
J. Math. Anal. Appl. 373 (2011) 439–448
Contents lists available at ScienceDirect

Journal of Mathematical Analysis and
Applications

www.elsevier.com/locate/jmaa

Isoperimetric type inequalities for harmonic functions

David Kalaj a,∗, Romeo Meštrović b
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For 0 < p < +∞ let hp be the harmonic Hardy space and let bp be the harmonic Bergman
space of harmonic functions on the open unit disk U. Given 1 � p < +∞, denote by ‖ · ‖bp

and ‖ · ‖hp the norms in the spaces bp and hp , respectively. In this paper, we establish the
harmonic hp-analogue of the known isoperimetric type inequality ‖ f ‖b2p � ‖ f ‖hp , where
f is an arbitrary holomorphic function in the classical Hardy space H p . We prove that for
arbitrary p > 1, every function f ∈ hp satisfies the inequality

‖ f ‖b2p � ap‖ f ‖hp ,

where ap > 1 is a suitable constant depending only on p. Furthermore, by using the
Carleman inequality in the form ‖ f ‖b4 � ‖ f ‖h2 with f ∈ H2, we prove the following
refinement of the above inequality for p = 2

‖ f ‖b4 � 4
√

1.5 + √
2‖ f ‖h2 .

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Throughout the paper we let U = {z ∈ C: |z| < 1} be the open unit disk in the complex plane C, and let T = {z ∈ C:
|z| = 1} be the unit circle in C. The normalized area measure on U will be denoted by dσ . In terms of real (rectangular and
polar) coordinates, we have

dσ = 1

π
dx dy = 1

π
r dr dt, z = x + iy = reit .

Further, dt/2π denotes the normalized Lebesgue measure on T.
For 1 � p < +∞ let L p(U, σ ) = L p denote the familiar Lebesgue space on U with respect to the measure σ . For such

a p, the harmonic Bergman space bp is the space of all (complex-valued) harmonic functions f on the disk U such that

‖ f ‖bp :=
(∫

U

∣∣ f (z)
∣∣p

dσ

)1/p

< +∞. (1.1)

Recall that the Bergman space A p is the space of all holomorphic functions on U such that the integral in (1.1) is finite. We
denote by A p

0 the set of all functions f ∈ A p for which f (0) = 0.
The harmonic Hardy space hp is defined as the space of (complex-valued) harmonic functions f on U such that
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‖ f ‖hp := sup
0�r<1

( 2π∫
0

∣∣ f
(
reit)∣∣p dt

2π

)1/p

< ∞. (1.2)

If f ∈ hp then by [1, Theorem 6.13] the radial limit

f
(
eit) = lim

r→1− f
(
reit)

exists for almost every eit in T and the boundary function f (eit) is integrable on T. It is well known that

‖ f ‖p
hp = lim

r→1−

2π∫
0

∣∣ f
(
reit)∣∣p dt

2π
=

2π∫
0

∣∣ f
(
eit)∣∣p dt

2π
.

The Hardy space H p equipped with the norm ‖ ·‖hp defined above, consists of all holomorphic functions f ∈ hp . For more
information on Bergman and Hardy spaces, see the books [7] and [5].

The starting point of this paper is the well-known isoperimetric inequality for Jordan domains and isoperimetric inequal-
ity for minimal surfaces due to Carleman [4]. Among the other results, Carleman in [4] proved that for any smooth harmonic
function u on the closed disk U we have

∫
U

e2u dx dy � 1

4π

( 2π∫
0

eu dt

)2

.

By using a similar approach as Carleman, Strebel in [10, Theorem 19.9, pp. 96–98] proved that if f is in H1

∫
U

∣∣ f (z)
∣∣2

dx dy � 1

4π

(∫
T

∣∣ f
(
eit)∣∣dt

)2

(1.3)

with “=” instead of “�” if and only if

f (z) = α

(1 − az)2
,

where |a| < 1, α ∈ C. This inequality has been proved independently by Mateljević and Pavlović in [9]. More than one
approach can be found in the expository papers by Gamelin and Khavinson [8] and Bénéteau and Khavinson [2] along with
a brief history of the problem.

