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a b s t r a c t

We study the dynamics near an equilibrium point p0 of a Z2xZ2-reversible vector field in
R6 with the reversing symmetry or symmetry ϕ satisfying ϕ2

= I and dimFix(ϕ) = 3. We
deal with systems such that X presents at p0 a degenerate resonance of type 0 : p : q or
0-non-resonant.We are assuming that the linearized system of X (at p0) has as eigenvalues:
λ1 = 0 λj = ±iαj, j = 2, 3. Our main concern is to find conditions for the existence of
families of homoclinic orbits associated to periodic orbits near the equilibrium.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

It is known that the dynamics of a vector field around an equilibrium point of elliptical type can be somewhat complex
in higher dimensions. In addition there are many open questions regarding the existence and robustness of homoclinic
orbits around a saddle-center equilibrium point. Here we consider a reversible system X near an equilibrium p0 ∈ R6 that
presents a degenerate resonance of type 0 : p : q or 0-non-resonant. For a class of quadratic reversible vector fields, to be
described later, we show that there exists a two-dimensional invariant manifold, filled with periodic orbits surrounding
the equilibrium. Moreover, at each periodic orbit there are two homoclinic orbits. Our main aim is to study the persistence
of such one-parameter families of homoclinic orbits when the quadratic model is perturbed. In a comparison paper [6] the
persistence of such families in the 4- and 6-dimensional cases for analytic perturbations of a saddle-center equilibriumwere
studied. In such an approach a family of analytic reversible vector fields is considered, and the persistence of symmetric
homoclinic orbits associated to periodic orbits of exponentially small amplitude is stated. In [8] families of reversible-
equivariant vector fields in dimension 4 are also studied and, in this context, the persistence of homoclinic orbits also
associated to a saddle-center equilibrium is considered.

In this paper we analyze the case of reversible and reversible-equivariant systems. References on reversibility and
connections with other problems can be found in [4].

In Section 2, basic concepts and the statement of the main result are presented. In Section 3, homoclinic orbits in 4D-
systems are discussed. We apply the analysis and results of this section to prove the main theorem of the paper in Section 4.

2. Preliminaries and statement of the main result

In this section we recall some general concepts, establish the terminology and state the main result of the paper.

∗ Corresponding author.
E-mail addresses:mauricio.lima@ufabc.edu.br, limamauric@gmail.com (M.F.S. Lima), teixeira@ime.unicamp.br (M.A. Teixeira).

0022-247X/$ – see front matter© 2013 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2013.02.024

http://dx.doi.org/10.1016/j.jmaa.2013.02.024
http://www.elsevier.com/locate/jmaa
http://www.elsevier.com/locate/jmaa
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jmaa.2013.02.024&domain=pdf
mailto:mauricio.lima@ufabc.edu.br
mailto:limamauric@gmail.com
mailto:teixeira@ime.unicamp.br
http://dx.doi.org/10.1016/j.jmaa.2013.02.024


156 M.F.S. Lima, M.A. Teixeira / J. Math. Anal. Appl. 403 (2013) 155–166

Let X be a vector field in R6 with X(0) = 0.
We say that X is reversible (resp. equivariant) if there is an involutive diffeomorphism ϕ : R6, 0 → R6, 0 satisfying

Dϕ(x)X(x) = −X(ϕ(x)), (resp.Dϕ(x)X(x) = X(ϕ(x))). An orbit solution γ of X is called ϕ-symmetric if ϕ(γ ) = γ .

Definition 2.1. Let X be a vector field in R6 and ϕ1, ϕ2 : R6, 0 → R6, 0 be involutive diffeomorphisms. We say that X is
(ϕ1, ϕ2)-reversible-equivariant if X is ϕi-reversible with i = 1, 2.

Let G = [ϕ1, ϕ2] be the group generated by the involutions (ϕ1, ϕ2).
We assume:

1- X is (ϕ1, ϕ2)-reversible-equivariant.
2- dim(Fix(ϕi)) = 3, i = 1, 2.
3- G is a finite group isomorphic to Z2xZ2.
4- spec(DX(0)) = {0, ±iα1, ±iα2}. Moreover, some resonant conditions on {α1, α2} will be further assumed.

We start by fixing, throughout the paper, the linear part of the vector field X .

A = DX(0) =



0 1
0 0

0 −α1
α1 0

0 −α2
α2 0

 .

Definition 2.2. We say that the set of eigenvalues {±iαj, j = 2, 3} of A satisfy the non-resonance condition if they are
rationally independent. That is:

3
j=2

kjαj = 0, kj ∈ Z ⇒ kj = 0, j = 2, 3.

Definition 2.3. The vector field X , with X(0) = 0 is 0-non-resonant if the set {±αj, j = 2, 3} satisfies the non-resonance
condition.

Definition 2.4. Wesay thatX is 0 : p : q-resonant at 0 if±iα1 and±iα2 are in p : q-resonance. Thatmeans that qα1−pα2 = 0,
with p, q ∈ Z+.

