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Abstract

This paper deals with the eigenvalue problem involving the p(x)-Laplacian of the form{
−div

(|∇u|p(x)−2∇u
) = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω,

where Ω is a bounded domain in R
N , p ∈ C0(Ω), infx∈Ω p(x) > 1, q ∈ L∞(Ω), 1 � q(x) � q(x) + ε < p∗(x) for x ∈ Ω , ε is

a positive constant, p∗(x) is the Sobolev critical exponent. It is shown that for every t > 0, the problem has at least one sequence
of solutions {(un,t , λn,t )} such that

∫
Ω

1
p(x)

|∇un,t |p(x) = t and λn,t → ∞ as n → ∞. The principal eigenvalues for the problem
in several important cases are discussed especially. The similarities and the differences in the eigenvalue problem between the
variable exponent case and the constant exponent case are exposed. Some known results on the eigenvalue problem are extended.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the eigenvalue problem of the form

{−div
(|∇u|p(x)−2∇u

) = λ|u|q(x)−2u in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N , λ ∈ R, p ∈ C0(Ω), infx∈Ω p(x) > 1, q ∈ L∞(Ω), 1 � q(x) � q(x)+ε < p∗(x)

for a.e. x ∈ Ω , ε is a positive constant and

p∗(x) =
{

Np(x)
N−p(x)

if p(x) < N,

∞ if p(x) � N.
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Problem (1.1) involves the variable exponents p(·) and q(·). The variable exponent problems are interesting for
some applications; see e.g. [23,32]. The study of various mathematical problems with variable exponent has been
received considerable attention in recent years; for a survey see [3,6,22,33].

There are many essential differences between the variable exponent problems and the constant exponent problems.
In the studies of the variable exponent problems many singular phenomena occurred and many special questions were
raised. For example, Zhikov [37] has gave some examples of the Lavrintiev phenomenon for the variational problems
with variable exponent. It is well known that in the constant exponent case the Lavrintiev phenomenon cannot occur.
Zhikov’s examples also show that, in general, smooth functions are not necessarily dense in the variable exponent
Sobolev space, and the regularity for the variational problems and differential equations with variable exponent is a
very complicated problem. For the study of the regularity for variable exponent problems see e.g. [1,11,12,18,37–39].
Kovác̆ik and Rákosnik [26] have specially investigated the variable exponent Lebesgue–Sobolev spaces. In [26] many
new questions, different from classical Lebesgue–Sobolev spaces, were raised, for example, it was proved (see [26,
Theorem 2.10]) that when p(·) is continuous and nonconstant, space Lp(·) does not have the mean continuity property.
Pick and Růžička [31] have given an example of a space Lp(x) on which the Hardy–Littlewood maximal operator is not
bounded. In recent years many researchers (see e.g. [3–7,10,15,19,22,24,25,33]) have studied the basic properties of
variable exponent Lebesgue–Sobolev spaces and the boundedness of some classical operators in the variable exponent
spaces, such as Hardy–Littlewood maximal operators, singular integrals, commutators and fractional integrals. These
research results reflect the characteristics of the variable exponent problems very well.

The operator −div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian which is a generalization of the p-Laplacian and
possesses more complicated nonlinearities than the p-Laplacian, for example, it is inhomogeneous. From the study
of the p(x)-Laplacian equations (see e.g. [2,3,8,16,17,28–30]) we can see that, the inhomogeneity is a main difficulty
to generalize the results in the constant exponent case to the variable exponent case and it is also a main cause of the
occurrence of some singular phenomena in the variable exponent problems. Jikov (=Zhikov), Kozlov and Oleinik [23]
have studied the homogenization of differential equations and variational problems with variable exponent.

The aim of the present paper is to study eigenvalue problem (1.1). Put

Λ = Λ(p(·),q(·)) = {
λ ∈ R

∣∣ λ is an eigenvalue for (1.1)
}
,

Λ+ = Λ+
(p(·),q(·)) = {

λ ∈ R
∣∣ λ is a principal eigenvalue for (1.1)

}
,

where λ is called a principal eigenvalue for (1.1) if there exists a nonnegative eigenfunction corresponding to λ. In
this paper we will restrict ourselves to the subcritical case, i.e., the case when q(x) + ε < p∗(x) for a.e. x ∈ Ω . We
will use the notations such as q− and q+, where q− = ess infx∈Ω q(x) and q+ = ess supx∈Ω q(x).

It is well known that problem (1.1) in the constant exponent case, i.e., when p(·) ≡ p (a constant) and q(·) ≡
q (a constant), has been studied sufficiently (see e.g. [21,27] and references therein). On the eigenvalue problems
involving the p(x)-Laplacian, some interesting results have been obtained (see e.g. [2,8,13,14,17,28–30]), from which
we can also see the differences between the variable and the constant exponent cases.

In [17] problem (1.1) with q(x)=p(x) was studied and it was shown that, in this case, in general, infΛ(p(·),p(·)) =0.
This is a singular phenomenon, different from the constant exponent case, since when q(·) = p(·) ≡ p, infΛ(p,p) is
the first eigenvalue which is positive. In [17] some sufficient conditions for infΛ(p(·),p(·)) > 0 were also given.

When q+ < p−, by Theorem 4.3 in [16], for every λ > 0, the energy functional Iλ corresponding to (1.1) is coercive
and has a global minimizer which is nontrivial and nonnegative, and hence Λ+ = (0,∞).

When q− > p+, by Theorem 4.7 in [16], for every λ > 0, the energy functional Iλ corresponding to (1.1) has a
Mountain Pass type critical point which is nontrivial and nonnegative, and hence Λ+ = (0,∞).

Mihăilescu and Rădulescu [29] have studied problem (1.1) under the basic assumption

1 < q− < p− < q+ (1.2)

and proved that there exists λ0 > 0 such that any λ ∈ (0, λ0) is an eigenvalue for problem (1.1).
In [14] it was proved by using the sub–supersolution method that, roughly speaking (see Theorem 3.7 in the present

paper for more details), if p is Lipschitz on Ω , q ∈ C0(Ω) and there exists x0 ∈ Ω such that q(x0) < p(x0) (note
that the assumption q(x) < p∗(x) is needless), then Λ+ is nonempty and connected, and infΛ+ = 0. Moreover,
for any λ1, λ2 ∈ Λ+ with λ1 < λ2, there exist uλ1 and uλ2 , the positive eigenfunctions corresponding to λ1 and λ2,
respectively, such that uλ1 < uλ2 in Ω .
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Alves and Souto [2] have studied the corresponding eigenvalue problems in R
N and obtained interesting results.

