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Abstract

We study those filters F on N for which weak F -convergence of bounded sequences in C(K) is equivalent to point-wise
F -convergence. We show that it is sufficient to require this property only for C[0,1] and that the filter-analogue of the Rainwater
extremal test theorem arises from it. There are ultrafilters which do not have this property and under the continuum hypothesis there
are ultrafilters which have it. This implies that the validity of the Lebesgue dominated convergence theorem for F -convergence is
more restrictive than the property which we study.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Every theorem of classical Analysis, Functional Analysis or of Measure Theory that states a property of sequences
leads to a class of filters for which this theorem is valid. Sometimes such a class of filters is trivial (say, all filters or
the filters with a countable base), but in several cases this approach leads to a new class of filters, and the characteri-
zation of this class can be very non-trivial task. Among such non-trivial examples are Lebesgue filters (for which the
Lebesgue dominated convergence theorem is valid), Egorov filters which correspond to the Egorov theorem on almost
uniform convergence [4], Schur filters (for which weak convergence in �1 coincides with the strong one) [1] and those
filters F for which every weakly F convergent sequence has a norm-bounded subsequence [3].

One of the reasons to study such questions is that they bring a new light to the classical results. Say, one can ask to
what extent the Lebesgue dominated convergence theorem for functions on [0,1] implies the same theorem for other
measure spaces. This question is not a well-posed mathematical problem: if both the theorems are true, how one can
see that one of them is not deducible from the other one? But if one looks at these theorems in a general setting when
the ordinary convergence of sequences is substituted by a filter convergence, the problem makes sense. This problem
and some other related ones are studied below.
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The structure of the paper is as follows: in the next section we show at first that if one considers the dominated
convergence theorem for Borel functions on a compact, the continuity of the functions involved in the definition
of the filter property we study is not a restriction (Theorem 2.6). Then we apply a bit of Banach space theory to
demonstrate that the dominated convergence theorem for continuous functions from C(K) with respect to regular
Borel measures (which is equivalent to coincidence of weak convergence in C(K) with point-wise convergence for
bounded sequences) can be deduced from the same theorem only for metric compacts K (Theorem 2.10). Afterwards
by a pure measure-theoretic argument we reduce this theorem to [0,1] equipped with the standard Lebesgue measure λ

(Theorem 3.9). In the last section we show that for some ultrafilters even the simplest ([0,1], λ) particular case of the
dominated convergence theorem fails to be true, and that under the continuum hypothesis there are free ultrafilters for
which it is true. The latter, together with [4, Corollary 2.16] (which states that the dominated convergence theorem for
general finite measure spaces cannot be true for a free ultrafilter) demonstrates that the general dominated convergence
theorem does not follow from the simplified ([0,1], λ) version.

Recall that a filter F on N is a non-empty collection of subsets of N satisfying the following axioms: ∅ /∈ F ;
if A,B ∈ F then A ∩ B ∈ F ; and for every A ∈ F if B ⊃ A then B ∈ F .

A sequence (xn), n ∈ N, in a topological space X is said to be F -convergent to x (and we write x = F - limxn or
xn →F x) if for every neighborhood U of x the set {n ∈ N: xn ∈ U} belongs to F .

In particular if one takes as F the filter of sets with finite complements (the Fréchet filter), then F -convergence
coincides with the ordinary one.

A point x ∈ X is said to be a cluster point of the sequence (xn) with respect to F if x belongs to the closure
of {xn}n∈A for every A ∈ F .

The natural ordering on the set of filters on N is defined as follows: F1 � F2 if F1 ⊃ F2. If G is a centered
collection of subsets (i.e. all finite intersections of elements of G are non-empty), then there is a filter containing all
elements of G. The smallest filter, containing all elements of G is called the filter generated by G.

If x = F2- limxn, then x = F1- limxn for every F1 � F2. If y is not a cluster point of the sequence (xn) with
respect to F2 and F1 � F2, then y is not a cluster point of the sequence (xn) with respect to F1.

Let F be a filter. A collection of subsets G ⊂ F is called the base of F if for every A ∈ F there is a B ∈ G such
that B ⊂ A. The simplest filters are those with a countable base.