Definition 2.5. Let X (k) be the k-jet of X at x = 0. We say that X is in the Belitskii Normal Form (BNF) up to order k if X (k)

satisfies A∗X (k)
= DX (k)A∗xwhere A = DX(0) and A∗ is the formal adjoint of A.

Since G is a compact group wemay apply the Montgomery–Bochner Theorem [1,2] and take both mappings ϕ1 and ϕ2 as
linear. Moreover, we can fix ϕ1 = R1, with R1(x1, x2, x3, x4, x5, x6) = (x1, −x2, x3, −x4, x5, −x6) and let ϕ2 vary in different
ways leading the system to have different scenarios. Denote Gi = [Ri, R1].

The next lemma classifies all the possible choices of ϕi = Ri with i ∈ {1, 2, . . . , 8}. Its proof is straightforward and it will
be omitted. Note that we have included, for sake of completeness, the case G1 = [R1, R1]which is not isomorphic to Z2×Z2.

Lemma 2.6. Up to a (A, R1)-equivariant change of coordinates there are eight possible choices for Ri for which X is [Ri, R1]-
reversible. These involutions are given by the following expressions:

R1(x1, x2, x3, x4, x5, x6) = (x1, −x2, x3, −x4, x5, −x6),
R2(x1, x2, x3, x4, x5, x6) = (x1, −x2, x3, −x4, −x5, x6),
R3(x1, x2, x3, x4, x5, x6) = (x1, −x2, −x3, x4, x5, −x6),
R4(x1, x2, x3, x4, x5, x6) = (x1, −x2, −x3, x4, −x5, x6)
R5(x1, x2, x3, x4, x5, x6) = (−x1, x2, x3, −x4, x5, −x6),
R6(x1, x2, x3, x4, x5, x6) = (−x1, x2, −x3, x4, x5, −x6),
R7(x1, x2, x3, x4, x5, x6) = (−x1, x2, x3, −x4, −x5, x6),
R8(x1, x2, x3, x4, x5, x6) = (−x1, x2, −x3, x4, −x5, x6).

Denote by χ6
i , i ∈ {1, . . . , 8} the space of all jets of Gi-reversible vector fields X at 0 such that DX(0) = A endowed with

the C∞ topology. Moreover assume that the elements in χ6
i , i ∈ {1, . . . , 8} are at 0 either 0-non-resonant or 0 : p : q-

resonant with p + q > 3. As proved in [5], in both cases the 2-jet of the Belitskii normal forms BNF coincide and our results
will be stated under generic conditions on the 2-jet of X . In addition, it is possible to find normal forms that preserve the
reversible-equivariant structure (see [3]).
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Remark 2.7. The 2-jet of X ∈ χ6
1 , at 0 expressed by BNF is given by

X (2)(x) =


x2

a2x21 + b1(x23 + x24) + b2(x25 + x26)
−α1x4 − c1x1x4
α1x3 + c1x1x3

−α2x6 − c2x1x6
α2x5 + c2x1x5

 ,

where x = (x1, x2, x3, x4, x5, x6). We are assuming that a2b1 < 0, a2b2 < 0 and c1, c2 ≠ 0.

Remark 2.8. (i) Saying that X is G1 = [R1, R1]-reversible is equivalent to saying that it is R1-reversible.
(ii) If X is Gi = [R1, Ri]-reversible then it is R1Ri-equivariant.
(iii) χ6

i ⊂ χ6
1 for all i ∈ {1, . . . , 8}.

We observe that it is no longer true that each Gi-reversible vector field X with i ∈ {5, . . . , 8}, satisfies the generic
conditions on X (2) as required in Theorem B of [5] concerning the persistence of the families of symmetric periodic orbits
via Lyapunov–Schmidt reduction. This result is stated provided that X (2) is written in BNF plus some generic conditions
(see Remark 2.7). However, examples can be exhibited where families of homoclinic orbits are destroyed when additional
high order terms are considered even when the periodic solutions are preserved (see Section 4).

Let X ∈ χ6
1 . We fix coordinates such that X is in the BNF until order 2 and we will denote by X (2) the 2-jet of X written in

normal form (see [5]).
The next result describes the dynamics of the polynomial vector field X (2).

Proposition A. There exists an open set U in χ6
1 , such that any X ∈ U, X (2) satisfies:

(i) X (2) is completely integrable.
(ii) There exist two two-parameter families of flow invariant 2-tori, T 2

µ and S2µ, both terminating at the origin where µ =

(µ1, µ2).
(iii) There is a two-parameter family of flow invariant topological 3-tori, T 3

µ containing T 2
µ and terminating at the origin.

(iv) There is a three-parameter family of flow invariant 3-tori, T 3
µ,ν , terminating at the origin when µ → (0, 0), and for each µ0,

the family originates at T 3
µ0 and terminates at S2

µ0 , when ν goes to ±∞.

(v) There are four one-parameter families of periodic orbits T 1
µ1

, T 1
µ2

, S1µ1
and S1µ2

contained in T 2
µ and S2µ for µ = (µ1, 0) and

µ = (0, µ2) (with bounded periods) γ i
µ1

and δi
µ2

; (b) two one-parameter families of homoclinic orbits associated to T 1
µ1

and T 1
µ2

and terminating at origin.