In [8,13,28,30] some eigenvalue problems of other form, different from (1.1), have been studied.
For problem (1.1), when p(·) ≡ p (a constant) and q(·) ≡ q (a constant), there are only three cases: 1) q = p;

2) q < p; 3) q > p. However, in the variable exponent case the situation is more complicated. In the general case,
for given p(·) and q(·), the sets Ω0 = {x ∈ Ω: q(x) = p(x)}, Ω− = {x ∈ Ω: q(x) < p(x)} and Ω+ = {x ∈ Ω:
q(x) > p(x)} can have all positive measure at the same time. In this paper we will consider the general case (note that
condition (1.2) does not necessarily hold), also consider the case that Ω = Ω− (but q+ < p− does not hold) and the
case that Ω = Ω+ (but q− > p+ does not hold). In particular, the main results of [17] and [29] are extended.

In Section 2, we study the eigenvalues for problem (1.1) by a constrained variational method. It is proved that for
every t > 0, problem (1.1) has at least one sequence of solutions {(un,t , λn,t )}∞n=1 such that

∫
Ω

1
p(x)

|∇un,t |p(x) dx = t

and λn,t → ∞ as n → ∞. In Section 3, we study the principal eigenvalues for problem (1.1) in the general case, in
the case Ω = Ω− and in the case Ω = Ω+, respectively. The similarities and the differences in problem (1.1) between
the variable and the constant exponent cases are exposed. In the end of this paper it is pointed out that our main results
on problem (1.1) can be generalized to the following problem that has more general form{−div

(|∇u|p(x)−2∇u
) = λf (x,u) in Ω,

u = 0 on ∂Ω,
(1.3)

provided f satisfies appropriate conditions (see Theorem 3.8 in Section 3).

2. Eigenvalue problems

Let Ω be a bounded domain in R
N . For a measurable function q : Ω → R and E ⊂ Ω , define

q−(E) = ess inf
x∈E

q(x) and q+(E) = ess sup
x∈E

q(x),

and write q−(Ω) = q− and q+(Ω) = q+ simply. Now let p ∈ L∞(Ω) satisfy condition 1 � p− � p+ < ∞.

The variable exponent Lebesgue space Lp(·)(Ω) is defined by

Lp(·)(Ω) =
{
u

∣∣∣ u :Ω → R is measurable,
∫
Ω

|u|p(x) dx < ∞
}

with the norm

|u|Lp(·)(Ω) = |u|p(·) = inf

{
σ > 0

∣∣∣ ∫
Ω

∣∣∣∣ u

σ

∣∣∣∣
p(x)

dx � 1

}
.

The variable exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {
u ∈ Lp(·)(Ω)

∣∣ |∇u| ∈ Lp(·)(Ω)
}

with the norm

‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) = |u|p(·) + |∇u|p(·).

Define W
1,p(·)
0 (Ω) as the closure of C∞

0 (Ω) in W 1,p(·)(Ω). |∇u|p(·) is an equivalent norm on W
1,p(·)
0 (Ω). We

refer to [3,6,10,15,19,22,26,33] for the elementary properties of the space W 1,p(x)(Ω).

Proposition 2.1. (See [19].) Let p,q ∈ C0(Ω) and 1 � q(x) < p∗(x) for all x ∈ Ω . Then there holds a compact
imbedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Let p ∈ C0(Ω) and q ∈ L∞(Ω). Writing q 
 p∗ we mean that there exists ε > 0 such that

q(x) + ε � p∗(x) for a.e. x ∈ Ω.

It is easy to see that, when q ∈ C0(Ω), q 
 p∗ if and only if q(x) < p∗(x) for all x ∈ Ω . It is also easy to see that,
for q ∈ L∞(Ω), q 
 p∗ if and only if there exists r ∈ C0(Ω) such that q � r 
 p∗. Thus Proposition 2.1 can be
extended as follows.
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Proposition 2.2. Let p ∈ C0(Ω) and q ∈ L∞(Ω) with q− � 1. If q 
 p∗, then there holds a compact imbedding
W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

In what follows, it will be assumed that:

(p0) p ∈ C0(Ω) and p− > 1.
(q0) q ∈ L∞(Ω), q− � 1 and q 
 p∗.

Let us consider problem (1.1). Below we write X = W
1,p(·)
0 (Ω) and ‖u‖ = |∇u|p(·) for u ∈ X.

Definition 2.1. Let λ ∈ R and u ∈ X. (u,λ) is called a solution of problem (1.1) if∫
Ω

|∇u|p(x)−2∇u∇v dx = λ

∫
Ω

|u|q(x)−2uv dx, ∀v ∈ X.

If (u,λ) is a solution of (1.1) and u ∈ X \ {0}, as usual, we call λ and u an eigenvalue and an eigenfunction corre-
sponding to λ for problem (1.1), respectively.

It is easy to see that, if (u,λ) is a solution of (1.1) and u ∈ X \ {0}, then

λ = λ(u) =
∫
Ω

|∇u|p(x) dx∫
Ω

|u|q(x) dx
, (2.1)

and hence λ > 0.

Set

Λ = Λ(p(·),q(·)) = {
λ ∈ R

∣∣ λ is an eigenvalue for (1.1)
}
.

Define J,ψ : X → R by

J (u) =
∫
Ω

1

p(x)
|∇u|p(x) dx, ψ(u) =

∫
Ω

1

q(x)
|u|q(x) dx, ∀u ∈ X,

then J and ψ are even, J,ψ ∈ C1(X,R) and

(
J ′(u), v

) =
∫
Ω

|∇u|p(x)−2∇u∇v dx, ∀u,v ∈ X,

(
ψ ′(u), v

) =
∫
Ω

|u|q(x)−2uv dx, ∀u,v ∈ X.

For any t > 0, define

M(t) = J−1(t) = {
u ∈ X

∣∣ J (u) = t
}
.

Then M(t) is a C1 submanifold of X because t is a regular value of J . Denote by ψt the restriction of ψ to M(t):

ψt = ψ |M(t) :M(t) → R.

