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a b s t r a c t

This article analyzes Følner sequences of projections for bounded linear operators and their
relationship to the class of finite operators introduced by Williams in the 70s. We prove
that each essentially hyponormal operator has a proper Følner sequence (i.e., an increasing
Følner sequence of projections strongly converging to 1). In particular, any quasinormal,
any subnormal, any hyponormal and any essentially normal operator has a proper Følner
sequence. Moreover, we show that an operator is finite if and only if it has a proper Følner
sequence or if it has a non-trivial finite dimensional reducing subspace. We also analyze
the structure of operators which have no Følner sequence and give examples of them. For
this analysis we introduce the notion of strongly non-Følner operators, which are far from
finite block reducible operators, in some uniform sense, and show that this class coincides
with the class of non finite operators.
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1. Introduction

The notion of a Følner sequence was introduced in the context of groups to give a new characterization of amenability.
A discrete countable group Γ is amenable if it has an invariant mean, i.e., there is a state ψ on the von Neumann algebra
ℓ∞(Γ ) such that

ψ(uγ g) = ψ(g), γ ∈ Γ , g ∈ ℓ∞(Γ ),
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where u is the left-regular representation ofΓ on ℓ2(Γ ). A Følner sequence for a countable discrete groupΓ is an increasing
sequence of non-empty finite subsets Γn ⊂ Γ with Γ = ∪n Γn and that satisfy

lim
n

|(γΓn)1Γn|

|Γn|
= 0 for all γ ∈ Γ , (1.1)

where1 denotes the symmetric difference and |Γn| is the cardinality of Γn. Then, Γ has a Følner sequence if and only if Γ
is amenable (cf. Chapter 4 in [33]; see also [39] for a review stressing the fundamental fact that amenable groups are those
which can be approximated by finite groups).

Følner sequences were introduced in the context of operator algebras by Connes in Section 5 of his seminal paper [14]
(see also [15, Section 2]). This notion is an algebraic analogue of Følner’s characterization of amenable discrete groups and
was used by Connes as an essential tool in the classification of injective type II1 factors. IfH is a Hilbert space, wewill denote
by L(H) the algebra of bounded linear operators on H . In this article all Hilbert spaces will be complex and separable.

Definition 1.1. Let H be a Hilbert space, and let T ⊂ L(H). A sequence of non-zero finite rank orthogonal projections
{Pn}n∈N on H is called a Følner sequence for T if

lim
n

∥TPn − PnT∥2

∥Pn∥2
= 0, T ∈ T , (1.2)

where ∥ · ∥2 denotes the Hilbert–Schmidt norm. If the Følner sequence {Pn}n∈N satisfies, in addition, that it is increasing and
converges strongly to 1, then we say it is a proper Følner sequence.

Normal operators, compact operators and Toeplitz operators with L∞ symbol are examples of operators with a proper
Følner sequence (cf. [22, Chapter 7]).

To simplify expressions we will often use the following notation: for T ∈ L(H) and P a non-zero finite rank orthogonal
projection, put

ϕ(T , P) :=
∥TP − PT∥2

∥P∥2
. (1.3)

There is a canonical relation between the group theoretic and operator algebraic notions of Følner sequences in terms
of the group algebra. Let Γ be a discrete, countable and amenable group and {Γn}n∈N ⊂ Γ a Følner sequence. Denote by
Pn the orthogonal finite-rank projections from ℓ2(Γ ) onto ℓ2(Γn). Then {Pn}n∈N is a proper Følner sequence for the group
C*-algebra ofΓ . (In Proposition 4 in [5], a stronger result is shown: the sequence {Pn}n∈N mentioned before is a proper Følner
sequence even for the group von Neumann algebra, i.e., for the weak operator closure of the algebra generated by the left-
regular representation of Γ on ℓ2(Γ ). In general, if a C*-algebra A ⊂ L(H) has a Følner sequence, then its weak closure
needs not have one.)