The main result of this paper is the following:

Theorem A. Let X ∈ χ6
i . Then:

(a) If i = 2, 3 then there is a non-empty open subset V in χ6
i such that any X ∈ V admits two one-parameter families of

symmetric homoclinic orbits associated to symmetric periodic orbits around the equilibrium.
(b) If i = 4 then the homoclinic orbits given in Proposition A(v-(b)) are not persistent when high order terms are considered.
(c) If i ∈ {5, . . . , 8} then the 2-truncated normal form of the vector field admits families of periodic and homoclinic orbits.

Moreover the families of homoclinic solutions can be destroyed when high order terms are considered.

Remark 2.9. There are a number of ways in which our work differs from that of Lombardi in [6]. First, he deals just with
analytic systems, while we are interested in the C∞ case. More importantly, the topological types of the systems at the
equilibrium differ from each other. In Lombardi’s approach the stable (or unstable) manifold associated to the saddle-center
plays an important role while in our setting the important point is the existence of a 4D-invariant manifold associated to
the eigenvalues ±iα1 and ±iα2 and the stable/unstable manifolds associated to each symmetric periodic orbit.

Remark 2.10. We observe that as χ6
i ⊂ χ6

1 for all i ∈ {1, . . . , 8}. So the non persistence of symmetric homoclinic orbits in
the R1-reversible case is immediate from Theorem A(b). The robustness result presented in part (a) of Theorem A follows
from the existence of a 4D-invariant manifold fact that the family of two-dimensional stable manifolds (associated to
periodic orbits) is transverse to the fixed points set of the associated involution. Due to the fact that a 4D-invariant manifold
cannot exists for the parts (b) and (c) one deduces immediately that the intersection between the two-dimensional stable
manifold and the set of fixed points of the symmetries can be destroyed by small perturbations.

The proof of Theorem A follows the following strategy: first we prove a version of Theorem A in a 4D-situation for a
R-reversible vector field where R is an involution. Such a proof requires many technical steps. We consider the vector field
written in the BNF until order 2 and we see that the truncated normal form satisfies Proposition A. So we use the Banach
Fixed Point Theorem for contraction in a convenient Banach space to show that most of the homoclinic orbits are persistent
when the original system is considered. The 6D-case is proved by reducing the system to a 4D-flow-invariant manifold.
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3. Homoclinic solutions in 4D

Let X ∈ χ4
1 be the space of R-reversible vector field with X(0) = 0,

B = DX(0) =

0 1
0 0

0 −1
1 0


and R(x1, x2, x3, x4) = (x1, −x2, x3, −x4).

In [5] is proved that under a C∞-conjugacy we can write the system in the following way where the 2-jet is given in the
BNF.

X :


ẋ1 = x2
ẋ2 = a2x21 + b2(x23 + x24) + f1(x1, x2, x3, x4)
ẋ3 = −x4 − c1x1x4 + f2(x1, x2, x3, x4)
ẋ4 = x3 + c1x1x3 + f3(x1, x2, x3, x4),

(1)

where fi(x1, x2, x3, x4) = O(|x|3) for i = 1, 2, 3 and x = (x1, x2, x3, x4).
Assume on X the following extra assumption:

C1 : {a2 > 0, b2 < 0 and c1 ≠ 0}.

Such a condition allows us to claim that the truncated normal form of the system possesses R-symmetric periodic and
homoclinic solutions.

Note that under the assumption C1 and under the linear change of coordinates x1 =
1
a2
X1, x2 =

1
a2
X2, x3 =


−

1
a2b2

X3

and x4 =


−

1
a2b2

X4 we obtain a system as system (1) but with a2 = 1 and b2 = −1. So, without loss of generality we may
assume that a2 = 1 and b2 = −1.

Lemma 3.1. Changing coordinates to (x1, x2, Z) with Z = x3 + ix4 and rescaling by x1 = εy1, x2 = ε3/2y2, Z = εz, and
τ = ε1/2 t for ε > 0, system (1) is written as:

Yε :


ẏ1 = y2
ẏ2 = y21 − |z|2 + ς1(y1, y2, z, z̄, ε)

ż = iz


1
ε1/2

+ c1ε1/2y1


+ ς2(y1, y2, z, z̄, ε),

where ς1 = O(ε (|y1| + |y2| + |z|)3) and ς2 = O(ε3/2 (|y1| + |y2| + |z|)3).
Moreover ς1(Y ′, ε) − ς1(Y , ε) = O


ε|Y ′

− Y |

and ς2(Y ′, ε) − ς2(Y , ε) = O


ε3/2

|Y ′
− Y |


, where Y (τ ) =

(y1(τ ), y2(τ ), z(τ ), z̄(τ )).

Proof. In the new coordinates and time τ it is easy to see that we can write

ẏ1 = y2

ẏ2 = y21 − |z|2 +
1
ε2

f1


εy1, ε3/2y2,

ε(z + z̄)
2

,
ε(z − z̄)

2i



ż = iz


1
ε1/2

+ c1ε1/2y1


+

1
ε3/2

 f2


εy1, ε3/2y2,

ε(z + z̄)
2

,
ε(z − z̄)

2i


+if3


εy1, ε3/2y2,

ε(z + z̄)
2

,
ε(z − z̄)

2i


 .