Then ψt is a C1 functional defined on M(t).
It is well known (see e.g. [36, p. 292]) that, if u is a critical point of ψt on M(t), then, by the Lagrange multiplier

rule, (u,λ) is a solution of (1.1), where λ = λ(u) is as in (2.1).
We know (see [16]) that J ′ : X → X∗ is a monotone homeomorphism, and is of type (S+), namely,

un ⇀ u in X and lim
(
J ′(un), un − u

)
� 0 ⇒ un → u in X,
n→∞
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where un ⇀ u and un → u denote the weak convergence and the strong convergence in X, respectively, the mappings
J ′ and (J ′)−1 are bounded, and ψ ′ : X → X∗ is weakly-strongly continuous. From this, by a standard argument (see
[13,21,34]), it follows that ψt satisfies the (P.S)+ condition on M(t).

Define

Σ = {
A ⊂ X \ {0} ∣∣ A is compact and −A = A

}
,

Σn = {
A ∈ Σ

∣∣ γ (A) � n
}
, n = 1,2, . . . ,

where γ (A) is the genus of A (see e.g. [36]), and

cn(t) = sup
A∈Σn,A⊂M(t)

inf
u∈A

ψ(u), n = 1,2, . . . . (2.2)

Obviously, cn(t) > 0 and

c1(t) � c2(t) � · · · � cn(t) � cn+1(t) � · · · .
By the Ljusternik–Schnirelmann theory on C1-manifolds (see [34]) we have the following

Theorem 2.1. Let (p0) and (q0) hold. Then, for each t > 0, the following assertions hold.

(1) For each n = 1,2, . . . , cn(t) is a critical value of ψt on M(t) and the Ljusternik–Schnirelmann multiplicity result
holds.

(2) cn(t) → 0 as n → ∞.

Define for t > 0 and n = 1,2, . . . ,

Kn(t) = {
u ∈ M(t)

∣∣ u is a critical point of ψt and ψt(u) = cn(t)
}
, (2.3)

Λn(t) = {
λ(u)

∣∣ u ∈ Kn(t)
}
, where λ(u) is as in (2.1), (2.4)

μn(t) = t

cn(t)
. (2.5)

By Theorem 2.1, for each t > 0 and n = 1,2, . . . , Kn(t) �= ∅, and for each t > 0, μn(t) → +∞ as n → ∞. As
noted above, if u ∈ Kn(t), then (u,λ(u)) is a solution of (1.1), where λ(u) is as in (2.1). Thus Λn(t) ⊂ Λ for each
t > 0 and n = 1,2, . . . .

Note that, in general, the set Λn(t) needs not be a singleton. For brevity, we shall adopt the usual agreement about
the notations for set-valued mappings. For example, an inequality Λn(t) � C means that λ � C for every λ ∈ Λn(t),
and a limit Λn(1) → +∞ as n → ∞ means that given any L > 0, there exists n0 > 0 such that λ � L for all λ ∈ Λn(1)

provided n � n0.
Now let any t > 0 be given. For any λ ∈ Λn(t), there exists u ∈ Kn(t) such that

λ = λ(u) =
∫
Ω

|∇u|p(x) dx∫
Ω

|u|q(x) dx
,

and consequently

λ �
p+

∫
Ω

1
p(x)

|∇u|p(x) dx

q−
∫
Ω

1
q(x)

|u|q(x) dx
= p+t

q−cn(t)
= p+

q−
μn(t),

λ �
p−

∫
Ω

1
p(x)

|∇u|p(x) dx

q+
∫
Ω

1
q(x)

|u|q(x) dx
= p−t

q+cn(t)
= p−

q+
μn(t).

Thus we have that, for each t > 0 and n = 1,2, . . . ,
p−
q+

μn(t) � Λn(t) � p+
q−

μn(t). (2.6)

In particular, since μn(t) → +∞ as n → ∞, we have that, for each t > 0, Λn(t) → +∞ as n → ∞. Let us formulate
these in Theorem 2.2.
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Theorem 2.2. Let (p0) and (q0) hold. Then, for each t > 0 and n = 1,2, . . . , the sets Kn(t) and Λn(t) are nonempty,
Λn(t) ⊂ Λ, and for any u ∈ Kn(t), (u,λ(u)) is a solution of (1.1), where λ(u) is as in (2.1). For each t > 0,
Λn(t) → +∞ as n → ∞.

In the following two remarks we point out two differences between the variable and the constant exponent cases.

Remark 2.1. In the case when p(·) ≡ p (a constant) and q(·) ≡ q (a constant), by (2.6), for each t > 0 and n =
1,2, . . . , the set Λn(t) = {p

q
μn(t)} is a singleton. However, in the variable exponent case, we cannot guarantee that

the set Λn(t) must be a singleton.

Remark 2.2. It is well known that, in the case when p(·) ≡ p (a constant) and q(·) ≡ q (a constant), to consider
problem (1.1) by the constrained variational method, thanks to the homogeneity of J , ψ , J ′ and ψ ′, it suffices to
consider a constrained variational problem on M(1) = {u ∈ X | J (u) = 1}. In fact, if (u,λ) with u ∈ M(1) is a

solution of (1.1), then for given any t > 0, t
1
p u ∈ M(t) and (t

1
p u, t

p−q
p λ) is also a solution of (1.1). However this is

not the case when p(·) and q(·) are variable exponents due to the inhomogeneity.

Now let us observe the dependence of cn(t), μn(t) and Λn(t) on t . We first give a lemma as follows.

Lemma 2.1. Let t > 0 be given. Then for any u ∈ X \ {0}, there exists a unique s(u) > 0 such that s(u)u ∈ M(t). The
function s : X \ {0} → (0,∞), defined by u �→ s(u), is continuously differentiable. The mapping ht : X \ {0} → M(t),
defined by ht (u) = s(u)u, is continuously differentiable. For any t1 > 0, the restriction of ht on M(t1), denoted by
h(t1,t) = ht |M(t1), is a C1-homeomorphism of M(t1) with M(t). When t → t1, ‖h(t1,t)(u) − u‖ → 0 uniformly in
u ∈ M(t1).