A filter F on N is said to be free if it dominates the Fréchet filter. Below when we say “filter” we mean a free filter
on N. In particular every ordinary convergent sequence will be automatically F -convergent.

A maximal in the natural ordering filter is called an ultrafilter. The Zorn lemma implies that every filter is dominated
by an ultrafilter. A filter F on N is an ultrafilter if and only if for every A ⊂ N either A or N \ A belongs to F . More
about filters, ultrafilters and their applications one can find in every modern General Topology textbook, for example
in [6].

All over the text below, unless it is specified otherwise, we use the following notations: K stands for a compact set,
X is a Banach space, F is a filter on N, BX is the closed unit ball of X, δx is the delta measure (δx(A) = 1 if x ∈ A,
otherwise δx(A) = 0), ex(A) is the set of extreme points of A. All the spaces, functionals and operators are assumed
to be over the field of reals. The word “measure” means for us a countably additive finite measure. For the standard
Banach space terminology we refer to [5].

2. Basic definitions. Rainwater filters. Reduction to metric compacts

Definition 2.1. Let K be a compact, and μ be a regular Borel measure on K . A filter F is said to be C-Lebesgue with
respect to μ on K (has the C-Lebesgue property with respect to μ on K) if for every uniformly bounded sequence of
functions fn ∈ C(K) which is point-wise F -convergent to 0, the F - lim

∫
K

fn dμ equals 0.

Definition 2.2. A filter F is said to be C-Lebesgue (has the C-Lebesgue property) if for every compact K and regular
Borel measure μ on it, F has the C-Lebesgue property with respect to μ on K .

Remark 2.3. In Definition 2.1 it is sufficient to consider only functions taking values from [0,1]. This follows from
the uniform boundedness in connection with formula fn = f +

n − f −
n , where f +

n = max{fn,0} and f −
n = f +

n − fn

are positive functions. In fact, for arbitrary sequence (fn) with supn ‖fn‖ = C < ∞ we can write fn = C(gn − hn),
where gn = 1 f +

n , hn = 1 f −
n , and apply the definition to (gn) and (hn) to get the required property of (fn).
C C



V. Kadets, A. Leonov / J. Math. Anal. Appl. 350 (2009) 455–463 457
Remark 2.4. Hahn–Jordan decomposition theorem says that each regular Borel measure μ is a linear combination of
two probability regular measures. Therefore, in Definition 2.2 it is sufficient to consider probability measures μ (i.e.
nonnegative with μ(K) = 1).

Lemma 2.5. Let K be a compact, μ be a regular Borel probability measure. The following properties of a filter F are
equivalent:

(1) For every sequence of Borel measurable sets An ⊂ K the point-wise F -convergence to 0 of χAn implies that

F - limμ(An) = 0.

(2) For every uniformly bounded sequence of Borel measurable functions fn : K → R which is point-wise F -
convergent to 0, the F - lim

∫
K

fn dμ equals 0.

Proof. We only have to prove that (1) ⇒ (2). Let fn : K → [0,1] be F point-wise converging to 0 sequence of
Borel measurable functions. For an ε > 0 define An = {x ∈ K: fn(x) � ε/2}. Since fn(x) � ε

2χAn it follows that the
sequence of χAn is point-wise F -convergent to 0. So by (1) there is I ∈ F such that for each m ∈ I it is true that
μ(An) < ε/2. Finally,∫

K

fm dμ =
∫

K\Am

fm dμ +
∫

Am

fm dμ < ε/2 + μ(Am) < ε. �

Theorem 2.6. The following properties of a filter F are equivalent:

(1) F is C-Lebesgue.
(2) For every compact K , every regular Borel probability measure μ on K and for every sequence of Borel measur-

able sets An ⊂ K the point-wise F -convergence to 0 of χAn implies that

F - limμ(An) = 0.

(3) For every compact K , every regular Borel probability measure μ on K and for every uniformly bounded sequence
of Borel measurable functions fn : K → R which is point-wise F -convergent to 0, the F - lim

∫
K

fn dμ equals 0.

