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1. Introduction

Let H, K denote complex Hilbert spaces, and B(H, K) the set of all bounded linear operators between H and K . We
write R(T ) and N (T ) for the range and the null space of T ∈ B(H, K). Recall that the adjoint T ∗ of a linear operator T on
a Hilbert space H is defined as a linear operator satisfying the condition (Tx, y) = (x, T ∗y), x, y ∈ H . The orthogonal
projection onto closed subspace U ⊂ H is denoted by PU . Let PU,V denote the idempotent with R(PU,V ) = U and
N (PU,V ) = V . An operator T ∈ B(H, K) is regular if there is an operator S such that (I) TST = T . The operator S is
not unique in general. In order to force its uniqueness, further conditions have to be imposed:

(II) STS = S, (III) (TS)∗ = TS, (IV) (ST )∗ = ST , (V) TS = ST , (Ik) T kST = T k

with some k ∈ Z+. Clearly, (I) = (I1). Elements S ∈ B(H, K) satisfying (I) are called inner inverse (or (I)-inverses) of T ,
denoted by S = T−. We observe that both T−T and TT− are idempotents. In this paper, B(H, K)− will denote the set of all
regular elements of B(H, K). A bounded linear T ∈ B(H) has a bounded inner inverse if and only if T has closed range. A
proof of this fact can be found in [1]. We call that (I, II, III, IV)-inverses, Moore–Penrose inverses (MP-inverse), denoted by
S = T+ (see [2]). The MP-inverse of T is unique and TT+

= PR(T ) and T+T = PR(T∗). In fact, if S1 and S2 are two (I, II, III,
IV)-inverses of T , then

S1 = S1TS1 = S1(TS2T )S1 = S1(TS2)∗(TS1)∗ = S1(TS1TS2)∗ = S1(TS2)∗ = S1TS2
= S1(TS2T )S2 = (S1T )∗(S2T )∗S2 = (S2TS1T )∗S2 = (S2T )∗S2 = S2TS2 = S2.

And (Ik, II, V)-inverses are called Drazin inverses, denoted by S = TD, where k is the Drazin index of T [2,3]. The uniqueness of
the Drazin inverse can be seen as follows. If S ′

1 and S ′

2 are two (Ik, II, V)-inverses of T , then P := TS ′

1 = S ′

1T andQ := TS ′

2 = S ′

2T
are idempotents. Moreover

P = TS ′

1 = T k(S ′

1)
k
= T kS ′

2T (S ′

1)
k
= TS ′

2T
k(S ′

1)
k
= QTS ′

1 = QP

and

Q = S ′

2T = (S ′

2)
kT k

= (S ′

2)
kT kS ′

1T = (S ′

2)
kT kP = S ′

2TP = QP.

E-mail addresses: cy-deng@263.net, cydeng@scnu.edu.cn.

0022-247X/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2012.09.033

http://dx.doi.org/10.1016/j.jmaa.2012.09.033
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
mailto:cy-deng@263.net
mailto:cydeng@scnu.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2012.09.033


C. Deng / J. Math. Anal. Appl. 398 (2013) 664–670 665

Hence P = Q and

S ′

1 = T (S ′

1)
2

= PS ′

1 = QS ′

1 = S ′

2TS
′

1 = S ′

2P = S ′

2Q = S ′

2TS
′

2 = S ′

2.

Similarly, (I, II, V)-inverses are called group inverses, denoted by S = T#. For A, B ∈ B(H, K), the N -related, the R-related
and H-related are defined, respectively, by

(1) AN B =: N (A) = N (B),
(2) ARB =: R(A) = R(B),
(3) AHB =: AN B and ARB.

(1.1)

Parallel with these equivalent relations we have the preorder relations:

(1′) A≤N B =: N (A) ⊃ N (B),

(2′) A≤R B =: R(A) ⊂ R(B),

(3′) A≤H B =: A≤N B and A≤R B.

(1.2)

The solutions of operator equations involving generalized inverses are fundamental in the theory of operators. They have
attracted considerable attention. Much progress has been made on the study of matrix equations for finite matrices [4],
Hilbert space operators [5], elements of C∗-algebras [6] and elements of C∗-modules [7,8]. This paper studies the equation
CAX = C = XAC for bounded linear operators between Hilbert spaces. We derive general existence criteria and properties
of solutions, give necessary and sufficient conditions for the uniqueness of solutions, and obtain the formula for the general
form of these solutions. It appears that these solutions, which are called the inverse of A along C , encompass the classical
generalized inverses but are of richer type. That is to say, for some given C , the solution X ∈ B(H) with additive condition
X ≤H C reduces as the classical generalized inverses: group inverse, Drazin inverse and MP-inverse.

