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In this paper we prove the existence and uniqueness of a weak solution for a non-
autonomous reaction–diffusion model with dynamical boundary conditions. After that,
a continuous dependence result is established via an energy method, including in particular
some compactness properties. Finally, the precedent results are used in order to ensure the
existence of minimal pullback attractors in the frameworks of universes of fixed bounded
sets and that given by a tempered growth condition. The relation among these families is
also discussed.
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1. Introduction and setting of the problem

Partial differential equations with dynamical boundary conditions arise for example in hydrodynamics and the heat
transfer theory. For instance, they allow to model heat flow inside the considered domain subject to nonlinear heating or
cooling at the boundary, or heat transfer in a solid in contact with a moving fluid, in thermoelasticity, heat transfer in two
mediums, etc. This type of problems has been studied by many authors (e.g., cf. [1,2,7,8,10,12,13,15] and the references
therein).

Several approaches have been used for these problems, like the theory of semigroups, with Bessel potential and Besov
spaces, and of course the variational setting as well. Some questions addressed concerning these models are the local and
global existence of solutions or blow-up phenomena. Namely, in [2] the critical exponents allowed in the nonlinearities such
that the problem is well-posed are studied.

Another question is the study of these problems under the introduction of singular perturbations. For instance, in [15]
the behavior of solutions of a singularly perturbed model (damped wave equation) when the introduced parameter goes to
zero and the relation with the limit problem is analyzed.

A different sort of question, with a great variety of results, is the long-time behavior of the (global) solutions. For an
autonomous model, the existence of a global attractor is, for instance, studied in [9], although the nonlinearity is the same in
the domain and in the boundary (see also [17]). For a non-autonomous reaction–diffusion equation and using the approach
of skew-product formulation, the existence of a uniform attractor is established in [16]. But to our knowledge, there does
not seem to be in the literature any study of the existence of pullback attractors for non-autonomous dynamical systems
associated to this kind of problems (up to the stochastic framework, e.g., cf. [5]).

Let us introduce the model we will be involved with in this paper. Let Ω ⊂ R
N be a bounded domain with a Lipschitz

boundary ∂Ω .
We consider the following problem for a non-autonomous reaction–diffusion equation with dynamical boundary condi-

tion,
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
− �u + κu + f (u) = h(t) in Ω × (τ ,∞),

∂u

∂t
+ ∂u

∂�n + g(u) = ρ(t) on ∂Ω × (τ ,∞),

u(x, τ ) = uτ (x), for x ∈ Ω,

u(x, τ ) = ψτ (x), for x ∈ ∂Ω,

(1)

where �n is the outer normal to ∂Ω , τ ∈ R is an initial time, and

κ > 0, uτ ∈ L2(Ω), ψτ ∈ L2(∂Ω), (2)

h ∈ L2
loc

(
R; L2(Ω)

)
, ρ ∈ L2

loc

(
R; L2(∂Ω)

)
, (3)

are given.
We also assume that the functions f and g ∈ C(R) are given, and satisfy that there exist constants p � 2, q � 2, α1 > 0,

α2 > 0, β > 0, and l > 0, such that

α1|s|p − β � f (s)s � α2|s|p + β, for all s ∈ R, (4)

α1|s|q − β � g(s)s � α2|s|q + β, for all s ∈ R, (5)(
f (s) − f (r)

)
(s − r) � −l(s − r)2, for all s, r ∈ R, (6)

and (
g(s) − g(r)

)
(s − r) � −l(s − r)2, for all s, r ∈ R. (7)

It is easy to see from (4) and (5) that there exists a constant C > 0, such that∣∣ f (s)
∣∣ � C

(
1 + |s|p−1), ∣∣g(s)

∣∣ � C
(
1 + |s|q−1), for all s ∈ R. (8)

Remark 1. If u is regular enough, then a compatibility condition for problem (1) is that ψτ must coincide with the restriction
to ∂Ω of uτ , and therefore the fourth equation in (1) is omitted. Nevertheless, this equation seems necessary for the concept
of weak solution (see below).

Remark 2. If p > 2, the assumption κ > 0 is not necessary. Indeed, if κ � 0, then f (u) + κu = f̄ (u) + u, where f̄ (s) :=
f (s) + (κ − 1)s, satisfies(

f̄ (s) − f̄ (r)
)
(s − r) � −(l − κ + 1)(s − r)2, for all s, r ∈ R,

and taking into account Young’s inequality, if p > 2,

α1

2
|s|p − β − p − 2

p

(
4

pα1

)2/(p−2)

(1 − κ)p/(p−2) � s f̄ (s) � α2|s|p + β,

for all s ∈ R.

In this paper we study the existence of pullback attractors for the process associated to (1). As we mentioned before, we
only have references in the literature of this approach in the stochastic context, with the help of random dynamical systems.
In that sense, a particularly interesting situation is treated in [5]. There, the authors obtain the existence of a random
attractor for a general class of stochastic parabolic equations with dynamical boundary conditions, under the restrictive
assumptions p = q and | f (s) − g(s)| � c(1 + |s|). We will obtain the existence of pullback attractors for (1) without these
assumptions, using a continuous dependence result which is proved using an energy method.