It is useful to observe that for our purposes the inequality (1.3) may be written in terms of the A2 and H1 norms as

‖ f ‖b2 � ‖ f ‖h1 , f ∈ H1. (1.4)

Further, Burbea [3] generalized the inequality (1.3) as

n − 1

π

∫
U

∣∣ f (z)
∣∣np(

1 − |z|2)n−2
dx dy �

(
1

2π

2π∫
0

∣∣ f
(
eit)∣∣p

dt

)n

,

where n � 2 is a positive integer and f ∈ H p for some 0 < p < +∞.
Strebel in [10, Theorem 19.9, pp. 96–98] proved the previous inequality with n = 2 and arbitrary 0 < p < +∞. The same

result is obtained by Vukotić [11, Theorem 1], where it is written in the form

‖ f ‖b2p � ‖ f ‖hp , f ∈ H p . (1.5)

Recently, Hang, Wang and Yang [6] extended the related isoperimetric type inequality for harmonic functions defined on
the unit ball of R

n with n � 3.
Although it is impossible to establish the harmonic version of the inequality (1.3) (cf. Example 1.5), in this paper we

prove its harmonic hp-analogue for arbitrary p > 1 as follows.

Theorem 1.1. Let 1 < p,q < ∞ with 1/p + 1/q = 1. Then every function f ∈ hp satisfies the inequality

‖ f ‖b2p � ap‖ f ‖hp ,
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where

ap =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
p

p−1 )1/p, if 1 < p � 2 and f is real harmonic;√
2(

p
p−1 )1/p, if 1 < p � 2 and f is complex harmonic;

1 + (
q

q−1 )1/q, if p > 2 and f is real harmonic;
21−1/p(1 + (

q
q−1 )1/q), if p > 2 and f is complex harmonic.

Recall that the proof of Theorem 1.1 is based on the Riesz theorem [5, Theorem 4.1 and Exercise 5, p. 67]. Furthermore,
by using the Carleman inequality in the form ‖ f ‖b4 � ‖ f ‖h2 with f ∈ H2, we give a direct proof of the refinement of the
above inequality for p = 2 as follows.

Theorem 1.2. Suppose f is a nonzero function in the space h2 . Then f belongs to b4 and

‖ f ‖b4 � 4
√

1.5 + √
2‖ f ‖h2 . (1.6)

Remark 1.3. Notice that the constant 4
√

(3 + 2
√

2)/2 ≈ 1.306563 of Theorem 1.2 is less than the estimate a2 = √
2 from

Theorem 1.1. Further, in terms of integrals, the inequality (1.6) can be written in the form∫
U

∣∣ f (z)
∣∣4

dx dy < b2

(∫
T

∣∣ f
(
eit)∣∣2

dt

)2

, (1.7)

where b2 � (3 + 2
√

2 )/(8π).

Remark 1.4. Motivated by the inequality (1.5), the question arises whether we can replace | f (z)|4 and | f (eit)|2 in (1.7)
by | f (z)|2 and | f (eit)|1, respectively. The answer is negative (see Example 1.5 below). Furthermore, it remains an open
question whether the inequality (1.7) is sharp. The function from Example 1.6 shows that the best constant b2 in the
previous inequality is greater than or equal to 5/(8π).

Example 1.5. For a ∈ C with |a| < 1 let fa be the harmonic function on U defined as

fa(z) = 1 − |a|2|z|2
|1 − za|2 , z ∈ U.

Then for such a we have
∫

T
| fa(eit)|dt = 2π , and hence fa ∈ h1. This together with

∫
U

| fa(z)|2 dσ → ∞ as a → 1 establish
the fact that the inequality of type (1.3) cannot be extended to the harmonic Hardy space h1.