Proof. Let t > 0 and u ∈ X \ {0} be given. Define a function ϕ : (0,∞) → (0,∞) by ϕ(s) = J (su) =∫
Ω

sp(x)

p(x)
|∇u|p(x) dx. It is clear that the function ϕ is continuous and strictly increasing, ϕ(s) → 0 as s → 0 and

ϕ(s) → ∞ as s → ∞. Hence there exists a unique s = s(u) > 0 such that ϕ(s(u)) = t , i.e., s(u)u ∈ M(t). Define
F : (X \ {0}) × (0,∞) → (0,∞) by F(u, s) = J (su). Obviously F ∈ C1. For any u0 ∈ X \ {0}, letting s0 = s(u0),
then F(u0, s0) = t . It is easy to see that ∂F

∂s
(u0, s0) = ∫

Ω
s
p(x)−1
0 |∇u0|p(x) dx �= 0. By the implicit function theorem,

the function s : X \ {0} → (0,∞), defined by u �→ s(u), is continuously differentiable, and consequently, the map-
ping ht : X \ {0} → M(t), defined by ht (u) = s(u)u, is continuously differentiable. Now let t1 > 0 and consider the
mapping h(t1,t) = ht |M(t1) : M(t1) → M(t). It is obvious that the mapping h(t1,t) : M(t1) → M(t) is a bijection. The
mapping h(t1,t) and its inverse mapping h(t,t1) are of class C1. Hence h(t1,t) : M(t1) → M(t) is a C1-homeomorphism.
Let u ∈ M(t1) and h(t1,t)(u) = s(u)u ∈ M(t). Then

t = J
(
s(u)u

) = (
s(u)

)puJ (u) = (
s(u)

)put1,

where pu ∈ [p−,p+] is a constant depending on u. From this it follows that, when t → t1, s(u) → 1 uniformly in

u ∈ M(t1). Noting that ‖u‖ � max{(p+t1)
1

p+ , (p+t1)
1

p− } for u ∈ M(t1), we have that, when t → t1,∥∥h(t1,t)(u) − u
∥∥ = ∣∣s(u) − 1

∣∣‖u‖ → 0 uniformly in u ∈ M(t1).

The lemma is proved. �
Proposition 2.3. For each fixed n, cn(t) and μn(t), as the functions of t , are continuous on (0,∞).

Proof. Let any positive integer n be given. Take any t0 ∈ (0,∞). Let us prove that cn(t), as a function of t , is
continuous at t = t0. To see this, let any ε > 0 be given. By Lemma 2.1 and the uniform continuity of ψ on every
bounded set in X, there exists δ > 0 small enough such that when |t − t0| < δ, |ψ(h(t0,t)(u)) − ψ(u)| < ε for all
u ∈ M(t0). By the definition of cn(t0), there exists A ⊂ M(t0) such that A ∈ Σn and infu∈A ψ(u) � cn(t0) − ε. For
any t > 0 with |t − t0| < δ, we have that h(t0,t)(A) ⊂ M(t), h(t0,t)(A) ∈ Σn and

inf
u∈h(t ,t)(A)

ψ(u) � inf
u∈A

ψ(u) − ε � cn(t0) − 2ε,

0
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which shows that cn(t) � cn(t0) − 2ε provided |t − t0| < δ. Thus we have that lim t→t0
cn(t) � cn(t0). On the other

hand, for each t > 0 with |t − t0| < δ, there exists At ⊂ M(t) such that At ∈ Σn and infu∈At ψ(u) � cn(t) − ε. Then
h(t,t0)(At ) ⊂ M(t0), h(t,t0)(At ) ∈ Σn and

inf
u∈h(t,t0)(At )

ψ(u) � inf
u∈At

ψ(u) − ε � cn(t) − 2ε,

which shows that cn(t0) � cn(t) − 2ε provided |t − t0| < δ. Thus we have that limt→t0cn(t) � cn(t0). Hence
limt→t0 cn(t) = cn(t0). This shows that the function cn(·) is continuous on (0,∞). Since μn(t) = t

cn(t)
, the function

μn(·) is also continuous on (0,∞). �
Proposition 2.4. Let n be any positive integer. Then for each t > 0, the sets Kn(t) and Λn(t) are compact, and the
set-valued mappings Kn(·) and Λn(·) are upper semicontinuous on (0,∞).

Proof. Let any positive integer n be given. Then for each t > 0, since ψt satisfies the (P.S)+ condition on M(t),
Kn(t), the set of critical points of ψt with critical value cn(t), is compact. Take any t0 > 0. Let us prove that
the set-valued mapping Kn(t) is upper semicontinuous at t = t0. Arguing by contradiction, assume that this is not
true. Then there exist an open neighborhood U of Kn(t0), {tm} ⊂ (0,∞) and {um} ⊂ X \ {0} such that tm → t0 as
m → ∞, um ∈ Kn(tm) and um /∈ U for every m. Note that um ∈ Kn(tm) implies that um ∈ M(tm), ψ(um) = cn(tm)

and J ′(um) = λmψ ′(um) with λm =
∫
Ω |∇um|p(x) dx∫
Ω |um|q(x) dx

. Obviously, {‖un‖} and {λm} are bounded. We may assume, taking

a subsequence if necessary, that un ⇀ u0 in X and λm → λ0. Since ψ and ψ ′ are weakly-strongly continuous, we
have that ψ(um) → ψ(u0) and ψ ′(um) → ψ ′(u0). By Proposition 2.3, ψ(um) = cn(tm) → cn(t0), so ψ(u0) = cn(t0).
It is easy to see that λ0 > 0. Because that J ′(um) = λmψ ′(um) → λ0ψ

′(u0) and J ′ is of type (S+), we have that
um → u0 in X. Thus J (um) → J (u0), J ′(um) → J ′(u0) and J ′(u0) = λ0ψ

′(u0). This shows that u0 ∈ Kn(t0) which
contradicts with um /∈ U . Hence the set-valued mapping Kn(·) is upper semicontinuous on (0,∞). If we define a
function λ :X \ {0} → (0,∞) as in (2.1), then the function λ(·) is continuous, and Λn(t) = λ(Kn(t)) for every t > 0,
namely, Λn = λ ◦ Kn. From this it follows that the set-valued mapping Λn(·), as a composition of Kn(·) and λ(·), is
also upper semicontinuous on (0,∞). �
Remark 2.3. We do not know whether for any n, the set-valued mapping Λn(·) (or Kn(·)) has a continuous selection,
i.e., there exists a continuous mapping λn(·) such that λn(t) ∈ Λn(t) for every t ∈ (0,∞). In general, the relation
between cn(t) and Λn(t) is complicated. For the relation between critical values and eigenvalues in nonlinear minimax
problems we refer to Tintarev [35].