In addition to these theoretical developments, Følner sequences have been used in spectral approximation problems:
given anoperator T on a complexHilbert spaceH and a sequence ofmatrices (or linear operators) {Tn}n∈N that approximate T
in some sense, a natural question iswhether the spectral objects of Tn tend to those of T asn grows. There aremany references
that treat this question fromdifferent points of view. Some standard textbooks that containmany examples and an extensive
list of references are [1,12,22]. Bédos used Følner sequences for operators in the context of eigenvalue distribution problems
(cf. [5]) and refined earlier results byArveson stated in [3,4]. See also the introduction in [28] and references cited therein. It is
worthmentioning that in the last two decades, the relation between spectral approximation problems and Følner sequences
for non-selfadjoint and non-normal operators has been also explored, see for instance [41,38,7,35]. Notice that in the context
of spectral approximation proper Følner sequences are important.

The second important concept for this article is the class of finite operators. They were introduced and analyzed in a
classical article by Williams (cf., [42]). Finite operators T ∈ L(H) on an infinite dimensional Hilbert space H have the
property that 0 is in the closure of the numerical range of the commutator TX − XT for all X ∈ L(H) (see also Section 2
for a formal definition and additional results). As Williams explains in his article the name ’finite’ is admittedly ad hoc. It
comes from the fact that the class of finite operators contains the closure of all finite block reducible operators (i.e., operators
having a non-trivial finite dimensional reducing subspace).

The aim of the present paper is to analyze the role of Følner sequences in the context of a single operator and in relation
to the class of finite operators. If {Pn}n∈N is a Følner sequence for T ∈ L(H), thenwe havewith respect to the decomposition
H = PnH ⊕ (PnH)⊥

T ∼=


T (n)1 T (n)2
T (n)3 T (n)4


and TPn − PnT ∼=


0 −T (n)2

T (n)3 0


where T (n)1 is a finite dimensional operator on PnH . Therefore

∥TPn − PnT∥2

∥Pn∥2
=

∥T (n)2 ∥2 + ∥T (n)3 ∥2

∥Pn∥2
,
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so that the condition in (1.2) describes the growth of the off-diagonal blocks of T (in the Hilbert–Schmidt norm) relative to
the dimension of the corresponding subspaces as n → ∞.

In Section 2 we will present some consequences of the existence of Følner sequences for operators and give useful
characterizations of it. We also mention standard results for the class of finite operators.

In Section 3 we explore the structure of operators without a Følner sequence. We define a strongly non-Følner operator
as an operator T such that there is some positive number ε with ϕ(T , P) ≥ ε for all non-zero finite rank projections P on
H . In a sense, this condition means that T has to be far from the set of finite block reducible operators. In Theorem 3.2, we
show that any operator with no proper Følner sequence is the orthogonal sum of an operator on a finite-dimensional space
(which can be possibly zero) and a strongly non-Følner operator.

In Section 4, we show the natural relation between the notion of proper Følner sequences and the class of finite operators.
To describe our results with more detail, let us divide the set of all operators in L(H) into four mutually disjoint classes,
according to the following table:

Table 1
Classification of operators in L(H).

Operators with a proper Følner sequence Operators with no proper Følner sequence

Finite block reducible W0+ W0−
Non finite block reducible W1+ S

As we will prove in Theorem 4.1,

an operator is finite if and only if it has a proper Følner sequence or it is finite block reducible.

Therefore the class of finite operators is the disjoint union of the operators in the classes W0+, W0− and W1+. Moreover,
an operator is strongly non-Følner if and only if it is not finite, i.e., it belongs to S. This implies that the class of strongly
non-Følner operators is open and dense in L(H). We refer to Section 4 and to the end of Section 6 for more details.

In Section 5we analyze several classes of non-normal operators and show that each operator fromany of these classes has
a proper Følner sequence. In Theorem 5.1, we show that any essentially hyponormal operator (i.e., any T such that T ∗T −TT ∗

defines a nonnegative element of the Calkin algebra) has a proper Følner sequence. This implies that important classes of
operators, like, e.g., essentially normal or hyponormal operators, have also proper Følner sequences.