2. Some lemmas and relations

In this section some auxiliary lemmas are given. Suppose that every bounded linear operator is defined on convenient
Hilbert spaces. We start with a known elementary result which was given in [7] for Hilbert C∗-modules.

Lemma 1 ([7, Proposition 2.1]). Suppose that A ∈ B(H)−. AX = C has a solution X ∈ B(H) if and only if R(C) ⊂ R(A). In
this case, the general solution has the form

X = A−C + (I − A−A)T , (2.1)

where T ∈ B(H) is arbitrary.

Let A ∈ B(H). By Remark 1.1 in [8] we know that

R(A) is closed ⇐⇒ R(A∗) is closed ⇐⇒ R(AA∗) is closed ⇐⇒ R(A∗A) is closed. (2.2)

If R(A) is closed, we have the following result.

Lemma 2 ([2],[5, Lemma 2.1] and [9]).

(i) Let A ∈ B(H)−. Then AA− and A−A are idempotents with

R(AA−) = R(A) = N (A∗)⊥, N (A−A) = N (A) = R(A∗)⊥.

(ii) If AC ∈ B(H)−, then

C(AC)−AC = C ⇐⇒ N (AC) = N (C), AC(AC)−A = A ⇐⇒ R(AC) = R(A).

(iii) If L and M are closed subspaces of H and PL,M is an idempotent on L along M, then

PL,MT = T ⇐⇒ R(T ) ⊂ L, TPL,M = T ⇐⇒ N (T ) ⊃ M.

Throughout this work the next well-known criterion due to Douglas [10] (see also [11]) about range inclusions and
factorization of operators will be crucial.

Lemma 3 (Douglas). If A, B ∈ B(H), then the following are equivalent:

(i) A = BC for some operator C ∈ B(H);
(ii) ∥A∗x∥ ≤ k∥B∗x∥ for some k > 0 and all x ∈ H ;
(iii) R(A) ⊂ R(B).
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If one of these conditions holds then there exists a unique solution C0 ∈ B(H) of the equation BX = A such that
R(C0) ⊂ R(B∗) and N (C0) = N (A). This solution is called the Douglas reduced solution.

If A and C are n × n complex matrices, the Cline’s formula is (AC)D = A[(CA)D]2C (see [12]). For A, C ∈ B(H), if CA is
group invertible, then it is easy to get the following results.

Lemma 4. Let A, C ∈ B(H). If CA is group invertible, then AC is Drazin invertible with (AC)D = A

(CA)#

2
C and ind(AC) ≤ 2.

If CA and CA are group invertible, then

(AC)#A = A(CA)#, C(AC)# = (CA)#C . (2.3)

Next, we give some equivalent forms of definition (1.1) that we will frequently use in the sequel.

Theorem 5. Let A, B ∈ B(H).

(i) ARB ⇐⇒ There exist X, Y ∈ B(H) such that AX = B and A = BY .
(ii) ARB H⇒ A∗

N B∗. Moreover, if R(A) and R(B) are closed, then ARB ⇐⇒ A∗
N B∗.

Proof. (i) By Lemma 3.
(ii) By item (i), if ARB, then there exist X, Y ∈ B(H) such that AX = B and A = BY . It follows that X∗A∗

= B∗ and
A∗

= Y ∗B∗. We get N (A∗) ⊂ N (B∗) and N (A∗) ⊃ N (B∗). Thus A∗
N B∗ holds. If R(A) and R(B) are closed, then

A∗

N B∗
H⇒ N (A∗) = N (B∗) H⇒ R(A)⊥ = R(B)⊥ H⇒ R(A) = R(B) H⇒ ARB. �

We consider two special cases: (i) CAX = 0; (ii) CAX invertible. As for case (i), it is easy to get the general solution X . If
CA ∈ B(H)−, then

CAX = 0 ⇐⇒ X = T − (CA)−CAT , T ∈ B(H).