The structure of the paper is as follows. In Section 2 we give a weak formulation of the problem, the concept of weak
solution, and establish the existence and uniqueness of solution using the monotonicity method. A continuous dependence
result with respect to initial data, which is the main key for the asymptotic compactness we will require later, is addressed
in Section 3. There we use an energy method that strengthens the energy equality satisfied by the solutions. A brief recall
on abstract results about the existence of minimal pullback attractors is given in Section 4. In Section 5, the main goals of
proving the existence of different families of pullback attractors for different universes, and the relation among them under
certain suitable assumption, are finally established.
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2. Existence and uniqueness of solution

We denote by (· , ·)Ω (respectively, (· , ·)∂Ω ) the inner product in L2(Ω) (respectively, in L2(∂Ω)), and by | · |Ω (respec-
tively, | · |∂Ω ) the associated norm. We will also denote (· , ·)Ω (respectively, (· , ·)∂Ω ) the inner product in (L2(Ω))N , and
the duality product between L p′

(Ω) and L p(Ω) (respectively, the duality product between Lq′
(∂Ω) and Lq(∂Ω)). If r �= 2,

we will denote | · |r,Ω (respectively | · |r,∂Ω ) the norm in Lr(Ω) (respectively in Lr(∂Ω)). By ‖ · ‖Ω we denote the norm in
H1(Ω), which is associated to the inner product ((· , ·))Ω := (∇·,∇·)Ω + (· , ·)Ω .

We use the notation γ0 for the trace operator u �→ u|∂Ω . The trace operator belongs to L(H1(Ω), H1/2(∂Ω)), and we
will use ‖γ0‖ to denote the norm of γ0 in this space.

Finally, we will use ‖ · ‖∂Ω to denote the norm in H1/2(∂Ω), which is given by ‖φ‖∂Ω = inf{‖v‖Ω : γ0(v) = φ}. We
remember that with this norm, H1/2(∂Ω) is a Hilbert space.

Definition 3. A weak solution of (1) is a pair of functions (u,ψ), satisfying

u ∈ C
([τ ,∞); L2(Ω)

)
, ψ ∈ C

([τ ,∞); L2(∂Ω)
)
, (9)

u ∈ L2(τ , T ; H1(Ω)
) ∩ Lp(

τ , T ; Lp(Ω)
)
, for all T > τ , (10)

ψ ∈ L2(τ , T ; H1/2(∂Ω)
) ∩ Lq(τ , T ; Lq(∂Ω)

)
, for all T > τ , (11)

γ0
(
u(t)

) = ψ(t), a.e. t ∈ (τ ,∞), (12)⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dt
(u(t), v)Ω + d

dt

(
ψ(t), γ0(v)

)
∂Ω

+ (∇u(t),∇v
)
Ω

+ κ
(
u(t), v

)
Ω

+ (
f
(
u(t)

)
, v

)
Ω

+ (
g
(
γ0(u(t))

)
, γ0(v)

)
∂Ω

= (
h(t), v

)
Ω

+ (
ρ(t), γ0(v)

)
∂Ω

in D′(τ ,∞), for all v ∈ H1(Ω) ∩ Lp(Ω) such that γ0(v) ∈ Lq(∂Ω),

(13)

u(τ ) = uτ , and ψ(τ ) = ψτ . (14)

Remark 4. If a pair of functions (u,ψ) satisfies (10)–(13), then there exists a version of these functions satisfying (9). The
function ψ is the L2(∂Ω)-continuous version of γ0(u) (see (17)–(19) below).

We have the following result.

Theorem 5. Under the assumptions (2)–(7), there exists a unique solution (u,ψ) = (u(·;τ , uτ ,ψτ ),ψ(·;τ , uτ ,ψτ )) of the prob-
lem (1). Moreover, this solution satisfies the energy equality

1

2

d

dt

(∣∣u(t)
∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

) + ∣∣∇u(t)
∣∣2
Ω

+ κ
∣∣u(t)

∣∣2
Ω

+ (
f
(
u(t)

)
, u(t)

)
Ω

+ (
g
(
ψ(t)

)
,ψ(t)

)
∂Ω

= (
h(t), u(t)

)
Ω

+ (
ρ(t),ψ(t)

)
∂Ω

, a.e. t > τ. (15)

Proof. The proof of this result is standard (see for example [9]). For the sake of completeness, we give a sketch of a proof.
Let us consider the Hilbert space

H := L2(Ω) × L2(∂Ω),

with the natural inner product ((v, φ), (w,ϕ))H = (v, w)Ω + (φ,ϕ)∂Ω , which in particular induces the norm |(· , ·)|H given
by ∣∣(v, φ)

∣∣2
H = |v|2Ω + |φ|2∂Ω, (v, φ) ∈ H .

Let us also consider the space

V 1 := {(
v, γ0(v)

)
: v ∈ H1(Ω)

}
.