In Section 6, we give examples of operators which have no Følner sequence. In the example stated in Proposition 6.1 we
use the fact that the Cuntz algebra is singly generated as a C*-algebra. In a subsequent paper [29] wewill discuss asymptotic
properties of finite square matrices, related to the property of the existence of a proper Følner sequence for an infinite
dimensional linear operator.

2. Basic properties of Følner sequences and finite operators

In this section we recall the basic definition and results concerning Følner sequences for operators. We will also discuss
some standard properties of finite operators.

In what follows, if T is a linear operator on a Hilbert space H , we denote by ∥T∥p its norm in the Schatten–von Neumann
class. We denote by Pfin(H) the set of all non-zero finite rank orthogonal projections on H .

The existence of a proper Følner sequence for an operator T is a weaker property than quasidiagonality. Recall that
an operator T ∈ L(H) is said to be quasidiagonal if there exists a sequence of finite rank orthogonal projections {Pn}n∈N
converging strongly to 1 and such that

lim
n

∥TPn − PnT∥ = 0. (2.1)

This notion was introduced by Halmos in [23] (see also [40] for a review that also relates the concept of quasidiagonality to
other fields like, e.g., C*-algebras). The existence of a proper Følner sequence can be understood as a kind of quasidiagonality
condition relative to the growth of the dimension of the underlying spaces. It can be shown that if the sequence of non-
zero finite rank orthogonal projections {Pn}n quasidiagonalizes an operator T , then it is also a proper Følner sequence
for T . Examples of quasidiagonal operators are compact operators, block-diagonal operators or normal operators. Abelian
C*-algebras or the set of compact operators K(H) are examples of quasidiagonal C*-algebras (cf. [10]).

The next result collects some easy consequences of the definition of a (proper) Følner sequence for operators.

Proposition 2.1. Let T ⊂ L(H) be a set of operators and {Pn}n∈N a sequence of non-zero finite rank orthogonal projections.
Then we have

(i) {Pn}n∈N is a Følner sequence for T if and only if it is a Følner sequence for C∗( T , 1), where C∗(·) is the C ∗-algebra generated
by its argument. Moreover, {Pn}n∈N is a proper Følner sequence for T if and only if it is a proper Følner sequence for

C∗ ( T ,K(H),1) .
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(ii) Let dimH = ∞ and {Pn}n∈N be a proper Følner sequence for T . Given a sequence {Ll}l∈N of natural numbers with Ll → ∞,
there exists a sequence {Ql}l∈N ⊂ K(H) of finite rank orthogonal projections which is a proper Følner sequence for T and
dimQlH ≥ Ll, l ∈ N.

(iii) {Pn}n∈N is a Følner sequence for T if and only if the following condition holds:

lim
n

∥TPn − PnT∥1

∥Pn∥1
= 0. (2.2)

Proof. (i) It is obvious that {Pn}n∈N is a Følner sequence for T if and only if it is a Følner sequence for C∗(T , 1). Moreover, if
{Pn}n∈N is proper, then it also satisfies ∥KPn − K∥ → 0 for any K ∈ K(H). This implies that ∥KPn − PnK∥ → 0, i.e., {Pn}n∈N
quasidiagonalizes any compact operator and, therefore, {Pn}n∈N is also a proper Følner sequence for T + K for any T ∈ T ,
K ∈ K(H).

For (ii), just notice that we can choose an increasing subsequence Ql = Pnl such that dimQlH ≥ Ll and liml→∞ Ql = 1.
Then Eq. (1.2) will be satisfied replacing Pn by Qn.

(iii) By item (i) we have that {Pn}n∈N is a Følner sequence for T if and only if it is a Følner sequence for C∗(T , 1) and we
can apply Lemma 1 in [5]. �

If P and Q are orthogonal projections, we will denote by P ∨Q the orthogonal projections onto the closure of PH +QH .
Finally, we will use the common notation for the commutator of two operators: [A, B] := AB − BA.

Next we give two useful formulations of the existence of a proper Følner sequence.

Proposition 2.2. Let T ∈ L(H) with dimH = ∞. Then the following assertions are equivalent.