Proof. (1) ⇒ (2). For any ε > 0 approximate An and its complement K \ An from inside with closed sets Bn and Cn

to make |μ(An) − μ(Bn)| < εn/2, |μ(K \ An) − μ(Cn)| < εn/2, where εn > 0 and
∑

n εn � ε. Consider G =⋂
n(Bn 
 Cn) and the functions fn—restrictions to G of χBn . We have μ(K \ G) < ε, fn ∈ C(G) and point-wise

F -converge to 0. By the definition of C-Lebesgue filters

F - lim
∫
G

fn dμ = 0. (2.1)

Also we have∫
K

χAn dμ =
∫
G

χAn dμ +
∫

K\G
χAn dμ <

∫
G

fn dμ + ε.

Since ε is arbitrary, Eq. (2.1) gives (2). The implication (2) ⇒ (3) is already proved in the previous lemma, and the
remaining implication (3) ⇒ (1) is obvious. �
Remark 2.7. The above theorem is still true if we restrict the filter properties (1)–(3) of Theorem 2.6 to metric
compacts. The proof does not change.

Recall that the members of C(K)∗ act like integration via regular Borel measures on K . The connection between
weak F -convergence of bounded sequences in C(K) and the C-Lebesgue property of F is obvious:
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Proposition 2.8. F is C-Lebesgue if and only if for every compact K each bounded point-wise F -convergent to 0
sequence of fn ∈ C(K) is weakly F -convergent to 0.

The famous Rainwater extremal test for weak convergence is also related to the dominated convergence theorem
and will be useful for us.

Rainwater’s theorem. (See [2, Chapter IX].) Let X be a Banach space and (xn) be a bounded sequence in X. In
order that (xn) weakly converge to x ∈ X it is both necessary and sufficient that limn x∗xn = x∗x for each extreme
point x∗ of BX∗ .

Its particular case is the criterium of weak convergence in C(K) and the main part in its proof is based on the
Lebesgue’s dominated convergence theorem.

Definition 2.9. F is said to be a Rainwater filter (has the Rainwater property) if for every Banach space X and
for every bounded sequence (xn) ⊂ X F -convergence to 0 of x∗xn for all x∗ ∈ ex(BX∗) implies that (xn) weak
F -converges to 0.

Theorem 2.10. The following conditions are equivalent.

(1) F is a C-Lebesgue filter.
(2) For every metric compact K and μ on K F is C-Lebesgue with respect to μ on K .
(3) For every separable X and for every bounded sequence (xn) ⊂ X (xn) weakly F -converge to 0 provided

F - limx∗xn = 0 for each x∗ ∈ ex(BX∗).
(4) F is a Rainwater filter.

Proof. (4) ⇒ (1). Consider X = C(K). Each extreme point x∗ of BX∗ is represented by a measure either of the
form δt or of the form −δt , t ∈ K ; the action of δt on f ∈ X is δt (f ) = f (t). Thus the condition F - limx∗xn = 0 for
extreme points of BX∗ is equivalent to the point-wise F -convergence. Now Proposition 2.8 gives us the C-Lebesgue
property of F .

The implication (1) ⇒ (2) is obvious. To check implications (2) ⇒ (3) and (3) ⇒ (4) let us follow the proof of the
Rainwater theorem [2, Chapter IX, pp. 155–156].

(2) ⇒ (3). Let X be a separable Banach space and (xn) ⊂ X be such a bounded sequence that F - limx∗xn = 0 for
each extreme point x∗ of BX∗ . Then BX∗ is metrizable convex weak∗ compact and we can use the Choquet integral
representation theorem. It says that for each point x∗ of BX∗ there is a regular probability measure μ on (BX∗ , (weak∗))
which is concentrated on ex(BX∗) such that

a(x∗) =
∫

BX∗

a(y∗) dμ(y∗) =
∫

ex(BX∗ )

a(y∗) dμ(y∗)

for each affine continuous function a. In particular we can take for a any x ∈ X considering it as a functional on X∗.
The set of extreme points of BX∗ is a Borel set. Applying Theorem 2.6 (the implication (1) ⇒ (3)) in the view of
Remark 2.7 for Borel measurable functions fn(y

∗) = xn(y
∗)χex(BX∗ )(y

∗), y∗ ∈ BX∗ , we obtain

0 =
∫

ex(BX∗ )

F - limxn(y
∗) dμ(y∗) =

∫
BX∗

F - limfn(y
∗) dμ(y∗)

= F - lim
∫

BX∗

fn(y
∗) dμ(y∗) = F - lim

∫
ex(BX∗ )

xn(y
∗) dμ(y∗)

= F - limxn(x
∗).