Example 1.6. As noticed previously, the inequality (1.3) is sharp. This is also true for the inequality (1.5) (see [11, Theo-
rem 1]). The following example suggests that our inequality (1.7) could be sharp.

For |a| < 1, let fa be the function defined on U as

fa(z) = Re
z

1 − az
, z ∈ U.

Then as a → 1− , after integration in polar coordinates, we have

∫
U

∣∣ fa
(
reit)∣∣4

r dr dt
/(

3 + 2
√

2

8π

( 2π∫
0

∣∣ fa
(
eit)∣∣2

dt

)2)
→ 5

3 + 2
√

2
≈ 0.857864,

or, equivalently

‖ fa‖b4

‖ fa‖h2
→ 4

√
2.5 ≈ 1.257433 (cf. Theorem 1.2).

2. The general case

A function s is said to be simple if its range is a finite set. A simple function with range in R always has the following
representation

s(x) =
n∑

ciχEi ,
i=1
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where ci are distinct values of s and Ei = s−1{ci}. If Ei are measurable subsets of a measure space (X,μ), then the integral
of s over X is defined by∫

X

s dμ =
n∑

i=1

ciμ(Ei).

Let f : X → [0,+∞] be a measurable function. Consider the set S f of all measurable simple functions s such that 0 � s � f .
The integral of f over X is defined as∫

X

f dμ = sup
s∈S f

∫
X

s dμ.

Lemma 2.1. Let 1 � p < ∞, and let u, v be real functions belonging to the measure space (E,μ), where μ(E) < ∞. Then

‖u‖p + ‖v‖p � 21−min{1/2,1/p}‖u + iv‖p . (2.1)

The inequality is sharp. For p � 2, the equality is attained if u = v. If p > 2, then the equality is attained for u = χE1 and v = χE2 ,
where μ(E1) = μ(E2) and E1 ∩ E2 = ∅.

Proof. We will prove (2.1) applying the following sharp inequality(
n∑

i=1

|ui|p

)1/p

+
(

n∑
i=1

|vi|p

)1/p

� 21−min{1/2,1/p}
(

n∑
i=1

(
u2

i + v2
i

)p/2

)1/p

, (2.2)

where ui, vi ∈ R, i = 1, . . . ,n. Assume for the moment that (2.2) is proved. Take the disjoint family of measurable sets Ei
such that E = ⋃n

i=1 Ei and take su = ∑n
i=1 uiχEi , and sv = ∑n

i=1 viχEi such that the functions su and sv satisfy su � u and
sv � v . Then s = |su + isv | is a simple function and it satisfies the condition s � |u + iv|. It is enough to prove that∥∥su

∥∥
p + ∥∥sv

∥∥
p � 21−min{1/2,1/p}∥∥su + isv

∥∥
p . (2.3)

Take

ui = ∣∣ui
∣∣μ(Ei)

and

vi = ∣∣vi
∣∣μ(Ei).

Now (2.2) coincides with (2.3). Let us prove (2.2). Put

A :=
(

n∑
i=1

(
u2

i + v2
i

)p/2

)1/p

,

B :=
(

n∑
i=1

|ui|p

)1/p

and

C :=
(

n∑
i=1

|vi|p

)1/p

.

We will solve the extremal problem of finding the supremum of f (u, v) := B + C → sup, for A = A0 i.e. for (u, v) :=
(u1, . . . , un, v1, . . . , vn) ∈ {(u, v): A(u, v) = A0}, A0 > 0. It is clear that the set K is compact in R

2n . If p = 1, then our
inequalities follow from the obvious inequality

|α| + |β| � √
2
√

α2 + β2.