3. Principal eigenvalues

Let us continue to use the notations as in Sections 1 and 2. Because the positive solutions of (1.1) possess special
significance, the following definition is reasonable.

Definition 3.1. An eigenvalue λ ∈ Λ for (1.1) is called principal if there exists a nonnegative eigenfunction corre-
sponding to λ, i.e., if there exists a nonnegative u ∈ X \ {0} such that (u,λ) is a solution of (1.1).

Remark 3.1. In the case when p ∈ C1(Ω), by a strong maximum principle for the p(x)-Laplacian equations of [20],
every nontrivial nonnegative solution u of (1.1) must be positive in Ω . Note that, in fact, from [20] we can see that
the condition p ∈ C1(Ω) can be replaced by a weaker condition that p is Lipschitz on Ω .

Define

Λ+ = Λ+
(p(·),q(·)) = {

λ ∈ R
∣∣ λ is a principal eigenvalue for (1.1)

}
.

In this section, if no special explanation, it will always be assumed that (p0) and (q0) hold.

Proposition 3.1. Λ1(t) ⊂ Λ+ for every t > 0.
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Proof. Let t > 0 and λ ∈ Λ1(t). Then there exists u ∈ M(t) such that ψ(u) = c1(t) = supM(t) ψ and λ =
∫
Ω |∇u|p(x) dx∫
Ω |u|q(x) dx

.

Put v(x) = |u(x)| for x ∈ Ω . Then J (v) = J (u) = t , ψ(v) = ψ(u) = c1(t),
∫
Ω

|∇v|p(x) dx = ∫
Ω

|∇u|p(x) dx and∫
Ω

|v|q(x) dx = ∫
Ω

|u|q(x) dx. Thus v is nonnegative and nontrivial, v ∈ M(t), v ∈ K1(t) and λ =
∫
Ω |∇v|p(x) dx∫
Ω |v|q(x) dx

. This

shows that (v,λ) is a solution of (1.1) and so λ ∈ Λ+. The proof is complete. �
Theorem 3.1. Assume the following condition is satisfied:

(A1) There exist an open subset U of Ω and a compact subset E of U with positive measure |E| such that
q+(E) < p−(∂U).

Then when t → 0, μ1(t) → 0 and Λ1(t) → 0, and consequently infΛ+ = 0.

Proof. For any δ > 0, define

Uδ = {
x ∈ U

∣∣ dist(x, ∂U) < δ
}
.

Then there exists δ > 0 small enough such that E ∩ Uδ = ∅ and q+(E) < p−(Uδ). Putting ε = p−(Uδ)− q+(E), then
ε > 0. Let u0 ∈ X be such that u0(x) = 0 for x ∈ Ω \ U and u0(x) = 1 for x ∈ U \ Uδ . Given any t > 0 there exists a
unique s = st > 0 such that su0 ∈ M(t) and st → 0 as t → 0. Now let t > 0 be small enough such that s = st ∈ (0,1).
Then

μ1(t) = t

c1(t)
�

∫
Ω

sp(x)

p(x)
|∇u0|p(x) dx∫

Ω
sq(x)

q(x)
|u0|q(x) dx

�
∫
Uδ

sp(x)

p(x)
|∇u0|p(x) dx∫

E
sq(x)

q(x)
|u0|q(x) dx

�
sp−(Uδ)

∫
Uδ

1
p(x)

|∇u0|p(x) dx

sq+(E)
∫
E

1
q(x)

|u0|q(x) dx
� sε

∫
Uδ

1
p(x)

|∇u0|p(x) dx∫
E

1
q(x)

|u0|q(x) dx
.

From this it follows that μ1(t) → 0 as t → 0. By (2.6), Λ1(t) � p+
q− μ1(t), and hence Λ1(t) → 0 as t → 0. �

Theorem 3.2. Assume the following condition is satisfied:

(A2) There exist an open subset U of Ω and a compact subset E of U with positive measure |E| such that
q−(E) > p+(∂U).

Then when t → ∞, μ1(t) → 0 and Λ1(t) → 0, and consequently infΛ+ = 0.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1 and it is omitted here.

Remark 3.2. In [17] a special case of Theorems 3.1 and 3.2 when q(·) = p(·) has been proved.

Remark 3.3. Condition (A1) holds if the following condition is satisfied:

(A1)
′ There are x0 ∈ Ω and an open neighborhood G such that q ∈ C0(G) and q(x0) < p(x0).

Indeed, when (A1)
′ holds, there exists an open ball B(x0, r) such that B(x0, r) ⊂ G and q+(B(x0, r)) <

p−(B(x0, r)) and hence (A1) holds by taking U = B(x0, r) and E = B(x0,
r
2 ). Analogously we can see that con-

dition (A2) holds if the following condition is satisfied:

(A2)
′ There are x0 ∈ Ω and an open neighborhood G such that q ∈ C0(G) and q(x0) > p(x0).

Note that, when q ∈ C0(Ω), condition (A1)
′ (respectively (A2)

′) is just the condition that there exists x0 ∈ Ω such
that q(x0) < p(x0) (respectively q(x0) > p(x0)).
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Put

μ∗ = infμ1((0,∞)), μ∗ = supμ1((0,∞)),

λ∗ = infΛ+, λ∗ = supΛ+.

Theorems 3.1 and 3.2 show that, if either (A1) or (A2) holds, then μ∗ = 0. It is easy to see that, if (A1) and (A2) hold,
then μ∗ < ∞. Note that μ∗ = 0 ⇒ λ∗ = 0, and μ∗ = ∞ ⇒ λ∗ = ∞.

By Proposition 2.3, the function μ1(·) is continuous on (0,∞) and so μ1((0,∞)), the image set of μ1(·), is con-
nected. However we do not know whether Λ1((0,∞)), the image set of the set-valued function Λ1(·), is connected. As
noted in Introduction, Mihăilescu and Rădulescu [29, Theorem 2.1] have proved that, under the basic assumption (1.2)
there exists λ0 > 0 (small enough) such that any λ ∈ (0, λ0) is an eigenvalue for problem (1.1). The following theorem
is a generalization of [29, Theorem 2.1] because condition (1.2) implies condition (A1), and μ∗ may be larger than λ0
mentioned in [29, Theorem 2.1].