This means that 0 is the weak F -limit of (xn).
(3) ⇒ (4). Let X be a general Banach space and let (xn) ⊂ X be such that F - limx∗xn = 0 for every extreme

point x∗ of BX∗ . Denote by X0 the closed linear span of (xn). X0 is separable. Let us show that F - limx∗xn = 0 for
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every extreme point x∗ of BX∗
0
. Take any y∗ ∈ ex(BX∗

0
) and let HB(y∗) = {x∗ ∈ BX∗ : x∗|X0 = y∗}. HB(y∗) is non-

empty, convex, weak∗ compact, and is extremal subset of BX∗ . So HB(y∗) contains some extreme point z∗ of BX∗
and

F - lim z∗xn = F - limy∗xn = 0.

Now, since X0 is separable, we know that (xn) weakly F -converges to 0 in X0 and hence in X as well. �
3. Reduction of the general case to the case of [0,1]

The aim of this section is to show that the C-Lebesgue property follows from the C-Lebesgue property with respect
to the Lebesgue measure λ on [0,1]. Thanks to Remark 2.4 and Theorem 2.10 we may consider only metric compacts
and regular probability measures.

Lemma 3.1. Let K be a metric compact, μ be a purely atomic measure on K and F be an arbitrary filter. Then F is
C-Lebesgue with respect to μ on K .

Proof. Since K is a metric compact, all atoms of μ are equivalent to one-point sets {tk} and μ = ∑∞
k=1 akδtk , ak ∈ R.

Let (fn), 0 � fn � 1, be a sequence of continuous functions on K point-wise F -convergent to 0. Let us fix an ε > 0
and choose N big enough to make

∑∞
k=N+1 ak < ε/2. Take some εk > 0 such that

∑N
k=1 εk < ε/2. Due to the point-

vise F -convergence of (fn), (fn(tk))n∈N F -converge to 0 for every fixed k ∈ N. So we can find for each k an element
Ik ∈ F such that fn(tk) < εk for all n ∈ Ik . Put I = ⋂N

k=1 Ik ∈ F . Then, for all n ∈ I we have

∫
K

fn dμ =
∞∑

k=1

fn(tk)ak <

N∑
k=1

fn(tk) + ε/2 < ε.

Therefore, F is C-Lebesgue with respect to μ on K . �
Let K be a metric compact with non-atomic probability measure μ on it.

Definition 3.2. A subset K1 ⊂ K is said to be (d, q)-disconnected subset of K with μ if it is represented as a finite
union K1 = ⊔N

n=1 Bn of disjoint closed subsets Bn ⊂ K (called parts of K1) such that for all n = 1,2, . . . ,N

(1) diamBn < d ,
(2) 0 < μ(Bn) < d , and
(3) μ(K) > μ(K1) > μ(K) − q .

Proposition 3.3. For every d, q > 0 there is a (d, q)-disconnected subset K1 of K with μ. Moreover, if K is repre-
sented as a finite union of closed sets Cn, then K1 can be constructed in such a way, that every part of K1 is a subset
of some Cm.

Proof. Cover K by the closed balls BK(x, d/2) and choose a finite subcovering U1 = BK(x1, d/2), U2 =
BK(x2, d/2), . . . , UN = BK(xN,d/2). Then make this covering disjoint by introducing

A1 = U1, A2 = U2 \ A1, . . . , AN = UN \ AN−1.

After that, consider the measures of the sets. The condition that μ is non-atomic allows us to divide each An with
μ(An) � d into finite number of parts Ãk each of μ(Ãk) < d . So we can reckon that μ(An) < d for n = 1, . . . ,N .
Since μ is regular we can approximate each An by a closed subset Bn ⊂ AN with

μ(An) < μ(Bn) + q/N.