For p > 1, the function

f (u, v) =
(

n∑
u2

i

p
2

)1/p

+
(

n∑
v2

i

p
2

)1/p
i=1 i=1
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is continuous on K and smooth on K \ {(u, v): B = 0 ∨ C = 0}, and therefore according to the Weierstrass theorem, f (u, v)

achieves its minimum and its maximum on K . If B = 0 or C = 0 then our inequality is trivial. Now assume that B �= 0 and
C �= 0. The stationary points of the Lagrangian satisfy

Bui = λAui , i = 1, . . . ,n, (2.4)

and

Cvi = λAvi , i = 1, . . . ,n. (2.5)

Therefore,

up−1
i

B p−1
= λ

ui(u2
i + v2

i )
p/2−1

Ap−1
, i = 1, . . . ,n, (2.6)

v p−1
i

C p−1
= λ

vi(u2
i + v2

i )
p/2−1

Ap−1
, i = 1, . . . ,n. (2.7)

Without loss of generality, we can suppose that ui �= 0 and vi �= 0 for i � m � n, and ui = 0 or vi = 0 for i > m. Then
from (2.6) we obtain that there exists t �= 0 such that

vi = tui, i = 1, . . . ,m. (2.8)

Set

ap :=
m∑

i=1

|ui|p, (2.9)

bp :=
n∑

i=m+1

|vi|p, (2.10)

and

cp :=
n∑

i=m+1

|ui|p . (2.11)

Then (2.2) is equivalent to

(
t pap + bp) 1

p + (
ap + cp) 1

p � 21−min{1/2,1/p}((1 + t2)p/2
ap + bp + cp) 1

p . (2.12)

If a = 0, then (2.12) is equivalent to

b + c � 21−min{1/2,1/p}(bp + cp) 1
p .

The last inequality follows from the following well-known inequality

b + c

2
�

(
bp + cp

2

) 1
p

. (2.13)

Consider now the case when a > 0. Dividing the inequality (2.12) by a, and substituting x = b/a and y = c/a into (2.12), we
arrive to the inequality

(
tn + xp) 1

p + (
1 + yp) 1

p � 21−min{1/2,1/p}((1 + t2) p
2 + xp + yp) 1

p . (2.14)

The case p � 2p � 2p � 2. Let ϕ(s) = sp . Then ϕ is a convex function and therefore, according to the inequality xp + 1 � (1 + x2)p/2

with x � 0 we obtain

ϕ

(
1

2

((
t p + xp)1/p + (

1 + yp)1/p))
� 1

2

(
ϕ

((
t p + xp)1/p) + ϕ

((
1 + yp)1/p))

= 1 + t p + xp + yp

2

� (1 + t2)p/2 + xp + yp

2
. (2.15)

Now (2.12) follows from (2.15).
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The case 1 � p < 21 � p < 21 � p < 2. We again use the inequality

ϕ

(
1

2

((
t p + xp)1/p + (

1 + yp)1/p))
� 1 + t p + xp + yp

2
.

In this case it is enough to prove the inequality

1 + t p + xp + yp

2
� (1 + t2)p/2 + xp + yp

2p/2
. (2.16)

The inequality (2.16) follows from the inequality

(
1 + t p

2

) 2
p

� 1 + t2

2
. (2.17)

Taking now the convex function ψ(s) = s
2
p , we obtain

ψ

(
1

2

(
1 + t p))

� 1

2

(
ψ(1) + ψ

(
t p))

. (2.18)

Then (2.18) coincides with (2.17). If m = n, then from (2.6) and (2.7) it follows that t = 1. This yields u = v . In this case
(2.2) reduces to the equality for p � 2. On the other hand, taking u1 = 1, ui = 0, i �= 1 and v2 = 1 and v j = 0 for j �= 2,
(2.2) becomes the equality for p � 2. The proof is now completed. �
Proof of Theorem 1.1. Assume first that 1 < p � 2. By the Riesz theorem [5, Theorem 4.1 and Exercise 5, p. 67], for the
holomorphic function F on U we have

‖F‖hp �
(

p

p − 1

)1/p

‖Re F‖hp . (2.19)

If f is a real function, then f = g + g for some function g holomorphic on U. Therefore, by using the isoperimetric inequal-
ity (1.5) for holomorphic functions and (2.19), we have

‖ f ‖2p
2p � 22p‖g‖2p

2p

� 22p‖g‖2p
hp

� 22p p2

(p − 1)2
‖Re g‖2p

hp

� p2

(p − 1)2
‖ f ‖2p

hp .