In fact, if X = T satisfying CAT = 0, then also (CA)−CAT = 0, and X = T − (CA)−CAT . The converse is clear.
LetM be a closed subspace ofH with orthocomplementM⊥. According to the orthogonal decompositionH = M⊕M⊥,

every operator M ∈ B(H) can be written in a block-form M =


A B
C D


. It is well-known that, if A ∈ B(M) is invertible,

then M is invertible if and only if the Schur complement S = D − CA−1B of A in M is invertible. The inverse of M is

M−1
=


A−1

+ A−1BS−1CA−1
−A−1BS−1

−S−1CA−1 S−1


. This expression is called the Banachiewicz–Schur form of the operator M and can

be found in standard textbooks on linear algebra. In the following we study the inverse of CAX . We give the equivalent
conditions which ensure that CAX is invertible. The explicit expression for the inverse of CAX is obtained.

Theorem 6. Let A ∈ B(K, H) be invertible, X, C ∈ B(H, K)−. Denote S = C+CAXX+ and T = (I − XX+)A−1(I − C+C).

(i) CAX is invertible if and only if X is injective, C is surjective, S (or T ) is MP-invertible and one of the following conditions holds:

(1) SS+
= C+C; (2) S+S = XX+

; (3) TT+
+ XX+

= IK; (4) T+T + C+C = IH .

(ii) If CAX is invertible, then (CAX)−1
= X+S+C+. An interesting result is that

(CAX)−1
= X+A−1(I − T+A−1)C+.

This second relation shows that there always exist some S, T ∈ B(K, H) such that SA−1T is an inverse of CAX.

Proof. (i) The invertibility of CAX implies that X is injective and K = R(CAX) ⊂ R(C). In the following, we suppose that
X is injective and C is surjective.

It is clear that H = R(C∗) ⊕ N (C) and K = R(X) ⊕ N (X∗). There exist invertible operators X1, C1 such that
C, X, A, C+, X+, CC+, X+X, C+C and XX+ have the operator matrix representations as

C =

C1 0


, X =


X1
0


, A =


A11 A12
A21 A22


, C+

=


C−1
1
0


, X+

=

X−1
1 0


,

CC+
= IK , X+X = IH , C+C = IR(C∗) ⊕ 0 and XX+

= IR(X) ⊕ 0, respectively. Using these matrix representations,
CAX = C1A11X1 is invertible if and only if A11 is invertible. Note that S = C+CAXX+

= A11 ⊕ 0,

A−1
=


A−1
11 + A−1

11 A12S−1
0 A21A−1

11 −A−1
11 A12S−1

0
−S−1

0 A21A−1
11 S−1

0


(2.4)

and T = (I − XX+)A−1(I − C+C) = 0⊕ S−1
0 , where the Schur complement S0 = A22 − A21A−1

11 A12. So A11 is invertible if and
only if S (or T ) is MP-invertible and SS+

= C+C , or S+S = XX+, or TT+
+ XX+

= IK , or T+T + C+C = IH .
On the other hand, if one of (1)–(4) holds, then A11 is invertible, which is equivalent to, S0 is invertible, because A is

invertible. Note that X1 and C1 are invertible. Hence, CAX = C1A11X1 is invertible.
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(ii) By item (i), we get

(CAX)−1
=


C1 0

 
A11 A12
A21 A22

 
X1
0

−1

= (C1A11X1)
−1

= X+S+C+

and

X+A−1(I − T+A−1)C+
= X+A−1


I 0
0 I


−


0 0
0 S0

 
A−1
11 + A−1

11 A12S−1
0 A21A−1

11 −A−1
11 A12S−1

0
−S−1

0 A21A−1
11 S−1

0

 
C−1
1
0


=


X−1
1 0

 
A−1
11 + A−1

11 A12S−1
0 A21A−1

11 −A−1
11 A12S−1

0
−S−1

0 A21A−1
11 S−1

0

 
C−1
1

A21A−1
11 C

−1
1


= X−1

1 A−1
11 C

−1
1 = (CAX)−1. �

Now, let CAX neither be zero nor invertible. The equation CAX = C = XAC is solvable if there exists a bounded linear
operator X0 such that CAX0 = C = X0AC . We get the following result.

Theorem 7. Let A ∈ B(H)−. The equation A−AX = A−
= XAA− is solvable if and only if A− is a {I, II}-inverse of A. In this case,

the general solution is

X = A−
+ (I − A−A)S(I − AA−),

where S ∈ B(H) is arbitrary.