Consider now Bn with μ(Bn) > 0. First two conditions of Definition 3.2 are fulfilled for them. If μ(K) = ∑N
i=1 μ(Bi)

then we throw away one of the Bn with 0 < μ(Bn) < q or its open subset E ⊂ Bn with 0 < μ(E) < q in the case
of d � q . Now taking for K1 the union of obtained Bi we satisfy the third condition of Definition 3.2.
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To obtain the “moreover” part of the claim simply consider for the parts of K1 all μ-positive sets of the form
Bn ∩ Cm, n = 1,2, . . . ,N , m = 1,2, . . . ,M . �

Let G be some closed subset of [0,1] with Lebesgue measure λ on it.

Definition 3.4. We call (K1,G1, f1) a (d, q)-triplet for K and G if

(1) K1 = ⊔N
n=1 Bn is (d, q)-disconnected subset of K with μ,

(2) G1 = ⊔N
n=1 Dn is (d, q)-disconnected subset of G with λ,

(3) μ(Bn) = λ(Dn) for all n = 1,2, . . . ,N ,
(4) f1 : G1 → K1 is a continuous step function which maps every Dn into a single point of corresponding Bn.

Proposition 3.5. For every d, q > 0 there is (K1,G1, f1)—a (d, q)-triplet for K and G. Moreover, for every d2, q2 > 0
there is a (d2, q2)-triplet (K2,G2, f2) for K1 and G1 such that for every t ∈ G2 f1(t) and f2(t) belong to the same
part of K1 and hence ρ(f1(t), f2(t)) < d .

Proof. First, Proposition 3.3 gives us K1 = ⊔n1
i=1 Bi,1 a (d, q)-disconnected subset of K with μ. The third condition

of (d, q)-disconnectedness and Remark 2.4 allow us to find disjoint segments Di,1 ⊂ [0,1] with lengths λ(Di,1) =
μ(Bi,1), i = 1,2, . . . , n1. This obviously makes G1 = ⊔n1

i=1 Di,1 to be (d, q)-disconnected subset of G with λ. In
each Bi,1 choose xi,1 and define continuous step function f1 : G1 → K1 such that f1(Di,1) = xi , i = 1,2, . . . , n1. The
(d, q)-triplet (K1,G1, f1) for K and G is constructed.

Next, we apply Proposition 3.3 for K1, d2 and q2. We obtain K2 = ⊔n2
i=1 Bi,2 where Bi,2, i = 1,2, . . . , n2, are

such that for each i there is n(i) ∈ N that Bi,2 ⊂ Bn(i),1. We can find disjoint segments Di,2 ⊂ G1, such that
Di,2 ⊂ Dn(i),1, with lengths λ(Di,2) = μ(Bi,2), i = 1,2, . . . , n2. Choose xi,2 ∈ Bi,2, denote G2 = ⊔n2

i=1 Di,2 and
define f2 : G2 → K such that f2(Di,2) = xi,2. Then (K2,G2, f2) is the (d2, q2)-triplet for K1 and G1. Let us
evaluate the distance between f1(t) and f2(t) for t ∈ G2. Let t ∈ Di,2 ⊂ Dn(i),1, then f1(t), f2(t) ∈ Bn(i),1 and
ρ(f1(t), f2(t)) � diamBn(i),1 < d . �
Lemma 3.6. For every metric compact K , every ε > 0, and every non-atomic Borel measure μ on K there are
a closed subset G ⊂ [0,1], a compact Kε ⊂ K and a homeomorphism s : G → Kε such that μ(K \ Kε) < ε and
μ(s(A)) = λ(A) for any Borel subset A ⊂ G, where λ is the Lebesgue measure.

Proof. Let us fix ε > 0, and choose qk > 0 such that
∑∞

k=1 qk < ε and dk = 2−k . We construct Kε , G and s using
step-by-step approximation.

We approximate with (dk, qk) triples using Proposition 3.5. First, we find some (K1,G1, f1) (d1, q1)-triplet for K

and [0,1]. Then, (K2,G2, f2) (d2, q2)-triplet for K1,G1 such that ρ(f1(t), f2(t)) < d1 for every t ∈ G2. On the
ith step Proposition 3.5 gives us (Ki,Gi, fi) (di, qi)-triplet for Ki−1,Gi−1 such that ρ(fi−1(t), fi(t)) < di−1 for
every t ∈ Gi .