Hence,

‖ f ‖2p �
(

p

p − 1

)1/p

‖ f ‖hp . (2.20)

Let us now consider a complex harmonic function f such that

f = g + h = u + iv.

From (2.20) and Lemma 2.1 we have

‖ f ‖2p � ‖u‖2p + ‖v‖2p

�
(

p

p − 1

)1/p(‖u‖hp + ‖v‖hp
)

�
√

2

(
p

p − 1

)1/p

‖ f ‖hp .

This establishes the case p � 2.
Assume now that p � 2. If f is holomorphic, then from the proof of [5, Theorem 4.1] we obtain

‖ Im f ‖hp �
(

q
)1/q

‖Re f ‖hp ,

q − 1
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and therefore

‖ f ‖hp �
(

1 +
(

q

q − 1

)1/q)
‖Re f ‖hp . (2.21)

Combining (2.21) with Lemma 2.1 we find that

‖ f + g‖2p �
∥∥Re( f + g)

∥∥
2p + ∥∥Re i( f − g)

∥∥
2p

� ‖ f + g‖2p + ∥∥i( f − g)
∥∥

2p

�
(

1 +
(

q

q − 1

)1/q)(∥∥Re( f + g)
∥∥

hp + ∥∥Re i( f − g)
∥∥

hp

)

� 21−1/p
(

1 +
(

q

q − 1

)1/q)
‖ f + g‖hp .

This completes the proof. �
3. A refinement of the case p = 2

In order to prove Theorem 1.2, we will need some auxiliary results.

Lemma 3.1. For any complex number z the following equality holds

∣∣z Re(z)
∣∣ =

√
2

2
|z|

√
|z|2 + Re

(
z2

)
. (3.1)

Proof. An easy calculation shows that∣∣z2 + |z|2∣∣ = √
2|z|

√
|z|2 + Re

(
z2

)
.

Now (3.1) follows from the previous identity and the identity |z2 + |z|2| = 2|z Re(z)|. �
Lemma 3.2. Let h be a function in A1

0 . Then∫
U

h(z)dσ =
∫
U

h̄(z)dσ =
∫
U

Re
(
h(z)

)
dσ = 0. (3.2)

Proof. Since h(0) = 0, we can write h(z) = ∑∞
n=1 anzn . Therefore, the first two equalities in (3.2) immediately follow from

the fact that
∫ 2π

0 eint dt = 0 for each n = ±1,±2, . . . . From this and the identity 2 Re(h(z)) = h(z) + h̄(z) it follows that∫
U

Re(h(z))dσ = 0. �
Lemma 3.3. If h is a function in the space A2

0 , then∫
U

∣∣h(z)
∣∣2

dσ = 2
∫
U

∣∣Re
(
h(z)

)∣∣2
dσ . (3.3)

Proof. Since

∣∣Re
(
h(z)

)∣∣2 =
∣∣∣∣h(z) + h̄(z)

2

∣∣∣∣
2

= 1

4

(
h(z) + h̄(z)

)(
h̄(z) + h(z)

)
= 1

4

(
2
∣∣h(z)

∣∣2 + h2(z) + h̄2(z)
) = 1

2

∣∣h(z)
∣∣2 + 1

2
Re

(
h2(z)

)
,

by integrating this and applying the fact that by Lemma 3.2,
∫

U
Re(h2(z))dσ = 0, we obtain (3.3). �

Lemma 3.4. Let h be a function in the space A2
0 that is not identically zero on U. Then∫

U

∣∣h(z)Re
(
h(z)

)∣∣dσ <

√
2

2

∫
U

∣∣h(z)
∣∣2

dσ . (3.4)
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Proof. By the identity (3.1) of Lemma 3.1, we have

∣∣h(z)Re
(
h(z)

)∣∣ =
√

2

2

∣∣h(z)
∣∣√∣∣h(z)