So, from the fact that hi(x) = O(|x|3) the proof follows immediately. �

Considering now the coordinates y1, y2, z = reiθ , we have:

Yε :


dY
dτ

= f1(Y , θ) =

 y2
y21 − r2 + ς̃1(y1, y2, r, θ, ε)

ς̃r(y1, y2, r, θ, ε)


dθ
dτ

= f2(Y , θ) =
1

ε1/2
+ ς̃θ (y1, y2, r, θ, ε).

(2)

Observe that Y (τ ) = (y1(τ ), y2(τ ), r(τ )).
In these new coordinates the reversibility R is given by: R′f1(Y , θ) = −f1(R′Y , −θ) with R′(y1, y2, r) = (y1, −y2, r) and

θ being an odd function.
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We still have
ς̃1 = O (ε|Y |) ,

ς̃1(Y ′, θ, ε) − ς̃1(Y , θ, ε) = O

ε|Y ′

− Y |

,

ς̃r = O

ε3/2

|Y |

,

ς̃r(Y ′, θ, ε) − ς̃r(Y , θ, ε) = O

ε3/2

|Y ′
− Y |


,

ς̃θ = O


ε1/2

+
ε3/2

r
|Y |


,

ς̃θ (Y ′, θ, ε) − ς̃θ (Y , θ, ε) = O


ε1/2

+ ε3/2

1
r ′

+
|Y |

rr ′


|Y ′

− Y |


.

(3)

Now we state the main result of this section.

Theorem A∗. There exists an open set U ⊂ χ1(R4) such that associated to each X ∈ U there is a ε-rescaling in the variables
(y1, y2, r, θ, ε), with ε > 0 such that:
(i) in these new coordinates the vector field is expressed by Yε;

(ii) one can find a small number kε > 0 such that if k ≥ kε then there are two symmetric homoclinic solutions associated to one
symmetric periodic solution Ŷk(t, ε).

The proof of part (i) of Theorem A∗ follows from Lemma 3.1. The rest of this section will be used to prove part (ii).
Given (2), we want to associate to it another auxiliary system having θ as the time. For this purpose the following result

is necessary:

Lemma 3.2. Restricted to

Eη =


(Y , θ)/ sup

τ∈R
|Y | ≤ M1, r ≥

εη

2


with 0 < η <

1
2
,

the function θ is a local diffeomorphism around 0. Moreover, if (Y , θ) ∈ Eη then

ς̃θ = O(ε1/2), ς̃θ (Y ′, θ, ε) − ς̃θ (Y , θ, ε) = O(ε1/2
|Y ′

− Y |). (4)

Proof. As in Eη we have r ≥
εη

2 and |Y | ≤ M1 and taking into account that 0 < ε < 1 and 0 < η < 1
2 it follows that

ε3/2

r
|Y | ≤ 2M1ε

3/2−η < 2M1ε
1/2,

and

ε3/2

1
r ′

+
|Y |

rr ′


≤ ε3/2


2
εη

+
4M1

ε2η


< cε1/2.

So from the estimates (3) we obtain (4). Moreover from the Eq. (2) we have dθ
dτ =

1
ε1/2

+ O(ε1/2) > 0. This implies that θ is
a local diffeomorphism around 0. �

Now we focus the analysis on f1. We have:
dY
dθ

= Nε(Y , ε) + R̄(Y , θ, ε)

dθ
dτ

=
1

ε1/2
+ Rθ (Y , θ, ε)

where

Nε =
√

ε N , N =

 y2
y21 − r2

0


is the truncated normal form up to second order.

We proceed to the analysis of:

Ỹθ,ε :
dY
dθ

= Nε(Y ) + R̄(Y , θ, ε). (5)

By means of a θ-re-parametrization we get

Yθ,ε :
dY
dθ

= N (Y ) + R(Y , θ, ε), (6)
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with

R =

 s1(Y , θ, ε) = O (ε|Y |)
s2(Y , θ, ε) = O (ε|Y |)

Rr(Y , θ, ε) = O

ε3/2

|Y |

 . (7)

In this way

R(Y , θ, ε) = εR̂(Y , θ, ε),

and the system (6) is written as:

dY
dθ

= N (Y ) + εR̂(Y , θ, ε). (8)

Lemma 3.3. The truncated system

dY
dθ

= N (Y ). (9)

has

H1 = r2, and H2 =
y22
2

−

 y1

0
(s2 − H1) ds

as first integrals. Moreover, associated to each r = k > 0 there is a R′-symmetric homoclinic solution Hk(θ) at the R′-symmetric
equilibrium Yk = (k, 0, k), where

Hk(θ) = (y1(θ), y2(θ), k)

and

y1(θ) = k −
3k

cosh2
√

2k
2 θ

 , y2(θ) =

3k
√
2k tanh

√
2k
2 θ


cosh2

√
2k
2 θ

 .