Proceeding in this way we obtain the sequences of embedded compacts Ki , Gi and functions fi . Consider
Kε = ⋂

i Ki and G = ⋂
i Gi . Using inequality (3) of Definition 3.2 for Ki we have

μ(K \ Kε) �
∞∑
i=1

qk < ε.

Look at (fi) as a sequence of continuous maps acting from G to Ki ⊂ K . It is a Cauchy sequence:

ρ
(
fn(t), fn+m(t)

)
�

n+m∑
k=n+1

1

2k
→ 0 as n,m → ∞.

Take for desired continuous s : G → Kε the uniform limit of fn. Since G is compact, to check that s is homeomor-
phism is to show that s is bijective.

Injectivity: let t1, t2 ∈ G and t1 �= t2. Since diameters of the parts of Gi tend to 0 as i tends to infinity, we can
find M big enough that on the M th step t1 and t2 turn out to be in the different parts. Thus fM(t1) and fM(t2) belong
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to different closed parts A and B of KM . Then for all k ∈ N fM+k(t1) ∈ A, fM+k(t2) ∈ B , so s(t1) ∈ A, s(t2) ∈ B , i.e.
s(t1) �= s(t2).

Surjectivity: let us check that the range of s is dense in Kε . We know that the values of each fi form a finite di -net
of Ki (property (4) of Definition 3.4 and (1) of Definition 3.2). Thus, for each δ > 0 and x ∈ Kε we can find N ∈ N

and t ∈ G such that
∑∞

k=N dk < δ and for each n � N , ρ(fn(t), x) < dn, hence ρ(s(t), x) < δ.
Note, that λ(G) = λ(

⋂∞
n=1 Gn) = limn→∞ λ(Gn) = limn→∞ μ(Kn) = μ(Kε). By the same reason if D is a part

of some Gi and B is the corresponding part of Ki , then λ(G ∩ D) = μ(Kε ∩ B). Since s(G ∩ D) = Kε ∩ B we have
that μ ◦ s = λ on the collection

Φ =
⋃

{D ∩ G: D is a part of some Gi} ∪ {G} ∪ {∅}
of sets. Φ forms a unital semiring that generates the Borel σ -algebra of G, and thus μ ◦ s has a unique extension to
the σ -algebra of Borel subsets of G, hence coincides with λ. �
Lemma 3.7. Let G ⊂ [0,1] be closed, and let (gn) ⊂ C(G), 0 � gn � 1, be a point-wise F -convergent to 0 sequence.
Then there is a sequence (fn) ⊂ C[0,1], 0 � fn � 1, point-wise F -convergent to 0 on [0,1] such that fn|G = gn.

Proof. Without loss of generality we may assume that 0 and 1 belong to G. Represent [0,1] \ G as at most countable
union of disjoint open intervals:

[0,1] \ G =
N⊔

k=1

(tk, t̄k), N ∈ N ∪ {∞}.

Now, we extend gn to fn on [0,1] by linear interpolation: define fn(t) = gn(t) for t ∈ G and for every t ∈ ⊔N
i=1(ti , t̄i ),

t = αtk + (1 − α)t̄k , α ∈ [0,1] put fn(t) = αgn(tk) + (1 − α)g(t̄k). Then fn ∈ C[0,1] and for any t ∈ (tk, t̄k)

F - limfn(t) � F - lim
[
gn(tk) + gn(t̄k)

] = 0. �
Corollary 3.8. If F is C-Lebesgue with respect to λ on [0,1] then F is C-Lebesgue with respect to λ on every closed
subset G ⊂ [0,1].

Proof. For every sequence (gn) ⊂ C(G), 0 � gn � 1, point-wise F -convergent to 0 there is (fn) ⊂ C[0,1],
0 � fn � 1, point-wise F -convergent to 0 on [0,1] such that fn|G = gn. So by the C-Lebesgue property with re-
spect to λ on [0,1] we have

0 = F - lim
∫

[0,1]
fn dλ � F - lim

∫
G

gn dμ � 0. �

Theorem 3.9. F is C-Lebesgue if and only if for every bounded sequence fn ∈ C[0,1] its point-wise F -convergence
to 0 implies that

F - lim
∫

[0,1]
fn dλ = 0,

where λ is the Lebesgue measure on [0,1].