∣∣2 + Re
(
h2(z)

)
. (3.5)

By applying the Cauchy–Schwarz inequality and the fact that by Lemma 3.2,
∫

U
Re(h2(z))dσ = 0, we obtain(∫

U

∣∣h(z)
∣∣√∣∣h(z)

∣∣2 + Re
(
h2(z)

)
dσ

)2

�
∫
U

∣∣h(z)
∣∣2

dσ

(∫
U

(∣∣h(z)
∣∣2 + Re

(
h2(z)

))
dσ

)

=
(∫

U

∣∣h(z)
∣∣2

dσ

)2

+
(∫

U

∣∣h(z)
∣∣2

dσ

)(∫
U

Re
(
h2(z)

)
dσ

)

=
(∫

U

∣∣h(z)
∣∣2

dσ

)2

.

The above inequality and (3.5) immediately yield the desired inequality (3.4) with “�” instead of “<”. In order to show the
strict inequality, we first observe that the equality in the previously applied Cauchy–Schwarz inequality holds if and only if∣∣h2(z)

∣∣ = λ

√∣∣h(z)
∣∣2 + Re

(
h2(z)

)
(3.6)

for almost every z ∈ U and a nonnegative constant λ. If λ = 0 then obviously, we have h ≡ 0 on U. If λ > 0 then (3.6)
implies that Re(h2(z)) = 1−λ2

λ2 |h2(z)| for almost every z ∈ U. Therefore, by the continuity of the functions h2 and Re(h2) on

the disk U, it follows that Re(h2(z)) = 1−λ2

λ2 |h2(z)| for each z ∈ U. The last equality yields



∣∣h2(z)

∣∣ = 4
∣∣h′(z)

∣∣2 = 0

and hence

Re
(
h2(z)

) = 0.

Thus, h is a constant function on U. Since h(0) = 0, we obtain h ≡ 0 on U. This contradiction completes the proof. �
Proof of Theorem 1.2. Since the unit disk is a simply connected set, we have the representation f = g + h, where g and h
are holomorphic functions on the unit disk U such that h(0) = 0. Direct calculations yield

| f |4 = |g|4 + |h|4 + 4|g|2|h|2 + 4
(|g|2 + |h|2)Re(hg) + 2 Re

(
(hg)2). (3.7)

Suppose g(z) = ∑∞
n=0 anzn and h(z) = ∑∞

m=1 bmzm are the Taylor expansions on U of functions g and h, respectively. Since
f ∈ h2, we have f (eit) = ∑∞

n=0 aneint + ∑∞
m=1 b̄me−imt for almost every eit ∈ T. This together with | f |2 = f f̄ and the or-

thogonality relation
∫ 2π

0 eikt dt = 0 for k = ±1,±2, . . . , immediately yields

‖ f ‖2
h2 =

2π∫
0

∣∣ f
(
eit)∣∣2 dt

2π
=

∞∑
n=0

|an|2 +
∞∑

m=1

|bm|2 < +∞.

Hence, both sums on the right hand side of the above equality are finite, and so the functions h and g belong to H2.
Therefore, according to (1.3), g and h are also in A4. Thus, the previous equality yields

‖ f ‖4
h2 =

( ∞∑
n=0

|an|2 +
∞∑

m=1

|bm|2
)2

=
( 2π∫

0

∣∣g
(
eit)∣∣2 dt

2π
+

2π∫
0

∣∣h(
eit)∣∣2 dt

2π

)2

= (‖g‖2
h2 + ‖h‖2

h2

)2
. (3.8)

From this and the identity gh = ((g +h)2 − (g −h)2)/4 we see that gh is in A2
0. Therefore, all the terms on the right of (3.7)

are integrable on U. Therefore, we have f ∈ b4 or equivalently,

‖ f ‖4
b4 =

∫ ∣∣ f (z)
∣∣4

dσ < +∞.
U
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Applying the inequality (1.4) to the functions g2,h2 ∈ H1, respectively, we immediately obtain∫
U