Proof. It is easy to see that H1 = r2 is a first integral of (9). Moreover, for each r = k > 0 the vector field
ẏ1 = y2,
ẏ2 = y21 − k2, (10)

is Hamiltonian with Hamiltonian function H2. Also we can see that system (10) is R̄-reversible where R̄(y1, y2) = (y1, −y2).
Moreover (k, 0) is an equilibriumpoint of saddle type of (10) that admits a symmetric homoclinic orbit given byH2(y1, y2) =

H2(k, 0).
Considering the change x1 = y1 − k and x2 = y2 we obtain from (10):

ẋ1 = x2
ẋ2 = 2kx1 + x22

(11)

with saddle point in (0, 0) and H2(x1, x2) =
x22
2 − kx21 −

x31
3 .

In order to obtain a parametric expression of the homoclinic orbit given by

x22 = 2x21

k +

x1
3


(12)

we take x1(θ) =
−3k

cosh2(at)
. Note that |x1(θ)| → 0 when |θ | → ∞. From (12) we obtain x2(θ) =

3k
√
2k tanh(aθ)

cosh2(aθ)
. Observe that

(x1(θ), x2(θ)) satisfies system (11) provided that a =

√
2k
2 . Returning to the (y1, y2) variablewe obtain the desired result. �

In comparison with the truncated original system we note that the equilibrium Yk corresponds to a symmetric periodic
orbit and Hk(θ) corresponds to a symmetric homoclinic orbit.

It is worthwhile to note that the truncated normal form in R4 is invariant with respect to Sα(y1, y2, z) = (y1, y2, zeiα).
This implies in the existence of another symmetric homoclinic solution SπHk(t) at Yk(t). Note that Sπ performs a rotation
of angle π in the (x3, x4)-plane. So if Hk(t) intersects Fix(R) at the point (x01, 0, x

0
3, 0) with x03 ≠ 0 then SπHk(t) intersects

Fix(R) at the point (x01, 0, x
0
3, 0) ≠ (x01, 0, −x03, 0). This implies that SπHk(t) ≠ Hk(t). So associated to each periodic orbit

there are two symmetric homoclinic orbits.
As discussed in [5], such periodic solutions are persistent when the original system is considered. Our concern now is to

decide how persistent are the homoclinic orbits detected above when the system is perturbed.
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Let us concentrate our attention on the system dY
dθ . Let Y (θ, ε) be a solution of (8) written in the following form:

Y (θ, ε) = Hk(θ) − Yk + U(θ, ε) + Ŷk(θ, ε) (13)

where Ŷk(θ, ε) is the continuation of Yk.
Let us assume that the domain of variation of U is concentrated in the set Eγ of all U = (y1, y2, r) that satisfy:

(i) U ∈ Co(R); (ii) U is R′-reversible and (iii) ∥U∥γ < ∞ where

∥U∥γ = sup
θ∈R


|U(θ, ε)|eγ |θ |


and γ =

√
2k δ, 0 < δ < 1.

Note that Eγ is a Banach space endowed with the norm ∥.∥γ .

Remark 3.4. It follows from the fact that ∥U∥γ < ∞ that solution (13) belongs to the perturbed stable manifold of the
symmetric periodic orbit Ŷk(θ, ε). Moreover, this perturbed manifold is O(ε)-close to the unperturbed one.

Now we state a fundamental result. It will be proved at the end of this section.

Lemma 3.5. Given a small number ε > 0 there exists kε > 0 such that Ŷk(θ, ε) admits two symmetric homoclinic orbits provided
that k ≥ kε > 0.

Note that the proof of part (ii) of Theorem A∗ is a direct consequence of Lemma 3.5.
We discuss now the solution (13).

Lemma 3.6. If U is taken in the convex subset of Eγ given by

Eγ ,d =


U ∈ Eγ / ∥U∥γ ≤ d, |Πr (U) | ≤

εη

2


(14)

with Πr(.) being the canonical projection to r-axis then the solution (13) is in Eη.

Proof. In fact, to guarantee that Y is in Eη it is sufficient to show that |Πr(Y )| ≥
εη

2 .
We have that

|Πr(Y )| = |Πr(Hk(θ) − Yk + U(θ, ε) + Ŷ (θ, ε))| ≥ εη
−

εη

2
=

εη

2
. �

Lemma 3.7. The function Y (θ, ε) given by (13) is a solution of (8), provided that U(θ, ε) is a solution of

dU
dθ

− DN (Hk(θ, ε))U = N̂ (U(θ, ε), θ, ε) + εR̂ (U(θ, ε), θ, ε) (15)

where

N̂(U(θ, ε), θ, ε) = N

Hk(θ) − Yk + U(θ, ε) + Ŷk(θ, ε)


− N (Hk(θ)) − N


Ŷk(θ, ε)


− DN (Hk(θ))U,

R̂(U(θ), θ, ε) = R̂

Hk(θ) − Yk + U(θ, ε) + Ŷk(θ, ε), θ, ε


− R̂


Ŷk(θ, ε), θ, ε


.