Proof. In view of Theorem 2.10 we need to show that F is C-Lebesgue with respect to every regular Borel probability
measure μ on every metric compact K . Lemma 3.1 gives us the C-Lebesgue property for every purely atomic μ

on K . For non-atomic μ Lemma 3.6 with Corollary 3.8 for every ε > 0 provides us with compact Kε ⊂ K such that
μ(K \ Kε) < ε and F is C-Lebesgue with respect to μ on Kε . So, for a given point-wise F convergent to 0 sequence
of hn ∈ C(K), 0 � hn � 1, we have F - lim

∫
Kε

hn dμ = 0, and the assertion immediately follows from the estimation∫
K

hn dμ =
∫
Kε

hn dμ +
∫

K\Kε

hn dμ <

∫
Kε

hn dμ + ε. �
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4. Ultrafilters and the C-Lebesgue property

Let us compare the C-Lebesgue property with the following Lebesgue property, studied in [4]:

Definition 4.1. A filter F on N is said to be a Lebesgue filter (has the Lebesgue property) if the following statement
takes place: for every finite measure space (Ω,Σ,μ), for every point-wise F -convergent to 0 sequence of measurable
functions fn on Ω if |fn| are dominated by a fixed integrable function g ∈ L1(Ω,Σ,μ) then

∫
Ω

fn dμ →F 0.

Evidently the Lebesgue property implies the C-Lebesgue property. So, as examples of C-Lebesgue filters one can
take all Lebesgue filters. Among them there are many filters of rather complicated structure, say all filters generated
by a matrix summability method (in particular, the statistical convergence filter), but also all filters with a countable
base. We will need the last fact, so let us state it.

Proposition 4.2. (See [4].) Every filter with a countable base is C-Lebesgue.

It is also proved in [4] that all ultrafilters do not have the Lebesgue property. As for the C-Lebesgue property, we
have the following result.

Theorem 4.3. There is a filter F which does not have the C-Lebesgue property. Moreover, there is an ultrafilter which
does not have the C-Lebesgue property.

Proof. Let us show that there is a sequence of sets An ⊂ [0,1] with λ(An) = 1/2 such that 0 is a point-wise cluster
point of the sequence (χAn). This will guarantee the existence of some filter F having 0 point-wise F -limit of χAn

and F - limλ(An) = 1/2 which according to Theorem 2.6 means that F is not C-Lebesgue. Obviously every filter
dominating this F is not C-Lebesgue, so in particular every ultrafilter dominating F is not C-Lebesgue as well.

In order to do this consider the collection V of all sets of the form
∐n

k=1(ak, bk), where n ∈ N ak, bk ∈ Q ∩ [0,1]
and

∑n
k=1 |bk −ak| = 1

2 . The collection V is countable, so let us enumerate it as An, n = 1,2, . . . . Evidently for every
finite set T = {tj }m1 ⊂ [0,1] there is an A ∈ V , such that T ∩ A = ∅. This means that 0 is a point-wise cluster point of
the sequence (χAn). �

Denote by Ñ the set of all free ultrafilters U on N, equipped with the topology defined by means of its base
{Ã: A ⊂ N}, where Ã = {U ∈ Ñ: A ∈ U }. Remark, that in this topology the basic open sets Ã are at the same time
closed. Ñ can be identified with βN \ N where βN denotes the Stone–Čech compactification of N.

Applying all permutations to the set of indices of the An from Theorem 4.3, one can easily show that the set of
ultrafilters without the C-Lebesgue property is dense in Ñ.

Our next goal is to show that if one assumes the continuum hypothesis then there is a free C-Lebesgue ultrafilter.
This means that the C-Lebesgue property is strictly weaker then the Lebesgue property.