We note that V 1 is a closed vector subspace of H1(Ω) × H1/2(∂Ω), and therefore, with the norm ‖(· , ·)‖V 1 given by∥∥(
v, γ0(v)

)∥∥2
V 1

= ‖v‖2
Ω + ∥∥γ0(v)

∥∥2
∂Ω

,
(

v, γ0(v)
) ∈ V 1,

V 1 is a Hilbert space.
On the other hand, V 1 is densely embedded in H . In fact, if we consider (w, φ) ∈ H such that

(v, w)Ω + (
γ0(v),φ

) = 0, for all v ∈ H1(Ω),

∂Ω
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in particular, we have

(v, w)Ω = 0, for all v ∈ H1
0(Ω),

and therefore w = 0. Consequently,(
γ0(v),φ

)
∂Ω

= 0, for all v ∈ H1(Ω),

and then, as H1/2(∂Ω) = γ0(H1(Ω)) is dense in L2(∂Ω), we have that φ = 0.
Now, on the space V 1 we define a continuous symmetric linear operator A1 : V 1 → V ′

1, given by〈
A1

((
v, γ0(v)

))
,
(

w, γ0(w)
)〉 = (∇v,∇w)Ω + κ(v, w)Ω, ∀v, w ∈ H1(Ω).

We observe that A1 is coercive. In fact, we have〈
A1

((
v, γ0(v)

)
,
(

v, γ0(v)
))〉

� min{1, κ}‖v‖2
Ω

= 1

1 + ‖γ0‖2
min{1, κ}‖v‖2

Ω + ‖γ0‖2

1 + ‖γ0‖2
min{1, κ}‖v‖2

Ω

� 1

1 + ‖γ0‖2
min{1, κ}∥∥(

v, γ0(v)
)∥∥2

V 1
, (16)

for all v ∈ H1(Ω).
Let us denote

V 2 = Lp(Ω) × L2(∂Ω), V 3 = L2(Ω) × Lq(∂Ω),

A2(v, φ) = (
f (v),0

)
, A3(v, φ) = (

0, g(φ)
)
, �h(t) = (

h(t),ρ(t)
)
.

From (8) one deduces that Ai : V i → V ′
i , for i = 2,3.

Observe also that by (3),

�h ∈ L2
loc(R; H) ⊂ L2

loc

(
R; V ′

1

)
.

With this notation, and denoting V = ⋂3
i=1 V i , p1 = 2, p2 = p, p3 = q, �u = (u,ψ), one has that (9)–(14) is equivalent to

�u ∈ C
([τ ,∞); H

)
, �u ∈

3⋂
i=1

Lpi (τ , T ; V i), for all T > τ , (17)

(�u)′(t) +
3∑

i=1

Ai
(�u(t)

) = �h(t) in D′(τ ,∞; V ′), (18)

�u(τ ) = (uτ ,ψτ ). (19)

Applying a slight modification of [13, Ch. 2, Th. 1.4], it is not difficult to see that problem (17)–(19) has a unique solution.
Moreover, �u satisfies the energy equality

1

2

d

dt

∥∥�u(t)
∥∥2

H +
3∑

i=1

〈
Ai

(�u(t)
)
, �u(t)

〉
i = (�h(t), �u(t)

)
H a.e. t > τ ,

where 〈· , ·〉i denotes the duality product between V ′
i and V i .

This last equality turns out to be just (15). �
Remark 6. The assumption κ > 0 is not necessary for the existence and uniqueness of weak solution to (1).

3. A continuous dependence result

In this section, we prove a result on continuous dependence of the solutions of (1) with respect to the initial datum
(uτ , φτ ). This result will be crucial in the proof of the existence of pullback attractors for (1).

Theorem 7. Under the assumptions (2)–(7), let {(u(n)
τ ,ψ

(n)
τ )}n�1 ⊂ L2(Ω) × L2(∂Ω) be a sequence such that(

u(n)
τ ,ψ

(n)
τ

)
⇀ (uτ ,ψτ ) weakly in L2(Ω) × L2(∂Ω). (20)
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Let us denote �u(n) = (u(n),ψ(n)) = (u(·;τ , u(n)
τ ,ψ

(n)
τ ),ψ(·;τ , u(n)

τ ,ψ
(n)
τ )) and �u = (u,ψ) = (u(·;τ , uτ ,ψτ ),ψ(·;τ , uτ ,ψτ )), the

corresponding weak solutions of (1). Then, for all T > τ ,

�u(n) ⇀ �u weakly in L2(τ , T ; H1(Ω)
) × L2(τ , T ; H1/2(∂Ω)

)
,

�u(n) ∗
⇀ �u weakly-star in L∞(

τ , T ; L2(Ω)
) × L∞(

τ , T ; L2(∂Ω)
)
,

�u(n) ⇀ �u weakly in Lp(
τ , T ; Lp(Ω)

) × Lq(τ , T ; Lq(∂Ω)
)
,

f
(
u(n)

)
⇀ f (u) weakly in Lp′(

τ , T ; Lp′
(Ω)

)
,

g
(
ψ(n)

)
⇀ g(ψ) weakly in Lq′(

τ , T ; Lq′
(∂Ω)

)
,

�u(n) → �u strongly in L2(τ , T ; L2(Ω)
) × L2(τ , T ; L2(∂Ω)

)
, (21)

�u(n)(t) → �u(t) strongly in L2(Ω) × L2(∂Ω), for all t > τ. (22)

Proof. For the sake of clarity, we split the proof in two parts. Firstly, for all but last of the above convergences we only
require to obtain suitable a priori estimates and well-known compactness results; secondly, for the last convergence, we use
an energy method that strength the energy equality satisfied by the solutions.