Proof. It is clear that X = A− is one solution if A− is a {I, II}-inverse of A.
On the other hand, A ∈ B(H)− implies that R(A) is closed. Then A can be written as A =


A1 0
0 0


where A1 ∈

B(R(A∗), R(A)) is invertible. Since AA−A = A, we get that A−
=


A−1
1 A3
A4 A2


, where Ai, i = 2, 3, 4 are corresponding

arbitrary bounded operators. We consider the partition X conforming with A as X =


X1 X3
X4 X2


, where Xi, i = 1, 2, 3, 4 are

corresponding bounded operators. A−AX = A−
= XAA− implies that

A−1
1 A3
A4 A2

 
A1 0
0 0

 
X1 X3
X4 X2


=


A−1
1 A3
A4 A2


=


X1 X3
X4 X2

 
A1 0
0 0

 
A−1
1 A3
A4 A2


.

So 
X1 X3

A4A1X1 A4A1X3


=


A−1
1 A3
A4 A2


=


X1 X1A1A3
X4 X4A1A3


.

Comparing two sides of above equations, it follows that A−
=


A−1
1 A3
A4 A4A1A3


is the {I, II}-inverse of A and

X =


A−1
1 A3
A4 X2


= A−

+ (I − A−A)S(I − AA−)

for arbitrary S ∈ B(H). �

Theorem 8. Let A, C, X ∈ B(H). Then

CAX = C = XAC and X ≤H C ⇐⇒ X = XAX and XHC . (2.5)

Moreover, for given A, C in (2.5), if X exists, then X is unique.

Proof. Suppose that CAX = C = XAC and X ≤H C . By definition (1′) in (1.2) and CAX = C , we deduce that N (C) ⊂

N (X) ⊂ N (C). By definition (2′) in (1.2) and C = XAC , we deduce that R(X) ⊂ R(C) ⊂ R(X). Hence, N (C) = N (X) and
R(X) = R(C), i.e., XHC holds by definition (1.1). Moreover, (I − XA)C = 0 and R(X) ⊂ R(C) imply that (I − XA)X = 0.

Conversely, let X = XAX and XHC . We have N (C) = N (X) and R(X) = R(C). Hence, X ≤H C and

(I − XA)X = 0 H⇒ R(X) ⊂ N (I − XA) H⇒ R(C) ⊂ N (I − XA) H⇒ C = XAC,

X(I − AX) = 0 H⇒ R(I − AX) ⊂ N (X) H⇒ R(I − AX) ⊂ N (C) H⇒ C = CAX .

For given A, C in (2.5), if X, X ′ satisfy the right hand side of (2.5), then N (X) = N (C) = N (X ′) and R(X) = R(C) = R(X ′),
which imply

(I − XA)X = 0 H⇒ (I − XA)X ′
= 0 H⇒ X ′

= XAX ′,

X ′(I − AX ′) = 0 H⇒ X(I − AX ′) = 0 H⇒ X = XAX ′.

Hence, X = X ′. �
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The equivalency (2.5)was originally obtained byMary [13, Lemma3] on semigroups bymeans of Greens relations. In [13],
Mary defined X as an inverse of A along C and studied its properties. Theorem 8 implies that, under the condition X ≤H C ,
the solution of CAX = C = XAC is an out inverse of an operator A over complex field with prescribed range space R(C) and
null space N (C) (see [1,2]).

3. The solutions of operator equation CAX = C = XAC

In this section, we will study the general solution to the equation

CAX = C = XAC (3.1)

and the unique solution X of Eq. (3.1). We say that the solution X is an inverse of A along C . The technique results are
Lemmas 1–4, which are crucial in our study of the solutions to Eq. (3.1).

First, we consider some particular cases. If AC ∈ B(H)−, by Lemmas 2 and 3,

C∗A∗X∗
= C∗

H⇒ R(C∗) = R(C∗A∗) H⇒ N (C) = N (AC).

So X = C(AC)− is one solution of the equation C = XAC; if AC and CA are idempotents, then CAX = XAC implies that
(I −CA)XAC = 0. Hence, X is the solution of CAX = XAC if and only if there exists S ∈ B(H) such that X = SAC − (I −CA)S.
Moreover, we have the following result.

Theorem 9. Let A, C ∈ B(H). If there exist orthogonal projections P and Q such that C ≤H QA∗P and PAQ ∈ B(H)−. Then
X = (PAQ )+ is one solution of Eq. (3.1).