Theorem 3.3. Let (A1) hold. Then for any λ ∈ (0,μ∗), there holds λ ∈ Λ+ and there exists a nonnegative eigenfunc-
tion uλ corresponding to λ such that uλ is a local minimizer of the energy functional Iλ associated to problem (1.1)
and Iλ(uλ) < 0, and moreover, J (uλ) → 0 as λ → 0.

Proof. Let (A1) hold and any λ ∈ (0,μ∗) be given. Consider the energy functional

Iλ(u) = J (u) − λψ(u) =
∫
Ω

1

p(x)
|∇u|p(x) dx − λ

∫
Ω

1

q(x)
|u|q(x) dx, ∀u ∈ X. (3.1)

By Theorem 3.1, μ1(t) → 0 as t → 0 and so μ∗ = 0. Since μ1((0,∞)) is connected and λ ∈ (0,μ∗), there exists
t0 > 0 such that λ � μ1(t0) = t0

c1(t0)
. Put D = {u ∈ X: J (u) � t0}. Then D is a bounded, convex and closed subset

of X and ∂D = J−1(t0) = M(t0). Noting that c1(t0) = supM(t0)
ψ , we have that, for any u ∈ ∂D,

Iλ(u) = J (u) − λψ(u) � t0 − λc1(t0) = t0

(
1 − λc1(t0)

t0

)
= t0

(
1 − λ

μ1(t0)

)
� 0.

Because the functional Iλ :D → R is (sequentially) weakly lower semicontinuous and D is (sequentially) weakly
compact, there exists u0 ∈ D such that Iλ(u0) = infu∈D Iλ(u). We claim that Iλ(u0) < 0. Indeed, taking t1 ∈ (0, t0)

such that μ1(t1) < λ, then there exists v ∈ M(t1) ⊂ D such that ψ(v) = c1(t1) and consequently

Iλ(v) = J (v) − λψ(v) = t1 − λc1(t1) = t1

(
1 − λc1(t1)

t1

)
= t1

(
1 − λ

μ1(t1)

)
< 0,

which shows Iλ(u0) < 0. Putting uλ(x) = |u0(x)| for x ∈ Ω , then Iλ(uλ) = Iλ(u0) = infu∈D Iλ(u) < 0, uλ �= 0 and
uλ ∈ intD. Thus uλ is a local minimizer of Iλ and hence I ′

λ(uλ) = 0. This shows that (uλ,λ) is a solution of (1.1) and
λ ∈ Λ+. It is easy to see that J (uλ) → 0 as λ → 0. The proof is complete. �

Now let us consider the case that q(x) < p(x) for a.e. x ∈ Ω . It is well known that, in the constant exponent case,
when q < p, μ∗ = ∞ and for every λ > 0, the corresponding problem (1.1) has a unique positive solution u (see
e.g. [9]). The following example shows that, in general, this is not the case when p(·) and q(·) are not constants.

Example 3.1. Let Ω = B(0,2) := {x ∈ R
N | |x| < 2} ⊂ R

N , p(x) = 10 − |x|2 and q(x) = 9 − |x|2. Then p,q ∈
C1(Ω) and q(x) < p(x) for all x ∈ Ω . Obviously, the condition (A1) holds because condition (A1)

′ is satisfied. By
Theorem 3.1,

μ1(t) → 0 and Λ1(t) → 0 as t → 0.

Taking U = Ω = B(0,2) and E = B(0,1), then q−(E) = 9 − 1 = 8 and p+(∂U) = 10 − 22 = 6. Thus q−(E) >

p+(∂U). This shows that condition (A2) holds. By Theorem 3.2,

μ1(t) → 0 and Λ1(t) → 0 as t → ∞.
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Thus, by the continuity of μ1(·) on (0,∞), μ∗ = 0 and μ∗ < ∞. Let t∗ ∈ (0,∞) be such that μ1(t
∗) = μ∗. Take

t1 > t∗ large enough such that μ1(t1) <
q−
p+ μ∗ = 5

10μ∗ = 1
2μ∗. Then there exists a nonnegative u1 ∈ M(t1) such that

ψ(u1) = c1(t1). Putting λ1 =
∫
Ω |∇u1|p(x) dx∫
Ω |u1|q(x) dx

, then (u1, λ1) is a solution of problem (1.1) and λ1 ∈ Λ+. Noting that

λ1 � p+
q− μ1(t1) < μ∗, from the proof of Theorem 3.3 we can know that there exists a nonnegative eigenfunction u2

corresponding to λ1 such that u2 ∈ M(t2) with t2 ∈ (0, t∗). Since t2 < t∗ < t1, u1 �= u2. Thus for λ = λ1, problem (1.1)
has two different positive solutions u1 and u2.

In [17] it was shown that when q(·) = p(·), in general,

λ∗,(p(·),p(·)) := infΛ+
(p(·),p(·)) = 0,

and in the case when p(·) satisfies some monotonicity conditions, λ∗,(p(·),p(·)) > 0.

Theorem 3.4. Suppose that λ∗,(p(·),p(·)) > 0, and q 
 p, that is, there exists ε > 0 such that

q(x) + ε � p(x) for a.e. x ∈ Ω. (3.2)

Then for any λ > 0, problem (1.1) has a nontrivial nonnegative solution uλ which is a global minimizer of the energy
functional Iλ associated to problem (1.1) and Iλ(uλ) < 0, and consequently Λ+ = (0,∞).

Proof. Let any λ > 0 be given and Iλ be as in (3.1). Note that the condition λ∗,(p(·),p(·)) > 0 implies that

μ := inf
u∈X\{0}

∫
Ω

1
p(x)

|∇u|p(x) dx∫
Ω

1
p(x)

|u|p(x) dx
> 0. (3.3)

From (3.2) it follows that there exists R > 0 large enough such that

λ|t |q(x)

q(x)
<

μ|t |p(x)

2p(x)
for |t | > R and a.e. x ∈ Ω. (3.4)

By (3.3) and (3.4) we have that, for any u ∈ X,

Iλ(u) =
∫
Ω

1

p(x)
|∇u|p(x) dx − λ

∫
Ω

1

q(x)
|u|q(x) dx

=
∫
Ω

1

p(x)
|∇u|p(x) dx − λ

∫
|u(x)|>R

1

q(x)
|u|q(x) dx − λ

∫
|u(x)|�R

1

q(x)
|u|q(x) dx

�
∫
Ω

1

p(x)
|∇u|p(x) dx − μ

2

∫
Ω

1

p(x)
|u|p(x) dx − C1

� 1

2

∫
Ω

1

p(x)
|∇u|p(x) dx − C1, (3.5)

where C1 is a positive constant. (3.5) shows that Iλ is coercive, namely Iλ(u) → ∞ as ‖u‖ → ∞. Hence Iλ has a
global minimizer u0. It is obvious that (3.2) implies (A1). By Theorem 3.3, we know that Iλ(u0) < 0. Thus u0 �= 0.
Putting uλ(x) = |u0(x)| for x ∈ Ω , then uλ is a global minimizer of Iλ. Thus λ ∈ Λ+, and consequently Λ+ = (0,∞).
The proof is complete. �

The following theorem, Theorem 3.5, is a generalization of Theorem 3.4.