Moreover, under these assumptions there exists M > 0 such that:

∥N̂(U(θ), θ, ε)∥ ≤ M

εe−

√
2kθ

+ ε |U(θ, ε)| + |U(θ, ε)|2


(I)

∥R̂(U(θ, ε), θ, ε)∥ ≤ M

e−

√
2kθ

+ |U(θ, ε)|


(II)

∥N̂(U ′, θ, ε) − N̂(U, θ, ε)∥ ≤ M

ε + |U(θ, ε)| + |U ′(θ, ε)|


|(U ′

− U)(θ, ε)| (III)
∥R̂(U ′, θ, ε) − R̂(U, θ, ε)∥ ≤ M|(U − U ′)(θ, ε)|. (IV)

(16)

Proof. The proof of this lemma is straightforward, since such inequalities are reached directly from the expansion of the
mappings in Taylor series. �

The following example illustrates the inequalities (I)–(IV) of Lemma 3.7.

Example 3.8. Consider the perturbed vector field given byẋ1 = x2
ẋ2 = x21 − r2 + εx41
ṙ = 0.
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For this systemwe have: Yk = (k, 0, k), Ŷk(θ, ε) =


−1+

√
1+4k2ε

2ε , 0, k


and U(θ, ε) = (u1, u2, 0). So N̂(U(θ), θ, ε) =

0, u2
1 + εk3


−u1 + 3k sech

√
2k
2 θ


, k

. And we have part (I) of inequality (16). The other inequalities can be obtained

in a similar way. �

Note that inequalities (I) and (II) imply that the sets N̂(Eγ ) and R̂(Eγ ) are in Eγ since γ <
√
2k. Our objective now is to

give extra assumptions in such a way that on the set Eγ ,d the last condition is also satisfied.
Now it remains to show that the system (15) admits a solution in Eγ ,d.

Proposition 3.9. The system (15) admits a solution in Eγ ,d.

Proof. First of all consider the linearization of (15) given by:

dU
dθ

= DN (Hk(θ))U . (17)

It follows that

DN (Hk(θ)) =

 0 1 0
2y1(θ) 0 −2k

0 0 0


.

It is easy to see that p(θ) =
∂Hk
∂θ

(θ) =


y2(θ),

∂y2
∂θ

(θ), 0

is always a solution of (17).

Observe that

R′p(θ) = −p(−θ) and p(θ) = O

e−

√
2kθ


when |θ | → ∞.

Moreover

r(θ) =
∂Hk

∂k
(θ) =


∂y1
∂k

(θ),
∂y2
∂k

(θ), 1


is another solution of (17) in such a way that R′r(θ) = r(−θ) and r(θ) is bounded.
From the R′-reversibility of (17) it follows that associated to the solution p(θ), there exists another solution q(θ) satisfying

R′q(θ) = q(−θ) and q(θ) = O

e
√
2kθ


for |θ | → ∞.

Now it is straightforward to check that the set

{p(θ), r(θ), q(θ)}

is a basis of solution of (17).
Thus

Φ(θ) =


p(θ)

... r(θ)
... q(θ)


is a fundamental matrix of (17).

Considering T (θ, φ) = Φ(θ)Φ−1(φ), the solution of (15) is given by

U(θ, ε) = T (θ, 0)U(0) +

 θ

0
T (θ, φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ. (18)

Let P(θ) be the projection to the p(θ)-axis along the direction (r(θ), q(θ)). Denote Q (θ) = Id − P(θ).
Decomposing Eq. (18) with respect to θ > 0 we get: θ

0
T (θ, φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

=

 θ

0
T (θ, φ)P(φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

+

 θ

0
T (θ, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

=

 θ

0
T (θ, φ)P(φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ
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+

 θ

∞

T (θ, φ)Q (φ)

N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

+


∞

0
T (θ, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ.

The solution (18) can be written as:

U(θ) = T (θ, 0)

U(0) +


∞

0
T (0, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ


+

 θ

0
T (θ, φ)P(φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

+

 θ

∞

T (θ, φ)Q (φ)

N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ.

Now it follows from Theorem 4.6 of [7] that such a solution is bounded in R+, if and only if,

Q (0)

U(0) +


∞

0
T (0, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ


= 0.

Observing that Q (0)T (0, φ) = T (0, φ)Q (φ),Q = Id − P and Q 2
= Q we get

0 = Q (0)U(0) +


∞

0
Q (0)T (0, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

= U(0) − P(0)U(0) +


∞

0
T (0, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ.

Hence:

U(0) +


∞

0
T (0, φ)Q (φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ = P(0)U(0).

This implies that the solution (18) can be written as:

U(θ) = T (θ, 0)P(0)U(0) +

 θ

0
T (θ, φ)P(φ)


N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ

−


∞

θ

T (θ, φ)Q (φ)

N̂(U(φ, ε), φ, ε) + εR̂(U(φ, ε), φ, ε)


dφ. (19)

Consider now {p∗(θ), r∗(θ), q∗(θ)} the adjoint basis associated to {p(θ), r(θ), q(θ)}, which is a basis of solutions of

dU
dθ

= −DN (Hk(θ))T U . (20)

The mapping

Ψ (θ) =


p∗(θ)

... r∗(θ)
... q∗(θ)


is a fundamental matrix of (20) where: p∗(θ) = O


e
√
2kθ


when |θ | → ∞, R′p∗(θ) = −p∗(−θ), r∗(θ) is bounded,

R′r∗(θ) = r∗(−θ), q∗(θ) = O

e−

√
2kθ


when | θ | → ∞, R′q∗(θ) = q∗(−θ).