Proof. let T = (PAQ )+. We have R(T ) ⊂ R(Q ) and R(T ∗) ⊂ R(P). Hence QT = T and TP = T . From C ≤H QA∗P we
obtain

N (P) ⊂ N (QA∗P) ⊂ N (C), R(C) ⊂ R(QA∗P) ⊂ R(Q ).

By Lemma 2, we get

CP = C, QC = C, CPAQ (PAQ )+ = C, (PAQ )+PAQC = C .

Hence,

CAT = CAQ (PAQ )+ = CPAQ (PAQ )+ = C

and

TAC = (PAQ )+PAC = (PAQ )+PAQC = C,

i.e., T is one solution of Eq. (3.1). �

Theorem 10. Let A, C ∈ B(H), AC and CA ∈ B(H)−. The following conditions are equivalent:
(i) Eq. (3.1) is solvable;
(ii) CA(CA)−C(AC)−AC = C;
(iii) R(C) = R(CA) and R(C∗) = R(C∗A∗).

Proof. (i) H⇒ (2) If the equation CAX = C = XAC is solvable then, by Lemma 3, we know R(C) ⊂ R(CA) ⊂ R(C) and
N (C) ⊃ N (AC) ⊃ N (C), which implies R(C) = R(CA) and N (C) = N (AC). By Lemma 2, it is straightforward that
CA(CA)−C(AC)−AC = C for every inner inverse, (CA)−, (AC)−, of CA and AC , respectively.

(2) H⇒ (3) Since R(AC) and R(CA) are closed, R(C∗A∗) and R(C∗) are closed by (2.2). N (C) = N (AC) if and only if
R(C∗) = R(C∗A∗). It is trivial that (iii) holds.

(3) H⇒ (1) By Lemma 1, R(C) = R(CA) implies CAX = C is solvable with one solution

X0 = (CA)+C + (I − (CA)+CA)C(AC)+. (3.2)

R(C∗) = R(C∗A∗) implies that N (C) = N (AC) and, hence

X0AC = (CA)+CAC + (I − (CA)+CA)C(AC)+AC
= (CA)+CAC + C(AC)+AC − (CA)+CAC
= C .

It follows that Eq. (3.1) is solvable and X0 = (CA)+C + (I − (CA)+CA)C(AC)+ is one solution. �

Remark. In Theorem 10, if AC and CA ∉ B(H)−, then (i) ; (iii) but (iii) ⇒ (i) holds. Even though (C∗A∗)+ ∉ B(H), we get
(C∗A∗)+C∗A∗

= PR(AC) and (C∗A∗)+C∗
= (C∗A∗)+C∗A∗X0

= PR(AC)X
0

∈ B(H), i.e., C(AC)+ ∈ B(H). Similarly, we have
(CA)+C ∈ B(H). X0 in (3.2) is bounded and it is straightforward that CAX0 = C = X0AC . In this paper, we only consider the
case in which AC and CA have closed range.
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Theorem 11. Let A, C ∈ B(H), AC and CA ∈ B(H)− such that Eq. (3.1) is solvable. Then the general solution is

X = (CA)−C + [I − (CA)−CA]C(AC)− + [I − (CA)−CA]S[I − AC(AC)−],

where S ∈ B(H) is arbitrary.

Proof. By Lemma 1, the equation CAX = C has the general solution X = (CA)−C + [I − (CA)−CA]U , where U ∈ B(H) is
arbitrary. If X is also the general solution of the equation C = XAC , then

(CA)−CAC + [I − (CA)−CA]UAC = C .

We get [I − (CA)−CA][C − UAC] = 0. Hence, C − UAC = (CA)−CAW , where W ∈ B(H) is arbitrary. Now, we get
UAC = C − (CA)−CAW . Taking ∗-operation, we get

C∗A∗U∗
= C∗

− W ∗A∗C∗(A∗C∗)−.

Since C∗A∗(C∗A∗)− is idempotent and R(C∗A∗(C∗A∗)−) = R(C∗A∗) = R(C∗), by Lemma 1, U∗ exists if and only if

C∗A∗(C∗A∗)−[C∗
− W ∗A∗C∗(A∗C∗)−] = C∗

− W ∗A∗C∗(A∗C∗)−.