Theorem 3.5. Suppose that (A1) holds and the following condition is satisfied:
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(A3) Given any δ > 0, there exists a positive Cδ such that∫
Ω

1

q(x)
|u|q(x) dx � δ

∫
Ω

1

p(x)
|∇u|p(x) dx + Cδ for all u ∈ X.

Then the assertions of Theorem 3.4 remain in force.

Proof. Let any λ > 0 be given. Taking δ = 1
2λ

and using condition (A3), we can see that Iλ is coercive and hence Iλ

has a global minimizer u0. From (A1) it follows that Iλ(u0) < 0. Putting uλ(x) = |u0(x)| for x ∈ Ω , we can see that
the assertions of Theorem 3.4 hold. �
Remark 3.4. It is easy to see that, if the hypotheses of Theorem 3.4 are satisfied, then (A1) and (A3) hold. Hence
Theorem 3.4 is a special case of Theorem 3.5. Another special case of Theorem 3.5 is the case when q+ < p−. It is
clear that when q+ < p−, (A1) and (A3) hold.

Now let us turn to consider the case when p(x) < q(x) for x ∈ Ω . It is well known that, in the constant exponent
case, when p < q , μ1(t) → ∞ as t → 0, in particular, μ∗ = ∞. If we denote by (ut , λt ) with t > 0 the solutions
of (1.1) such that ut ∈ M(t) and ut > 0 in Ω , then, in the constant exponent case, λt → ∞ as t → 0. The following
example shows that, in general, this is not the case when p(·) and q(·) are not constants.

Example 3.2. Let Ω = B(0,2) ⊂ R
N with N = 2, p(x) = |x|2 + 2 and q(x) = |x|2 + 3. Then p,q ∈ C1(Ω) and

p(x) < q(x) < p∗(x) = ∞ for all x ∈ Ω . Then condition (A2) holds because condition (A2)
′ is satisfied. By Theo-

rem 3.2, we have that

μ1(t) → 0 and Λ1(t) → 0 as t → ∞,

which is the same as in the constant exponent case. Taking U = Ω = B(0,2) and E = B(0,1), then q+(E) = 4 and
p−(∂U) = 6. Thus q+(E) < p−(∂U), that is, condition (A1) holds. By Theorem 3.1,

μ1(t) → 0 and Λ1(t) → 0 as t → 0,

which is different from the constant exponent case. Thus μ∗ = 0, μ∗ < ∞ and problem (1.1) has a family of solutions
{(ut , λt ) | t ∈ (0,∞)} such that ut ∈ M(t) and ut > 0 in Ω for every t > 0, λt → 0 as t → 0, and λt → 0 as t → ∞.
Let t∗ ∈ (0,∞) be such that μ1(t

∗) = μ∗. Analogously to Example 3.1, we can see that, for some λ ∈ Λ+, there are
two different positive eigenfunctions corresponding to λ.

Under additional assumption λ∗,(p(·),p(·)) > 0, we give the following theorem, Theorem 3.6, which is a generaliza-
tion of the corresponding result in the constant exponent case (see e.g. [21]).

Theorem 3.6. Suppose that λ∗,(p(·),p(·)) > 0 and there exists ε > 0 such that

p(x) + ε � q(x) for a.e. x ∈ Ω. (3.6)

Then μ1(t) → 0 as t → ∞ and μ1(t) → ∞ as t → 0, and consequently μ∗ = 0, μ∗ = ∞, infΛ+ = 0 and
supΛ+ = ∞.

Proof. It is obvious that (3.6) implies (A2) and consequently, by Theorem 3.2, μ1(t) → 0 as t → ∞. This shows
that μ∗ = 0 and infΛ+ = 0. Now let us prove the assertion that μ1(t) → ∞ as t → 0. Suppose by contradiction that
there exist a sequence {tk} ⊂ (0,1) and a positive constant L such that tk → 0 as k → ∞ and μ1(tk) � L for all k.
Then there exist {uk} ⊂ X \ {0} and {λk} ⊂ (0,∞) such that for each k, uk ∈ M(tk), ψ(uk) = c1(tk) and (uk, λk) is a
solution of (1.1). By (2.6),

λk � p+
μn(tk) � p+

L for all k. (3.7)

q− q−
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By the L∞ regularity for the weak solutions of the p(x)-Laplacian equations (see e.g. [18]), we know that uk ∈
L∞(Ω) and |uk|L∞(Ω) depends only on ‖uk‖, p+, p−, q+, q−, λk , Ω and N . Noting that J (uk) = tk → 0 is equivalent
to that ‖uk‖ → 0, we can see that |uk|L∞(Ω) → 0 as k → ∞. Let μ is the positive constant defined by (3.3). It follows
from (3.6) that there exists δ > 0 small enough such that

|s|p(x)

p(x)
� 2L|s|q(x)

μq(x)
for |s| � δ and a.e. x ∈ Ω. (3.8)

Take k0 large enough such that |uk0 |L∞(Ω) � δ. Then

μ1(tk0) = tk0

c1(tk0)
=

∫
Ω

1
p(x)

|∇uk0 |p(x) dx∫
Ω

1
q(x)

|uk0 |q(x) dx
�

μ
∫
Ω

1
p(x)

|uk0 |p(x) dx∫
Ω

1
q(x)

|uk0 |q(x) dx
� μ · 2L

μ
= 2L,

which contradicts with μ1(tk) � L. Hence μ1(t) → ∞ as t → 0, and consequently, μ∗ = ∞ and supΛ+ = ∞. The
proof is complete. �
Remark 3.5. Let the assumptions of Theorem 3.6 hold and let any λ > 0 be given. It is easy to see that Iλ satisfies
Mountain Pass Geometry. Indeed, since μ∗ = ∞, there exists t1 > 0 such that μ1(t1) > λ. Then for any u ∈ M(t1),