Step 1. All but last of the convergences in the above statement hold.
By (15) applied to �u(n) , and taking into account (4), (5) and (16), we have

d

dt

(∣∣u(n)(t)
∣∣2
Ω

+ ∣∣ψ(n)(t)
∣∣2
∂Ω

) + 2 min{1, κ}
1 + ‖γ0‖2

(∥∥u(n)(t)
∥∥2

Ω
+ ∥∥ψ(n)(t)

∥∥2
∂Ω

) + 2α1
(∣∣u(n)(t)

∣∣p
p,Ω

+ ∣∣ψ(n)(t)
∣∣q
q,∂Ω

)
� 2β

(|Ω| + |∂Ω|) + ∣∣h(t)
∣∣2
Ω

+ ∣∣ρ(t)
∣∣2
∂Ω

+ ∣∣u(n)(t)
∣∣2
Ω

+ ∣∣ψ(n)(t)
∣∣2
∂Ω

, (23)

a.e. t > τ .
By (20) in particular we know that there exists a constant C > 0 such that∣∣u(n)

τ

∣∣2
Ω

+ ∣∣ψ(n)
τ

∣∣2
∂Ω

� C for all n � 1.

Thus, integrating (23) between τ and t , and applying Gronwall lemma, we see that the sequence {u(n)} is bounded
in L2(τ , T ; H1(Ω)) ∩ C([τ , T ]; L2(Ω)) ∩ L p(τ , T ; L p(Ω)), and the sequence {ψ(n)} is bounded in L2(τ , T ; H1/2(∂Ω)) ∩
C([τ , T ]; L2(∂Ω)) ∩ Lq(τ , T ; Lq(∂Ω)), for all T > τ .

Then, taking into account (8) and (13) for (u(n),ψ(n)), we deduce that the sequence { f (u(n))} is bounded in
L p′

(τ , T ; L p′
(Ω)) and the sequence {g(ψ(n))} is bounded in Lq′

(τ , T ; Lq′
(∂Ω)). Moreover, the sequence of time derivatives

{(u(n))′} is bounded in L2(τ , T ; (H1(Ω))′) + L p′
(τ , T ; L p′

(Ω)) ⊂ L p′
(τ , T ; (H1(Ω) ∩ L p(Ω))′), and finally, the sequence of

time derivatives {(ψ(n))′} is bounded in L2(τ , T ; (H1/2(∂Ω))′) + Lq′
(τ , T ; Lq′

(∂Ω)) ⊂ Lq′
(τ , T ; (H1/2(∂Ω) ∩ Lq(∂Ω))′), for all

T > τ .
Let us fix T > τ. Taking into account the compactness of the injection of H1(Ω) into L2(Ω), and the compactness of the

injection of H1/2(∂Ω) into L2(∂Ω), from the boundedness results above and the Aubin–Lions compactness lemma (e.g., cf.
[13]), we deduce that there exist a subsequence {(u(n′),ψ(n′))}n′�1 ⊂ {(u(n),ψ(n))}n�1 and functions û ∈ L2(τ , T ; H1(Ω)) ∩
L∞(τ , T ; L2(Ω)) ∩ L p(τ , T ; L p(Ω)), ψ̂ ∈ L2(τ , T ; H1/2(∂Ω)) ∩ L∞(τ , T ; L2(∂Ω)) ∩ Lq(τ , T ; Lq(∂Ω)), f̂ ∈ L p′

(τ , T ; L p′
(Ω)),

ĝ ∈ Lq′
(τ , T ; Lq′

(∂Ω)), ξT ∈ L2(Ω), and ηT ∈ L2(∂Ω), such that

�u(n′) ⇀ (û, ψ̂) weakly in L2(τ , T ; H1(Ω)
) × L2(τ , T ; H1/2(∂Ω)

)
,

�u(n′) ∗
⇀ (û, ψ̂) weakly-star in L∞(

τ , T ; L2(Ω)
) × L∞(

τ , T ; L2(∂Ω)
)
,

�u(n′) ⇀ (û, ψ̂) weakly in Lp(
τ , T ; Lp(Ω)

) × Lq(τ , T ; Lq(∂Ω)
)
,

f
(
u(n′)) ⇀ f̂ weakly in Lp′(

τ , T ; Lp′
(Ω)

)
, (24)

g
(
ψ(n′)) ⇀ ĝ weakly in Lq′(

τ , T ; Lq′
(∂Ω)

)
, (25)

�u(n′) → (û, ψ̂) strongly in L2(τ , T ; L2(Ω)
) × L2(τ , T ; L2(∂Ω)

)
,

u(n′) → û a.e. in Ω × (τ , T ), (26)

ψ(n′) → ψ̂ a.e. in ∂Ω × (τ , T ), (27)

�u(n′)(T ) ⇀ (ξT , ηT ) weakly in L2(Ω) × L2(∂Ω).