∣∣g(z)
∣∣4

dσ = ∥∥g2
∥∥2

b2 �
∥∥g2

∥∥2
h1 = ‖g‖4

h2 , (3.9)

∫
U

∣∣h(z)
∣∣4

dσ = ∥∥h2
∥∥2

b2 �
∥∥h2

∥∥2
h1 = ‖h‖4

h2 . (3.10)

Since gh ∈ A2, the Cauchy–Schwarz inequality together with inequalities (3.9) and (3.10) yield∫
U

∣∣g(z)
∣∣2∣∣h(z)

∣∣2
dσ �

√√√√∫
U

∣∣g(z)
∣∣4

dσ ·
√√√√∫

U

∣∣h(z)
∣∣4

dσ

= ∥∥g2
∥∥

b2 · ∥∥h2
∥∥

b2

�
∥∥g2

∥∥
h1 · ∥∥h2

∥∥
h1

= ‖g‖2
h2 · ‖h‖2

h2 . (3.11)

Using the facts that h(0)g(0) = 0, gh ∈ A2
0, and applying Lemma 3.3 to the holomorphic function gh, the Cauchy–Schwarz

inequality, and the estimates (3.3), (3.4) and (3.5), we obtain∣∣∣∣
∫
U

(∣∣h(z)
∣∣2 + ∣∣g(z)

∣∣2)
Re

(
h(z)g(z)

)
dσ

∣∣∣∣ �
∣∣∣∣
∫
U

(∣∣h(z)
∣∣2 + ∣∣g(z)

∣∣2)2
dσ

∣∣∣∣
1/2∣∣∣∣

∫
U

Re
(
h(z)g(z)

)2
dσ

∣∣∣∣
1/2

=
(∫

U

(∣∣h(z)
∣∣2 + ∣∣g(z)

∣∣2)2
dσ

)1/2(∫
U

1

2

∣∣h(z)
∣∣2∣∣g(z)

∣∣2
dσ

)1/2

�
(∫

U

(∣∣h(z)
∣∣2 + ∣∣g(z)

∣∣2)2
dσ

)1/2(∫
U

1

8

(∣∣h(z)
∣∣2 + ∣∣g(z)

∣∣2)2
dσ

)1/2

=
√

2

4

∫
U

(∣∣h(z)
∣∣4 + 2

∣∣g(z)
∣∣2∣∣h(z)

∣∣2 + ∣∣g(z)
∣∣4)

dσ

�
√

2

4

(‖h‖4
h2 + 2‖g‖2

h2‖h‖2
h2 + ‖g‖4

h2

)
. (3.12)

Furthermore, by Lemma 3.2,∫
U

Re
(
h2(z)g2(z)

)
dσ = 0. (3.13)

Finally, after integration of (3.7) on the disk U by all the terms in the appropriate sum, and substituting the relations
(3.8)–(3.13) into this, we immediately obtain

‖ f ‖4
b4 � (1 + √

2 )
(‖g‖4

h2 + ‖h‖4
h2

) + 2(2 + √
2 )‖g‖2

h2‖h‖2
h2

� 3 + 2
√

2

2

(‖g‖4
h2 + 2‖g‖2

h2‖h‖2
h2 + ‖h‖4

h2

)
= 3 + 2

√
2

2
‖ f ‖4

h2 .

Recall that in the second inequality the inequality a4 + b4 + 2
√

2a2b2 �
√

2+1
2 (a2 + b2)2 is applied for real numbers a and b.

From the above, the inequality (1.6) clearly follows. The equality in the last inequality of (3.12) is attained if and only
if g = h almost everywhere on U. Thus if the equality in (1.6) is attained, then it must be that g = h. Further, the equality
in (3.4) is attained if and only if g2 ≡ 0 on U. This means that we have the strict inequality in (1.6) and the proof of
Theorem 1.2 is completed. �
Acknowledgment

We thank the referee for providing constructive comments and help in improving the contents of this paper.
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