is B-Fredholm (see [6, Remark B]), which is
also valid in Banach spaces by [20, Theorem A.1.10].

Theorem 2.3. If T or T* has the SVEP, then generalized Browder’s theorem holds for f(T) for
every f € H(o(T)).

Proof. Suppose that T has the SVEP. A € o(T) \ opw(T') implies that T — X is a B-Fredholm
operator of index 0. By [26, Theorem 7] there exists two closed T -invariant subspaces M and N
of X suchthat X =M & N and (T — A)|» is a Fredholm operator and (T — A)|y is a nilpotent
operator. By the argument used in the proof of [6, Lemma 4.1], we conclude that (T — X)|s is
a Fredholm operator of index 0. Since T'|j; has the SVEP, then A is a pole of T'|, of finite rank
(see [27, Theorem 2.9]), and hence A is isolated in o (T'|ps). This implies that if u € C is such
that |\ — | < €, then T — |y is invertible. Since T — |y is invertible then T — w is invertible.
Hence 2 is isolated in o (T'). From [5, Theorem 2.3], we conclude that A € 7 (T). Hence o (T) \
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opw(T) € (T). For the reverse inclusion, if A € w(T), then A € E(T), and hence A is isolated
in o (T). From [5, Theorem 2.3], we conclude that T — A is B-Fredholm of index 0. So

rea(T)\ogw(T).

Consequently, o (T) \ opw(T) = 7 (T). That is T satisfies generalized Browder’s theorem. If 7*
has the SVEP, then by the above argument generalized Browder’s theorem holds for 7*, hence
it holds for 7', see Remark 2.1. Finally, if f € H(o(T)), then by [20, Theorem 3.3.6], f(T)
or f(T%*) satisfies the SVEP, and hence the above argument implies that generalized Browder’s
theorem holds for f(T). O

Let T € £L(X). By Remark 2.1, generalized Browder’s theorem holds for 7' if and only if it
holds for 7*. However, generalized Weyl’s theorem does not pass from an operator to its adjoint
as shown by the following example:

Example 2. Let us consider the weighted unilateral right shift 7 on /2(N), defined by
Teyn = wpepy,

where the bounded weight sequence (wy,),en of positive real numbers satisfying lim,—, oo (supy |
Wk Wk+1 ** * Ok4n—1 |)1/” = 0. Since T is quasi-nilpotent, then K (7') = 0, and hence by Proposi-
tion 2.2,

o(T)=ogw(T) ={0}.

Since E(T) = @, then T satisfies generalized Weyl’s theorem. However the adjoint 7* of T
defined by

T*ep=0 and T¥e, =wn—1n—1
does not satisfy generalized Weyl’s theorem, since E(T*) = {0}.

Let T € £L(X) such that T or T* has the SVEP. In what follows, we will give a necessary and
sufficient conditions for T to satisfy generalized Weyl’s theorem.

Proposition 2.3. If T or T* has the SVEP, then

(i) generalized Weyl’s theorem holds for T if and only if
E(T)=n(T),

(ii) generalized Weyl’s theorem holds for T* if and only if
E(T*) =a(T*").

Proof. If T or T* has the SVEP, then by Theorem 2.3,
ogw(T) =o(T)\ n(T).
(1) If T satisfies generalized Weyl’s theorem, then E(7T) = = (T), see [5, Corollary 2.6]. Con-
versely, if E(T) = (T), then we have
opw(T) =o(T)\n(T)=0(T)\ E(T),

which completes the proof of (i).
Using the same argument we prove (ii). O
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Recall that T € £(X) is said to have growth condition G4 (d > 1) [28], if there is a constant
¢ > 0 such that

c

-1
l-n7 < dis(r, o (T))4

forA ¢ o(T).