By the continuity of f and g , from (24), (25), (26), and (27), one deduces (see [13, Ch. 1, Lem. 1.3]) that f̂ = f (û) and
ĝ = g(ψ̂). Now, it is a standard matter to deduce from (20) and the above convergences, that
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γ0
(
û(t)

) = ψ̂(t), a.e. t ∈ (τ , T ), (28)⎧⎪⎪⎪⎨⎪⎪⎪⎩
d

dt

(
û(t), v

)
Ω

+ d

dt

(
ψ̂(t), γ0(v)

)
∂Ω

+ (∇û(t),∇v
)
Ω

+ κ
(
û(t), v

)
Ω

+ (
f
(
û(t)

)
, v

)
Ω

+ (
g
(
γ0

(
û(t)

))
, γ0(v)

)
∂Ω

= (
h(t), v

)
Ω

+ (
ρ(t), γ0(v)

)
∂Ω

in D′(τ , T ), for all v ∈ H1(Ω) ∩ Lp(Ω), such that γ0(v) ∈ Lq(∂Ω),

(29)

û(τ ) = uτ , ψ̂(τ ) = ψτ , (30)

and (
û(T ), ψ̂(T )

) = (ξT , ηT ). (31)

Consequently, by uniqueness of solution to (28)–(30), we deduce that (û, ψ̂) coincides with the restriction to [τ , T ] of
�u = (u,ψ), the above convergences hold for the whole sequence {(u(n),ψ(n))}n�1, and therefore, by the arbitrariness of
T > τ , all but last convergences in the statement are satisfied, as we wanted to prove.

Step 2. We prove now that (22) holds.
From above, and by (31), we also deduce that(

u(n)(t),ψ(n)(t)
)
⇀

(
u(t),ψ(t)

)
weakly in L2(Ω) × L2(∂Ω), for all t > τ. (32)

Now, we will prove that∣∣u(n)(t)
∣∣2
Ω

+ ∣∣ψ(n)(t)
∣∣2
∂Ω

→ ∣∣u(t)
∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

, for all t > τ , (33)

which jointly with (32) will imply (22).
In order to prove (33), observe that from (21) we deduce in particular that for any subsequence {(u(n′),ψ(n′))}n′�1 ⊂

{(u(n),ψ(n))}n�1 there exists another subsequence {(u(n′′),ψ(n′′))}n′′�1 ⊂ {(u(n′),ψ(n′))}n′�1 such that∣∣u(n′′)(t)
∣∣2

Ω
+ ∣∣ψ(n′′)(t)

∣∣2

∂Ω
→ ∣∣u(t)

∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

, a.e. t > τ . (34)

Let us define

J (t) := 1

2

(∣∣u(t)
∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

) − β
(|Ω| + |∂Ω|)t −

t∫
τ

[(
h(s), u(s)

)
Ω

+ (
ρ(s),ψ(s)

)
∂Ω

]
ds,

and

Jn′′(t) := 1

2

(∣∣u(n′′)(t)
∣∣2

Ω
+ ∣∣ψ(n′′)(t)

∣∣2

∂Ω

) − β
(|Ω| + |∂Ω|)t −

t∫
τ

[(
h(s), u(n′′)(s)

)
Ω

+ (
ρ(s),ψ(n′′)(s)

)
∂Ω

]
ds,

for all t � τ .
It is clear that J and Jn′′ are well defined continuous functions on [τ ,∞), and by (21), if we prove that

Jn′′(t) → J (t) for all t > τ , (35)

then (33) will hold.
From (21) and (34), we have that

Jn′′(t) → J (t) a.e. t ∈ (τ ,∞). (36)

On the other hand, from the energy equality, (4), and (5), we obtain that J and Jn′′ are non-increasing functions of t .
Let us fix t ∈ (τ ,∞), and ε > 0. From (36) and the continuity of J , we can take t2 < t < t1 such that

Jn′′(ti) → J (ti), as n′′ → ∞, i = 1,2, (37)

and

J (t2) − J (t1) = ∣∣ J (t2) − J (t)
∣∣ + ∣∣ J (t) − J (t1)

∣∣ � ε.
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From this inequality and the non-increasing character of Jn′′ , we have

Jn′′(t) − J (t) = Jn′′(t) − Jn′′(t2) + Jn′′(t2) − J (t2) + J (t2) − J (t)

�
∣∣ Jn′′(t2) − J (t2)

∣∣ + ∣∣ J (t2) − J (t)
∣∣

�
∣∣ Jn′′(t2) − J (t2)

∣∣ + ε. (38)

Analogously, we have

J (t) − Jn′′(t) = J (t) − J (t1) + J (t1) − Jn′′(t1) + Jn′′(t1) − Jn′′(t)

�
∣∣ J (t) − J (t1)

∣∣ + ∣∣ J (t1) − Jn′′(t1)
∣∣

� ε + ∣∣ J (t1) − Jn′′(t1)
∣∣. (39)

From (37)–(39), we deduce that

lim sup
n′′→∞

∣∣ J (t) − Jn′′(t)
∣∣ � ε,

and therefore, as ε > 0 is arbitrary, we obtain (35). �
4. Abstract results on minimal pullback attractors

In this section we remember some abstract results on pullback attractors theory. We present a resume of some results
on the existence of minimal pullback attractors obtained in [11] (see also [14,3,4]). In particular, we consider the process U
being closed (see below Definition 8).