It follows that Ψ T (φ) = Φ−1(φ). So T (θ, φ) = Φ(θ)Ψ T (φ) and the solution of (15) takes the form:

U(θ, ε) = ωp(θ) +

 θ

0


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), p∗(φ)


dφ p(θ)

−


∞

θ


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), r∗(φ)


dφ r(θ)

−


∞

θ


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), q∗(φ)


dφ q(θ)

where ω = ⟨U(0), p∗(0)⟩ ∈ R and ⟨·, ·⟩ is the canonical inner product.
Moreover, the R′-reversibility of U implies ω = 0.
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Now, define the following mapping

G (U(θ, ε)) =

 θ

0


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), p∗(φ)


dφ p(θ)

−


∞

θ


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), r∗(φ)


dφ r(θ)

−


∞

θ


N̂ (U(φ), φ, ε) + εR̂(U(φ), φ, ε), q∗(φ)


dφ q(θ).

We claim that: G is a mapping from Eγ ,d to Eγ ,d and it possesses a fixed point in this set.
Firstly we show that |Πr (G(U)) | ≤

εη

2 .
As

Πr (p(θ)) = 0 = Πr (q(θ)) ,

the problem is reduced to the analysis of the second integral of the expression of G(U).
Observe that from the expression of DN (Hk(θ)) we may choose in the adjoint basis the following vector r∗(θ) =

(0, 0, 1).
As Πr (r(θ)) = 1 it follows that

Πr (G(U(θ, ε))) = −


∞

θ

Πr


N̂(U(φ, ε), φ, ε) + ε R̂(U(φε), φ, ε)


dφ.

On the other hand Πr(N ) = 0.
So Πr


N̂(U(φ, ε), φ, ε)


= 0 and

Πr


N̂(U(φ, ε), φ, ε) + ε R̂(U(φ, ε), φ, ε)


= Πr


ε R̂(U(φ, ε), φ, ε)


= Rr


Hk(φ) − Yk + U(φ, ε) + Ŷk(φ, ε), φ, ε


− Rr


Ŷk(φ, ε), φ, ε


.

From (7) we know that

Rr(Y , θ, ε) − Rr(Y ′, θ, ε) = O

ε3/2

|Y − Y ′
|

.

Thus

|Πr (G(U)) | =

 ∞

θ

Rr (Y (φ, ε) , φ, ε) − Rr


Ŷk(φ, ε), φ, ε


dφ


≤ M2
ε3/2

γ


∥U∥γ + e−

√
2kθ


where Y (φ, ε) = Hk(φ) − Yk + U(φ, ε) + Ŷk(φ, ε).

As k ≥
εη

2 taking γ ≥

√
2k
2 we have:

|Πr (G(U))| ≤
εη

2
.

Because of the definition of G (U(θ)) we derive that G is R′-reversible.
Next we show that ∥G(U)∥γ ≤ d. From (16) we have :

∥G (U) ∥γ ≤ M ′

ε + ∥U∥
2
γ

 √
2k√

2k − γ


γ

 . (21)

Furthermore

∥G (U) − G

U ′

∥γ ≤ M ′

ε + ∥U∥
2
γ + ∥U ′

∥
2
γ

 √
2k√

2k − γ


γ

 ∥U − U ′
∥γ . (22)

It is straightforward to show that for each k > 0, there exists small εk > 0 and d such that for 0 < ε < εk,G maps Eγ ,d
into Eγ ,d (see (21)). Moreover one deduces immediately from (22) that it is a contraction. Hence G has a unique fixed point
in Eγ ,d, and the claim is achieved. �
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Interchanging (13) by

Y (θ, ε) = Hk(θ) − Yk + U(θ, ε) + Ŷk(θ + π, ε) (23)

and using the same scheme of proof as above we get similar results for such a solution.
Recall that Ŷk(θ, ε) is a symmetric orbit and meets Fix(R′) at θ = 0 and θ = π.

In conclusion, we have that given ε > 0 small enough, there exists kε > 0 such that: if k ≥ kε then at Ŷk(θ, ε) there are
two symmetric homoclinic solutions.

It is fairly easy to see that from the above considerations Lemma 3.5 is proved.

4. Proof of Theorem A

In this section we perform the proof of Theorem A. The proof of part (a) follows from Proposition 4.1 and parts (b) and
(c) follow from Examples 4.2 and 4.4 (in the sequel).