The condition G4 does not generally, ensure that 7 has the SVEP, see [21]. But from the proof
of [27, Corollary 2.14], we conclude that if T satisfies G4, then for all A € isoo (T') there exists
an integer dj, > 1 such that Hy(T — 1) = N(T — A)% and T is isoloid. Here, we recall that T
is called isoloid if every isolated point of o (T) is an eigenvalue of 7. This leads us to give the
following result.

Proposition 2.4. If T or T* has the SVEP and for all . € isoo (T) there exists an integer d) > 1
such that Hy(T — L) = N(T — )\)d*, then T satisfies generalized Weyl’s theorem.

Proof. Suppose that T or 7* has the SVEP. From Proposition 2.3, it suffices to show that
E(T)=nr(T).

If A€ E(T), then A € isoo (T). Since Hy(T — 1) = N(T — )»)dA for d; > 1, then by [23, Theo-
rem 1.6] and [17, Theorem 3.4] we conclude that A is a pole of T of order d, . Thus, A € 7(T).
Hence E(T) C n(T). As we always have 7w (T) € E(T), then we get the desired equality. O

Theorem 2.4. Let T € L(X) such that T or T* has the SVEP and for all ) € isoo (T) there
exists an integer dy, > 1 such that Ho(T — A) = N(T — M)%, then generalized Weyl’s theorem
holds for f(T), for every f € H(o(T)).

Proof. Under the hypothesis and from Theorem 2.1 and Proposition 2.4, we conclude that
osw (f(T)) = f(osw(T)) and opw(T)=0(T)\ E(T).

Hence
osw (f(T)) = f(osw(T)) = f[o(T)\ E(D)].

Since T is isoloid, then by [7, Lemma 2.9] we have

fle(M\EM]=0o(f(D)\E(f(T)).
So

ow (f (1)) = f(osw(T)) = flo(T)\ E(D)] =0 (f(T)) \ E(f(T)).

Thus f(T) satisfies generalized Weyl’s theorem. O
As a consequence of this theorem we have the following result:

Corollary 2.2. Let T € L(X) such that T or T* has the SVEP. If T satisfies the growth condition
Gy (d 2 1), then generalized Weyl’s theorem holds for f(T), for every f € H(o(T)).
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3. Applications

One such class which has attracted the attention of a number of authors is the set P(X) of
all operators T € L£(X) such that for every complex number X there exists an integer d; > 1 for
which the following condition holds

Ho(T —A) = N(T — 1%,

The class P(X) contains the classes of subscalar, algebraically totally paranormal and
transaloid operators on a Banach space, *-totally paranormal, M-hyponormal, p-hyponormal
(0 < p < 1) and log-hyponormal operators on a Hilbert space (see [9,10,12,13,16,22,27]).

It is known that if Ho(T — 1) is closed for every complex number A, then T has the SVEP,
see [2,19]. So that, the SVEP is shared by all the operators of P(X).

For an hyponormal operator 7', it is shown in [7] that generalized Weyl’s theorem hold for
f(T) forevery f € H(o(T)). In the following we give more.

Corollary 3.1. If T € P(X). Then f(T) satisfies generalized Weyl’s theorem for every f €
H(o(T)).

Proof. Apply Theorem2.4. 0O

Now, let us consider an elementary operator d4 p € L(L(H)), where H is a Hilbert space,
A, B € L(H), and d4_p is either the generalized derivation §4 p(X) = AX — X B or the elemen-
tary operator Ag p(X)=AXB — X (X € H).

The following corollary extends [11, Theorem 3.1].

Corollary 3.2. Let A, B € L(H). If A and B* are hyponormal operators, then f(da p) satisfies
generalized Weyl’s theorem for every f € H(o(T)).

Proof. From [11, Corollary 2.4], we have p(da p) < 1 for all complex numbers A, hence da p
has the SVEP. On the other hand, from the proof of [11, Theorem 2.7] we can deduce that
Ho(dap—A)=N(da,p—X) forall A eisoo(da, p). Applying Theorem 2.4, we get the desired
result. O
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