We get C∗A∗(C∗A∗)−W ∗A∗C∗(A∗C∗)− = W ∗A∗C∗(A∗C∗)− and

U∗
= (C∗A∗)−[C∗

− C∗A∗(C∗A∗)−W ∗A∗C∗(A∗C∗)−] + [I − (C∗A∗)−C∗A∗
]S∗,

where S ∈ B(H) is arbitrary. Hence, U = C(AC)− − (CA)−CAW (AC)−AC(AC)− + S[I − AC(AC)−] and

X = (CA)−C + [I − (CA)−CA]U
= (CA)−C + [I − (CA)−CA]C(AC)− + [I − (CA)−CA]S[I − AC(AC)−]. �

Since R(CA) is closed, CA and (CA)+ as operators from H = R((CA)∗) ⊕ N (CA) into H = R(CA) ⊕ N ((CA)∗) can be
written as CA = T1 ⊕ 0 and (CA)+ = T−1

1 ⊕ 0, respectively. By the definition of (I)-inverses,

(CA)− =


T−1
1 W3
W4 W2


= (CA)+ + W − (CA)+CAWCA(CA)+,

where W =


W1 W3
W4 W2


is arbitrary.

If AC and CA are group invertible, by Lemma 4, C(AC)# = (CA)#C and A(CA)# = (AC)#A. Theorem 11 implies that

X = (CA)#C + [I − (CA)#CA]C(AC)# + [I − (CA)#CA]S[I − AC(AC)#]

= (CA)#C + [I − (CA)#CA]S[I − AC(AC)#]

is one solution of CAX = C = XAC . Let A, C ∈ B(H) satisfy Eq. (3.1). If C is group invertible and AC = CA, then we can
deduce that AC is group invertible.

Theorem 12. Let A, C ∈ B(H).
(i) If C is group invertible and AC = CA in Eq. (3.1), then AC is group invertible and any solution of Eq. (3.1) has the form

X = C(AC)# + [I − (CA)#CA]S[I − AC(AC)#] for arbitrary S ∈ B(H).

(ii) If AC and CA are group invertible, then the unique solution X of Eq. (3.1) which satisfies X ≤H C is X = C(AC)#.

Proof. (i) Since C is group invertible, C can be written as C = C1 ⊕ 0, where C1 ∈ B(R(C)) is invertible. We consider
the partitions A and X conforming with C . Since AC = CA, A can be written as A =


A1 0
0 A2


. Let X =


X1 X3
X4 X2


. From

CAX = C = XAC we get
C1 0
0 0

 
A1 0
0 A2

 
X1 X3
X4 X2


=


C1 0
0 0


=


X1 X3
X4 X2

 
A1 0
0 A2

 
C1 0
0 0


.

Then 
C1A1X1 C1A1X3

0 0


=


C1 0
0 0


=


X1A1C1 0
X4A1C1 0


.

Comparing two sides of the above equations and, using the invertibility of C1, we have A1X1 = I = X1A1, X4A1 = 0 and
A1X3 = 0. These imply that A1 is invertible and X1 = A−1

1 , X3 = 0, X4 = 0 and X2 is arbitrary. Hence, (AC)# = (CA)# =

A−1
1 C−1

1 ⊕ 0 and

X = X1 ⊕ X2 = A−1
1 ⊕ X2 = C(AC)# + [I − (CA)#CA]S[I − AC(AC)#]

for arbitrary S ∈ B(H).
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(ii) Let X = C(AC)#. If AC and CA are group invertible, then R(X) ⊂ R(C) and N (X) = N (C(AC)#) = N ((CA)#C) ⊃

N (C). So, X ≤H C . Moreover, we have CAX = CAC(AC)# = C(AC)#AC = CA(CA)#C = C by Lemmas 2 and 4. Hence
XAC = C(AC)#AC = CA(CA)#C = C = CAX . By Theorem 8 we know X = C(AC)# is the unique solution. �

Example. Wewill show that, for some special C such thatX ≤H C , the uniqueX ∈ B(H) reduces as the classical generalized
inverses: group inverse, Drazin inverse and MP-inverse. This can be seen from the following table.

C X ≤H C
(R(X) ⊂ R(C)), N (X) ⊃ N (C)

The unique solution X of
CAX = C = XAC

C = I R(X) = H, N (X) = {0} X = A−1

C = A (A group invertible) R(X) = R(A), N (X) = N (A) X = A#

C = Am, ind(A) = m (A Drazin invertible) R(X) = R(Am), N (X) = N (Am) X = AD

C = A∗ (A MP-invertible) R(X) = R(A∗), N (X) = N (A∗) X = A+
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