Let X ∈ χi(R6) where i ∈ {2, . . . , 4}. Take a coordinate system around the origin such that the 2 − jet of X is in BNF as
given by [5]. So

X :



ẋ1 = x2
ẋ2 = a2x21 + b1(x23 + x24) + b2(x25 + x26) + f1(x2, x2, x3, x4, x5, x6)
ẋ3 = −αx4 − c1x1x4 + f2(x2, x2, x3, x4, x5, x6)
ẋ4 = αx3 + c1x1x3 + f3(x2, x2, x3, x4, x5, x6)
ẋ5 = −βx6 + c2x1x6 + f4(x2, x2, x3, x4, x5, x6)
ẋ6 = βx5 + c2x1x5 + f5(x2, x2, x3, x4, x5, x6).

(24)

Assume the following extra assumption:

C ′

1 : {a2 > 0, b1, b2 < 0 and c1, c2 ≠ 0}. (25)

Such a condition allows us to claim that the 2-truncated normal form of the system possesses R1-symmetric periodic
orbits and homoclinic orbits as stated at Proposition A.

Our problem is to verify under which conditions the homoclinic connections are persistent when high order terms are
considered.

Proposition 4.1. Let X be a vector field in χ2(R6) (resp. χ3(R6)) satisfying (25). Then there exist families of R1-symmetric
homoclinic orbits to R1-symmetric periodic orbits near the equilibrium.

Proof. First of all observe that the vector field is invariantwith respect to S12(x1, x2, x3, x4, x5, x6) = (x1, x2, x3, x4, −x5, −x6)
where Fix(S12) = {x5 = x6 = 0}. As Fix(S12) is flow-invariant it follows that it is possible to reduce X to a vector field in
dimension four as described in the previous section.

So we can apply the Theorem A∗ (Section 2) to the subsystem in the variables (x1, x2, x3, x4) and the result follows.
The proof for χ3(R6) is obtained in the same way. For this family X is invariant with respect to S13 = (x1, x2, x3,

x4, x5, x6) = (x1, x2, −x3, −x4, x5, x6). �

Now in what follows we exhibit a model where one can see that how a families of homoclinic orbits can be destroyed
when reversible perturbations are considered.

Example 4.2. Consider the following equation:

X :


ẋ1 = x2
ẋ2 = x21 − r2

ṙ = 0
ż2 = iβz2 + ic rx32

(26)

where r2 = x23 + x44, z2 = x5 + ix6 and where we are considering θ = arctg


x4
x3


as the time.

Note that for c = 0 the system is in the normal form and Hk(θ) = (x1(θ), x2(θ), k, 0) is a symmetric homoclinic orbit
associated to the equilibrium Yk = (k, 0, k, 0), where

x1(θ) = k −
3k

cosh2
√

2k
2 θ

 and x2(θ) = 3k
√
2k

tgh
√

2k
2 θ


cosh2

√
2k
2 θ

 .

The equilibrium Yk is associated to a periodic orbit of the original system (as t is the time).
A straightforward calculation shows that the stable manifold of Yk is given by

Xk(θ) =


x1(θ), x2(θ), k, ikceiβθ


∞

θ

e−iβsx32(s)ds


. (27)
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To verify that this manifold does not meet Yk when θ → −∞ we have to show that the integral

h(k) =


∞

−∞

e−iβsx2(s)3ds

is nonzero.
But, using residues we can calculate this integral and obtain

h(k) ∼
g(β, k)

e
βπ
√
2k + e

−
βπ
√
2k

 , k → 0, β ≠ 1

where g(β, k) is a polynomial of degree five in β satisfying g(β, 0) ≡ 0 and g(β, k) ≢ for k ≠ 0.
So, (27) does not connect Yk to itself. In this case, Xk(θ) represents a heteroclinic orbit from Yk to a periodic orbit of small

amplitude. �
The idea developed on this model can be applied to more general systems.

Remark 4.3 (Degenerate Situation in 6D). It is easy to see that when X ∈ χi(R6) with i ∈ {5, . . . , 8} then it does not satisfy
the generic condition imposed on [5] (condition (25)). In these cases the 2-jet of the vector field in the BNF is degenerate.
However, although the results in [5] cannot be applied, it is possible to show that, in general, if the truncated normal form
allows the existence of families of periodic orbits and homoclinic then it is possible to produce examples in the χi(R6)
families where the previous families of homoclinic orbits are destroyed.

The next example shows how to obtain such special class of equations. We will just consider the case i = 5 and 6. The
other situations are similar.

Example 4.4. Consider

X :


ẋ1 = x2
ẋ2 = −x31 + x1r2

ṙ = 0
ż2 = iβz2 + icx42

(28)

where r2 = x23 + x44, z2 = x5 + ix6 and where we are considering θ = arctg


x4
x3


as the time.

Note that for c = 0 the system is in the normal form and admits a symmetric homoclinic orbit associated to the
equilibrium Yk = (0, 0, k, 0).

A straightforward calculation using the same ideas of the one used in Example 4.2 can show that for c ≠ 0 families
of periodic orbits are preserved (in fact Yk is preserved) but the stable manifold of Yk does not connect Yk to itself in this
example. So, the homoclinic orbit is destroyed. �

As before, the idea developed on this example can be applied to more general systems.
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