Iλ(u) = J (u) − λψ(u) � t1 − λc1(t1) = t1

(
1 − λ

μ1(t1)

)
:= a > 0,

which shows that Iλ|∂U � a > 0, where U = {u ∈ X: J (u) < t1} is a bounded open set in X with boundary ∂U =
M(t1). Since μ1(t) → 0 as t → ∞, there exists t2 > t1 such that μ1(t2) < λ. Let u2 ∈ M(t2) be such that ψ(u2) =
c1(t2). Then u2 /∈ U and

Iλ(u2) = J (u2) − λψ(u2) = t2 − λc1(t2) = t2

(
1 − λ

μ1(t2)

)
< 0.

Hence Iλ satisfies Mountain Pass Geometry. However, because of lack of (P.S) condition (we cannot prove that any
(P.S)c-sequence with c > 0 is bounded), it is not proved that for every λ > 0, Iλ has a nontrivial critical point though
it is known that infΛ+ = 0 and supΛ+ = ∞.

In the present paper, in order to study problem (1.1) the variational method is used. In [14] the basic principles
on the sub–supersolution method for p(x)-Laplacian equations have been established. It is well known that, the sub–
supersolution method, when it is applicable, has some distinctive advantages. For example, it usually allows more
flexible requirements on the growth conditions and can also give some order properties of the solutions. Applying
Theorem 4.1 of [14] to problem (1.1) we have the following theorem, Theorem 3.7, in which the assumption q 
 p∗
is needless.

Theorem 3.7. Suppose that p is Lipschitz on Ω , p− > 1, q ∈ C0(Ω), q− � 1. If the condition (A1) is satisfied, then
the following assertions hold.

(1) If u ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω) is a solution of (1.1), then u ∈ C1,α(Ω) for some α ∈ (0,1).

(2) Put

Λ+∞ = {
λ ∈ Λ+ ∣∣ there exists a nonnegative eigenfunction u ∈ L∞(Ω) corresponding to λ

}
(note that Λ+∞ = Λ+ if q 
 p∗). Then Λ+∞ is nonempty and connected, and infΛ+∞ = 0. For any λ1, λ2 ∈ Λ+∞
with λ1 < λ2, there exist uλ1 and uλ2 , the positive eigenfunctions corresponding to λ1 and λ2, respectively, such
that uλ1 < uλ2 in Ω .

(3) For any λ ∈ (0, supΛ+∞), problem (1.1) has a positive solution uλ which is a local minimizer of Iλ in the C1

topology (in the case when q 
 p∗, uλ is also a local minimizer of Iλ in the W
1,p(·)
0 (Ω) topology). Moreover,

‖uλ‖C1(Ω) → 0 as λ → 0.
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Theorem 3.7 is a complement to Theorem 3.3.
In the end of this paper, let us point out that, the main results about problem (1.1), obtained in this paper, can

be generalized to problem (1.3) provided f satisfies the appropriate conditions. We give the following theorem. The
proof is omitted because it is similar to the previously-presented proof for the case when f (x,u) = |u|q(x)−2u.

Theorem 3.8. Let (p0) hold. Suppose f satisfies the following conditions.

(f1) f : Ω × R → R is a Carathéodory function and∣∣f (x, t)
∣∣ � C1 + C2|t |q(x)−1 for a.e. x ∈ Ω and all t ∈ R,

where q satisfies (q0), C1 and C2 are positive constants.
(f2) f (x, t)t > 0 for a.e. x ∈ Ω and t �= 0.
(f3) f (x,−t) = −f (x, t) for a.e. x ∈ Ω and all t ∈ R.

Then the following assertions hold, where F(x, t) = ∫ t

0 f (x, s) ds,

ψ(u) =
∫
Ω

F(x,u)dx for u ∈ X,

λ(u) =
∫
Ω

|∇u|p(x) dx∫
Ω

f (x,u)udx
,

and the meanings of other notations, as J , Iλ, M(t), cn(t), μn(t), Λ, Kn(t), Λn(t) and Λ+, are similar to those
defined for f (x,u) = |u|q(x)−2u above.

(1) For each t > 0 and n = 1,2, . . . , cn(t) is a critical value of ψt on M(t) and the Ljusternik–Schnirelmann multi-
plicity result holds. Moreover, cn(t) → 0 as n → ∞.

(2) For each t > 0 and n = 1,2, . . . , the sets Kn(t) and Λn(t) are nonempty, Λn(t) ⊂ Λ, and for any u ∈ Kn(t),
(u,λ(u)) is a solution of (1.3). For each t > 0, Λn(t) → +∞ as n → ∞.

(3) For each fixed n, cn(t) and μn(t), as the functions of t , are continuous on (0,∞).
(4) For each t > 0, the sets Kn(t) and Λn(t) are compact, and the set-valued mappings Kn(·) and Λn(·) are upper

semicontinuous on (0,∞).
(5) Assume the following condition (Af

1 ) is satisfied:

(Af

1 ) There exist an open subset U of Ω , a compact subset E of U with positive measure |E|, and positive
constants r0 and C, such that 1 < r0 < p−(∂U) and

f (x, t) � Ctr0−1 for a.e. x ∈ E and all t ∈ (0,1).

Then when t → 0, μ1(t) → 0 and Λ1(t) → 0, and consequently infΛ+ = 0. Moreover, for any λ ∈ (0,μ∗),
there holds λ ∈ Λ+ and there exists a nonnegative eigenfunction uλ corresponding to λ such that uλ is a local
minimizer of the energy functional Iλ associated to problem (1.3) and Iλ(uλ) < 0, and furthermore, when λ → 0,
J (uλ) → 0.

(6) Suppose that (Af

1 ) and (A3) hold (note that this is the case if λ∗,(p(·),p(·)) > 0 and q 
 p). Then for any λ > 0,
problem (1.3) has a nontrivial nonnegative solution uλ which is a global minimizer of the energy functional Iλ

associated to problem (1.3) and Iλ(uλ) < 0, and consequently Λ+ = (0,∞).
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