Consider given a metric space (X,dX ), and let us denote R
2
d = {(t, τ ) ∈ R

2: τ � t}.
A process on X is a mapping U such that R

2
d × X � (t, τ , x) �→ U (t, τ )x ∈ X with U (τ , τ )x = x for any (τ , x) ∈ R × X , and

U (t, r)(U (r, τ )x) = U (t, τ )x for any τ � r � t and all x ∈ X .

Definition 8. Let U be a process on X .

(a) U is said to be continuous if for any pair τ � t , the mapping U (t, τ ) : X → X is continuous.
(b) U is said to be closed if for any τ � t , and any sequence {xn} ⊂ X , if xn → x ∈ X and U (t, τ )xn → y ∈ X , then

U (t, τ )x = y.

Remark 9. It is clear that every continuous process is closed. More generally, every strong-weak continuous process (see
[14] for the definition) is a closed process.

Let us denote P (X) the family of all nonempty subsets of X , and consider a family of nonempty sets D̂0 = {D0(t):
t ∈ R} ⊂ P (X) [observe that we do not require any additional condition on these sets as compactness or boundedness].

Definition 10. We say that a process U on X is pullback D̂0-asymptotically compact if for any t ∈ R and any sequences
{τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D0(τn) for all n, the sequence {U (t, τn)xn} is relatively compact
in X .

Let be given D a nonempty class of families parameterized in time D̂ = {D(t): t ∈ R} ⊂ P (X). The class D will be called
a universe in P (X).

Definition 11. It is said that D̂0 = {D0(t): t ∈ R} ⊂ P (X) is pullback D-absorbing for the process U on X if for any t ∈ R

and any D̂ ∈ D, there exists a τ0(t, D̂) � t such that

U (t, τ )D(τ ) ⊂ D0(t) for all τ � τ0(t, D̂).

Observe that in the definition above D̂0 does not belong necessarily to the class D.

Definition 12. A process U on X is said to be pullback D-asymptotically compact if it is D̂-asymptotically compact for any
D̂ ∈ D, i.e. if for any t ∈ R, any D̂ ∈ D, and any sequences {τn} ⊂ (−∞, t] and {xn} ⊂ X satisfying τn → −∞ and xn ∈ D(τn)

for all n, the sequence {U (t, τn)xn} is relatively compact in X .
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Denote

Λ(D̂0, t) :=
⋂
s�t

⋃
τ�s

U (t, τ )D0(τ )X for all t ∈ R,

where {· · ·}X is the closure in X .
We denote by distX (O1, O2) the Hausdorff semi-distance in X between two sets O1 and O2, defined as

distX (O1, O2) = sup
x∈O1

inf
y∈O2

dX (x, y) for O1, O2 ⊂ X .

We have the following result (cf. [11]) on existence of minimal pullback attractors.

Theorem 13. Consider a closed process U : R
2
d × X → X, a universe D in P (X), and a family D̂0 = {D0(t): t ∈ R} ⊂ P (X) which is

pullback D-absorbing for U , and assume also that U is pullback D̂0-asymptotically compact.
Then, the family AD = {AD(t): t ∈ R} defined by

AD(t) =
⋃

D̂∈D

Λ(D̂, t)X , t ∈ R,

has the following properties:

(a) for any t ∈ R, the set AD(t) is a nonempty compact subset of X , and

AD(t) ⊂ Λ(D̂0, t),

(b) AD is pullback D-attracting, i.e.

lim
τ→−∞ distX

(
U (t, τ )D(τ ), AD(t)

) = 0 for all D̂ ∈ D, t ∈ R,

(c) AD is invariant, i.e. U (t, τ )AD(τ ) = AD(t) for all τ � t,

(d) if D̂0 ∈ D, then AD(t) = Λ(D̂0, t) ⊂ D0(t)X for all t ∈ R.

The family AD is minimal in the sense that if Ĉ = {C(t): t ∈ R} ⊂ P (X) is a family of closed sets such that for any D̂ = {D(t):
t ∈ R} ∈ D,

lim
τ→−∞ distX

(
U (t, τ )D(τ ), C(t)

) = 0,

then AD(t) ⊂ C(t).

Remark 14. Under the assumptions of Theorem 13, the family A D is called the minimal pullback D-attractor for the
process U .