(i) T has a proper Følner sequence.
(ii) For each ε > 0 and each n ∈ N there exists a projection P ∈ Pfin(H) such that rank P ≥ n and ϕ(T , P) < ε (see (1.3)).
(iii) For each Q ∈ Pfin(H) and each ε > 0 there exists a projection R ∈ Pfin(H) such that R ≥ Q and ϕ(T , R) < ε.

Proof. (i) H⇒ (ii). This is by the definition of a proper Følner sequence.
(ii) H⇒ (iii). Suppose (ii) holds. Let Q ∈ Pfin(H) and ε > 0 be given. By (ii), there exists a projection P ∈ Pfin(H) such

that ϕ(T , P) < ε/2 and

∥T∥ · ∥Q∥2 ≤
ε

4
∥P∥2.

Put R := P ∨ Q and note that ∥P∥2 ≤ ∥R∥2, R ≥ Q and R ≥ P . We assert that R has the desired properties. First notice that
rank R − rank P ≤ rankQ , which implies that ∥R − P∥2 ≤ ∥Q∥2. So we get

∥[T , R]∥2 ≤ ∥[T , P]∥2 + ∥[T , R − P]∥2 ≤ ∥[T , P]∥2 + 2∥T∥ · ∥R − P∥2

≤ ϕ(T , P)∥P∥2 + 2∥T∥ ∥Q∥2 <
ε

2
∥R∥2 +

ε

2
∥P∥2 ≤ ε∥R∥2,

which yields ϕ(T , R) < ε.
(iii) H⇒ (i). Suppose (iii) holds. Choose any sequence {Ln} of non-zero finite dimensional orthogonal projections such

that L1 ≤ L2 ≤ · · · ≤ Ln ≤ · · · and s − lim Ln = 1. Then a proper Følner sequence {Pn} for T can be constructed inductively
as follows. Take P1 = L1 ∈ Pfin(H). If P1, . . . , Pn have been defined, use (iii) to choose Pn+1 ∈ Pfin(H) that satisfies
Pn+1 ≥ Pn ∨ Ln and ϕ(T , Pn+1) ≤

1
n+1 . Then Pn+1 ≥ Pn, Pn+1 ≥ Ln for any n and ϕ(T , Pn) → 0 as n → ∞, which implies that

{Pn}n is a proper Følner sequence. �

Remark 2.3. (i) The preceding proposition also shows that given an operator T and a sequence of finite rank projections
{Qn}n such that dimQn is unbounded and ϕ(T ,Qn) → 0 one can construct a proper Følner sequence for T in the sense
of Definition 1.1.

(ii) The equivalent formulations stated above are usualwhen dealingwith asymptotic properties. Adapting from the context
of quasidiagonality (cf. [10, Section 7.2]) one can also prove that T has a proper Følner sequence if and only if for each
ε > 0 and each finite set F ⊂ H there exists a P ∈ Pfin(H) such that ϕ(T , P) < ε and ∥Px − x∥ < ε for all x ∈ F .

The preceding result immediately implies that the existence of a proper Følner sequence for a direct sum can be localized
in one of the direct summands.

Proposition 2.4. Let H and H ′ be separable Hilbert spaces with dimH = ∞. If T has a proper Følner sequence, then
T ⊕ X ∈ L(H ⊕ H ′) has a proper Følner sequence for any X ∈ L(H ′).

Proof. Assume that T has a proper Følner sequence and X is any operator on H ′. Then for each ε > 0 and each n ∈ N there
exists a P ∈ Pfin(H) such that rank P ≥ n and ϕ(T , P) < ε. Then ϕ(T ⊕ X, P ⊕ 0) = ϕ(T , P) < ε, which shows that P ⊕ 0
satisfies the properties required in Proposition 2.2(iii) (with respect to T ⊕ X , instead of T ). �

The following proposition concerning tensor products of operators follows from Proposition 2.13 in [6]. For convenience
of the reader we give an elementary proof of it.
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Proposition 2.5. If H , K are Hilbert spaces and A ∈ L(H) and B ∈ L(K) are linear operators that have proper Følner
sequences, then the tensor product A ⊗ B ∈ L(H ⊗ K) also has a proper Følner sequence. More precisely, if {Pn}n is a proper
Følner sequence for A and {Qn}n is a proper Følner sequence for B, then {Pn ⊗ Qn}n is a proper Følner sequence for A ⊗ B.
Proof. Suppose that {Pn}n and {Qn}n are as above. Then {Pn ⊗ Qn}n is an increasing sequence strongly converging to the
identity. Moreover we have

(A ⊗ B)(Pn ⊗ Qn)− (Pn ⊗ Qn)(A ⊗ B) = (APn)⊗ (BQn)− (PnA)⊗ (QnB)
= [A, Pn] ⊗ (BQn)+ (PnA)⊗ [B,Qn].

This equality and the property ∥C ⊗ D∥2 = ∥C∥2∥D∥2 imply that

ϕ (A ⊗ B, Pn ⊗ Qn) =
∥[A ⊗ B, Pn ⊗ Qn]∥2

∥Pn∥2 ∥Qn∥2

≤
∥[A, Pn]∥2

∥Pn∥2
· ∥B∥ + ∥A∥ ·

∥[B,Qn]∥2

∥Qn∥2
→ 0 as n → ∞. �

The existence of a Følner sequence for a unital C*-algebra has important structural consequences. For the next result we
need to recall the following notion: a state τ on the unital C*-algebra A ⊂ L(H) (i.e., a positive and normalized linear
functional on A) is called an amenable trace if there exists a state ψ on L(H) such that ψ � A = τ and

ψ(XA) = ψ(AX), X ∈ L(H), A ∈ A.

Note that the previous equation already implies that τ is a trace on A. The state ψ is also referred in the literature
as a hypertrace for A. Hypertraces are the algebraic analogue of the invariant mean mentioned at the beginning of the
Introduction. Later wewill need the following standard result (see [14,15] for the original statement andmore results in the
context of operator algebras; see also [6,2] for additional results in the context of C*-algebras related to the existence of a
hypertrace).

Proposition 2.6. Let A ⊂ L(H) be a separable unital C*-algebra. ThenA has a Følner sequence if and only if A has an amenable
trace.

In general, it is not true that if A has an amenable trace, then it must also have a proper Følner sequence.
Finally we recall the following definition from the Introduction.

Definition 2.7. T ∈ L(H) is called a finite operator if

0 ∈ W ([T , X]) for all X ∈ L(H),

whereW (T ) denotes the numerical range of the operator T , i.e.,

W (T ) = {⟨Tx, x⟩ | x ∈ H, ∥x∥ = 1} ,

and where the bar means the closure of the corresponding subset in C.
In this context the following class of operators plays a distinguished role:

Definition 2.8. Let T ∈ L(H). We say that T is finite block reducible if T has a non-trivial finite-dimensional reducing
subspace, i.e., there is an orthogonal decomposition H = H0 ⊕ H1, which reduces T , where H0 is finite dimensional and
non-zero.

We collect in the following theorem some standard results due to Williams about the class of finite operators (cf. [42]).

Theorem (Williams). An operator T ∈ L(H) is finite if and only if C∗(T , 1) has an amenable trace. The class of finite operators
is closed in the operator norm and contains all finite block reducible operators.

It follows that the closure of the set of all finite block reducible operators is contained in the class of finite operators.
Combining Williams’ Theorem with Proposition 2.6, we get the following fact.

Corollary 2.9. For any operator T ∈ L(H), the following properties are equivalent:
(i) T is finite;
(ii) T has a Følner sequence;
(iii) C∗(T ,1) has an amenable trace.