Recall that a subset of N is called stationary with respect to a filter F (or just F -stationary) if it has non-empty
intersection with each element of the filter. Denote the collection of all F -stationary sets by F ∗. For I ∈ F ∗ we call
the collection of sets {A∩ I : A ∈ F } the trace of F on I (which is evidently a filter on I ), and by F (I ) we denote the
filter on N generated by the trace of F on I . Clearly F (I ) dominates F . Any subset of N is either an element of F
or the complement of an element of F or the set and its complement are both F -stationary sets. F ∗ is precisely the
union of all ultrafilters dominating F . F ∗ is a filter base if and only if it is equal to F and F is an ultrafilter.

Theorem 4.4. (See [1].) Let X be topological space, xn, x ∈ X and let F be a filter on N. Then the following conditions
are equivalent:

(1) xn is F -convergent to x;
(2) xn is F (I )-convergent to x for every I ∈ F ∗;
(3) x is a cluster point of (xn)n∈I for every I ∈ F ∗.
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Proof. Implications (1) ⇒ (2) and (2) ⇒ (3) are evident. Let us prove that (3) ⇒ (1). Suppose the sequence (xn) does
not F -converge to x. Then there is such a neighborhood U of x that in each A ∈ F there is a j ∈ A such that xj /∈ U .
Consequently I = {j ∈ N: xj /∈ U} is stationary and x is not a cluster point of (xn)n∈I . �
Remark 4.5. If F is a C-Lebesgue filter, then for every I ∈ F ∗ the filter F (I ) is C-Lebesgue.

Let us introduce one more concept of technical character:

Definition 4.6. A filter F on N is said to be strongly C-Lebesgue if for every sequence (fn) ⊂ BC[0,1] whose corre-
sponding sequence of integrals does not F -converge to 0 there is a point t ∈ [0,1] at which 0 is not a cluster point of
(fn(t)) with respect to F .

It is evident that every filter which dominates a strongly C-Lebesgue filter is a strongly C-Lebesgue filter itself and
that a strongly C-Lebesgue filter is necessarily a C-Lebesgue filter.

Theorem 4.7. Under the assumption of continuum hypothesis there is a strongly C-Lebesgue filter, and consequently
there exists a C-Lebesgue ultrafilter.

Proof. Choose a countable dense subset of functions F ⊂ BC[0,1]. It is sufficient to construct a filter F which satisfies
the conditions of Definition 4.6 for every sequence (fn) ⊂ F : in such a case by small perturbation argument F will
be strongly C-Lebesgue.

In order to do this denote by ω1 the set of all ordinals which are finite or countable. Let us enumerate as Fα =
(fα,n)

∞
n=1, α ∈ ω1 all the sequences of functions from F (at this point we use the continuum hypothesis). Now let

us construct the family Fα, α ∈ ω1 of filters on N with countable base using the following recurrent procedure. Take
as F1 the Fréchet filter. If Fα is already constructed we look at the sequence an = ∫ 1

0 fα,n(τ ) dτ . If Fα- liman = 0,
then we put Fα+1 := Fα in the opposite case of Fα- liman �= 0 since Fα has a countable base (and by this reason is
a C-Lebesgue filter) we know that the sequence of functions fα,n at some point t = tα does not Fα converge to 0. By
Theorem 4.4 there is an I = Iα ∈ F ∗

α such that 0 is not a cluster point of (fα,n(t))n∈I . In this case we take as Fα+1
the filter, generated by Fα ∪ {Iα}. If β is a limiting ordinal, and for all α < β the filters Fα are already constructed,
put Fβ = ⋃

α<β Fα .
Finally define F = ⋃

α∈ω1
Fα . Let us prove that F is the filter we need. Take an arbitrary sequence of functions

fn ∈ F such that corresponding sequence of integrals does not F -converge to 0. Select α ∈ ω1 for which (fn) = Fα .
Since F � Fα , we know that the sequence of integrals of fn does not Fα-converge to 0. Then according to our
construction there is a t = tα at which 0 is not a cluster point of (fn(t)) with respect to Fα+1. But then 0 is not a
cluster point of (fn(t)) with respect to F as well.

To get a strongly C-Lebesgue ultrafilter it is sufficient to take arbitrary ultrafilter dominating F . �
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