If AD ∈ D, then it is the unique family of closed subsets in D that satisfies (b)–(c).
A sufficient condition for A D ∈ D is to have that D̂0 ∈ D, the set D0(t) is closed for all t ∈ R, and the family D is

inclusion-closed (i.e. if D̂ ∈ D, and D̂ ′ = {D ′(t): t ∈ R} ⊂ P (X) with D ′(t) ⊂ D(t) for all t , then D̂ ′ ∈ D).

We will denote D X
F the universe of fixed nonempty bounded subsets of X , i.e. the class of all families D̂ of the form

D̂ = {D(t) = D: t ∈ R} with D a fixed nonempty bounded subset of X . In the particular case of the universe D X
F , the

corresponding minimal pullback D X
F -attractor for the process U is the pullback attractor defined by Crauel, Debussche, and

Flandoli, [6, Th. 1.1, p. 311], and will be denoted A D X
F

.

Now, it is easy to conclude the following result.

Corollary 15. Under the assumptions of Theorem 13, if the universe D contains the universe D F (X), then both attractors, A D F (X) and
AD , exist, and the following relation holds:

AD F (X)(t) ⊂ AD(t) for all t ∈ R.

Remark 16. It can be proved (see [14]) that, under the assumptions of the preceding corollary, if for some T ∈ R, the set⋃
t�T D0(t) is a bounded subset of X , then

AD F (X)(t) = AD(t) for all t � T .
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5. Existence of pullback attractors

Now, by the previous results, we are able to define correctly a process U on H = L2(Ω) × L2(∂Ω) associated to (1), and
to obtain the existence of minimal pullback attractors.

Proposition 17. Assume that κ > 0, and the assumptions (3)–(7), are satisfied. Then, the bi-parametric family of maps
U (t, τ ) : H → H, with τ � t, given by

U (t, τ )(uτ ,ψτ ) = (
u(t),ψ(t)

)
, (40)

where (u,ψ) = (u(·;τ , uτ ,ψτ ),ψ(·;τ , uτ ,ψτ )) is the unique weak solution of (1), defines a continuous process on H.

Proof. It is a consequence of Theorem 5 and (22) in Theorem 7. �
For the obtention of a pullback absorbing family for the process U , let us observe that the space H1(Ω) × H1/2(∂Ω)

is compactly embedded in H , and therefore, for the symmetric and coercive linear continuous operator A1 : V 1 → V ′
1,

defined in the proof of Theorem 5, there exists a non-decreasing sequence 0 < λ1 � λ2 � · · · of eigenvalues associated to
the operator A1. In particular, one has for the first eigenvalue

λ1 = min
v∈H1(Ω), v �=0

|∇v|2Ω + κ |v|2Ω
|v|2Ω + |γ0(v)|2∂Ω

> 0. (41)

We have the following result.

Lemma 18. Under the assumptions of Theorem 5, for any μ ∈ (0,2λ1) the solution (u,ψ) of (1) satisfies∣∣u(t)
∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

� e−μ(t−τ )
(|uτ |2Ω + |ψτ |2∂Ω

) + 2β

μ

(|Ω| + |∂Ω|)
+ e−μt

2λ1 − μ

t∫
τ

eμs(∣∣h(s)
∣∣2
Ω

+ ∣∣ρ(s)
∣∣2
∂Ω

)
ds, (42)

for all t � τ .

Proof. From (15), and taking into account (4), (5) and (41), we obtain

d

dt

[
eμt(∣∣u(t)

∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

)] + (2λ1 − μ)eμt(∣∣u(t)
∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

) + 2α1eμt(∣∣u(t)
∣∣p

p,Ω
+ ∣∣ψ(t)

∣∣q
q,∂Ω

)
� 2βeμt(|Ω| + |∂Ω|) + 2eμt[(h(t), u(t)

)
Ω

+ (
ρ(t),ψ(t)

)
∂Ω

]
,

a.e. t > τ , and then, observing that

2eμt[(h(t), u(t)
)
Ω

+ (
ρ(t),ψ(t)

)
∂Ω

]
� (2λ1 − μ)eμt(∣∣u(t)

∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

) + eμt

2λ1 − μ

(∣∣h(t)
∣∣2
Ω

+ ∣∣ρ(t)
∣∣2
∂Ω

)
,

we have in particular

d

dt

[
eμt(∣∣u(t)

∣∣2
Ω

+ ∣∣ψ(t)
∣∣2
∂Ω

)]
� 2βeμt(|Ω| + |∂Ω|) + eμt

2λ1 − μ

(∣∣h(t)
∣∣2
Ω

+ ∣∣ρ(t)
∣∣2
∂Ω

)
,

a.e. t > τ .
Integrating in this last inequality, we obtain (42). �
Taking into account the estimate (42), we define the following universe.

Definition 19. For any μ ∈ (0,2λ1), we will denote by D H
μ the class of all families of nonempty subsets D̂ = {D(t): t ∈ R} ⊂

P (H) such that

lim
τ→−∞

(
eμτ sup

(v,φ)∈D(τ )

(|v|2Ω + |φ|2∂Ω

)) = 0.

Accordingly to the notation introduced in the previous section, D H
F will denote the class of families D̂ = {D(t) = D: t ∈ R}

with D a fixed nonempty bounded subset of H .
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Remark 20. Observe that D H
F ⊂ D H

μ and that both are inclusion-closed.

As an evident consequence of Lemma 18, we have the following result.

Corollary 21. Assume that κ > 0, and the assumptions (3)–(7), are satisfied. Suppose moreover that there exists some μ ∈ (0,2λ1)

such that

0∫
−∞

eμs[∣∣h(s)
∣∣2
Ω

+ ∣∣ρ(s)
∣∣2
∂Ω

]
ds < +∞. (43)

Then, the family D̂0 = {D0(t): t ∈ R} defined by D0(t) = B H (0, R1/2
H (t)), the closed ball in H of center zero and radius R1/2

H (t), where

R H (t) = 1 + 2β

μ

(|Ω| + |∂Ω|) + e−μt

2λ1 − μ

t∫
−∞

eμs[∣∣h(s)
∣∣2
Ω

+ ∣∣ρ(s)
∣∣2
∂Ω

]
ds,

is pullback D H
μ -absorbing for the process U : R

2
d × H → H given by (40) (and therefore D H

F -absorbing too), and D̂0 ∈ D H
μ .

We also have the character D H
μ -pullback asymptotically compact of the process U .

Lemma 22. Under the assumptions of Corollary 21, the process U defined by (40) is pullback D H
μ -asymptotically compact.

Proof. Let us consider D̂ = {D(t): t ∈ R} ∈ D H
μ , t ∈ R, and sequences {τn} ⊂ (−∞, t] and {(uτn ,ψτn )} ⊂ H satisfying τn →

−∞ and (uτn ,ψτn ) ∈ D(τn) for all n. We must prove that the sequence {U (t, τn)(uτn ,ψτn )} is relatively compact in H .
As τn → −∞ and (uτn ,ψτn ) ∈ D(τn) for all n, by Corollary 21, there exists n0 such that τn < t − 1, and

U (t − 1, τn)(uτn ,ψτn ) ∈ D0(t − 1) = B H
(
0, R1/2

H (t − 1)
)
,

for all n � n0.
Thus, the sequence {U (t − 1, τn)(uτn ,ψτn ): n � n0} is bounded in H , and therefore, there exist (ut−1,ψt−1) ∈ H , and a

subsequence {U (t − 1, τν)(uτν ,ψτν )} ⊂ {U (t − 1, τn)(uτn ,ψτn ): n � n0}, such that

U (t − 1, τν)(uτν ,ψτν ) ⇀ (ut−1,ψt−1) weakly in H , as ν → ∞.

But then, from (22) in Theorem 7, we deduce that

U (t, τν)(uτν ,ψτν ) = U (t, t − 1)
(
U (t − 1, τν)(uτν ,ψτν )

) → U (t, t − 1)(ut−1,ψt−1)

strongly in H , as ν → ∞. �
As a consequence of the above results, we obtain the existence of minimal pullback attractors for the process U : R

2
d ×

H → H defined by (40).

Theorem 23. Assume that κ > 0 and the assumptions (3)–(7) are satisfied. Suppose moreover that there exists some μ ∈ (0,2λ1)

such that the condition (43) holds. Then, there exist the minimal pullback D H
F -attractor

AD H
F

= {
AD H

F
(t): t ∈ R

}
and the minimal pullback D H

μ -attractor

AD H
μ

= {
AD H

μ
(t): t ∈ R

}
,

for the process U defined by (40). The family A D H
μ

belongs to D H
μ , and the following relation holds:

AD H
F
(t) ⊂ AD H

μ
(t) ⊂ B H

(
0, R1/2

H (t)
) ∀t ∈ R.

If moreover the pair (h,ρ) satisfies

sup
s�0

(
e−μs

s∫
−∞

eμθ
[∣∣h(θ)

∣∣2
Ω

+ ∣∣ρ(θ)
∣∣2
∂Ω

]
dθ

)
< +∞, (44)

then

AD H
F
(t) = AD H

μ
(t) for all t ∈ R. (45)
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Proof. All but last results are consequence of Theorem 13 and Corollary 15. Finally, (45) follows from (44) and Remark 16,
taking into account the expression R H (t) given in Corollary 21. �
Remark 24. Observe that if the pair (h,ρ) satisfies (3) and (43) for some μ ∈ (0,2λ1), then it also satisfies

0∫
−∞

eσ s[∣∣h(s)
∣∣2
Ω

+ ∣∣ρ(s)
∣∣2
∂Ω

]
ds < ∞, for all σ ∈ (μ,2λ1).

Thus, for any σ ∈ (μ,2λ1) there exists the corresponding minimal D H
σ -pullback attractor, A D H

σ
.

Since D H
μ ⊂ D H

σ , it is evident that, for any t ∈ R,

AD H
μ
(t) ⊂ AD H

σ
(t) for all σ ∈ (μ,2λ1).

Moreover, if the pair (h,ρ) satisfies (44), then, by (45),

AD H
F
(t) = AD H

μ
(t) = AD H

σ
(t) for all t ∈ R, and any σ ∈ (μ,2λ1).
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