Remark 2.10. Note that in the reverse implication of Proposition 2.6 the sequence of projections does not have to be a proper
Følner sequence in the sense of Definition 1.1. In fact, one can easily construct the following counterexample: consider a
finite block reducible operator T = T0 ⊕ T1 on the Hilbert space H = H0 ⊕ H1, with dimH0 < ∞ and where T1 has
no Følner sequence (examples of these type of operators are given in Section 6). Then, by Williams theorem it follows that
C∗(T , 1) has a hypertrace and by Proposition 2.6 it has a Følner sequence also. The simplest choice of Følner sequence is the
constant sequence Pn = 1H0 ⊕ 0 which trivially satisfies (1.2) for T . But T cannot have a proper Følner sequence because T1
has no Følner sequence (see Proposition 3.6 below).
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3. Strongly non-Følner operators

In the present section we begin the analysis of operators with no Følner sequence.

Definition 3.1. Let H be an infinite dimensional Hilbert space and T an operator on H . We will say that T is strongly non-
Følner if there exists an ε > 0 such that all projections P ∈ Pfin(H) satisfy

ϕ(T , P) ≥ ε.

Theorem 3.2. Let T ∈ L(H) with dimH = ∞. Then T has no proper Følner sequence if and only if T has an orthogonal sum
representation T = A ⊕T on H = H0 ⊕ H , where dimH0 < ∞ (so that A is a finite dimensional operator) andT is strongly
non-Følner.

To prove the preceding theorem we will need the following lemmas that involve projections.

Lemma 3.3. Let {Pn}n∈N andP be orthogonal projections in H . If P has finite rank and the sequence {Pn}n∈N tends to zero in the
strong operator topology, i.e. Pn

SOT
−→ 0 as n → ∞, then ∥PPn∥ → 0.

Proof. It suffices to prove the assertion for the case when P has rank one: let P = ff ∗ for a unit vector f in H . Then
∥PPn∥ ≤ ∥f ∥∥Pnf ∥ = ∥Pnf ∥ → 0 as n → ∞. �

Lemma 3.4. Let s ∈ N, P1, . . . , Ps ∈ Pfin(H), j = 1, . . . , s. If ∥PjPk∥ ≤ δ := 1/(3s3) for all indices j ≠ k, then the ranges of
projections Pj are linearly independent spaces and

P1 + · · · + Ps ≥
1
2
(P1 ∨ · · · ∨ Ps) .

Proof. Let f ∈ (P1 ∨ · · · ∨ Ps)H . Then f =


j fj, where fj ∈ PjH . If either j ≠ k or j ≠ ℓ, then
⟨Pjfk, fℓ⟩ ≤ δ∥fk∥∥fℓ∥. Hence

s
j=1

⟨Pjf , f ⟩ =


j


k,ℓ

⟨Pjfk, fℓ⟩ =


k

∥fk∥2
+


j


j≠k or
j≠ℓ

Re ⟨Pjfk, fℓ⟩

≥


k

∥fk∥2
− sδ


k

∥fk∥

2

≥ (1 − s3δ)

k

∥fk∥2
=

2
3


k

∥fk∥2.

In particular, if f = 0, then fj = 0 for all j. Hence the ranges of Pj are linearly independent.
Similar arguments show that


j ∥fj∥

2
≥

1
(1+s2δ)

∥f ∥2. Combining the last two inequalities and since δ =
1
3s3

we obtain

the estimate


j⟨Pjf , f ⟩ ≥
1
2∥f ∥

2 which proves the last statement. �

Lemma 3.5. If P,Q ∈ Pfin(H) and L ∈ L(H), then

|ϕ(L, P)− ϕ(L,Q )| ≤ 4 ∥L∥ ·
∥P − Q∥2

max (∥P∥2, ∥Q∥2)
.

Proof. Without loss of generality, let us assume that ∥P∥2 ≤ ∥Q∥2. Then we have

∥Q∥2 ∥P∥2 |ϕ(L, P)− ϕ(L,Q )| = |∥Q∥2 ∥[L, P]∥2 − ∥P∥2 ∥[L,Q ]∥2|

≤ |∥Q∥2 − ∥P∥2| · ∥[L, P]∥2 + ∥P∥2 ∥[L,Q − P]∥2

≤ 4 ∥L∥ ∥Q − P∥2∥P∥2,

which implies the desired estimate. �

Proposition 3.6. Let T = A ⊕T on H = H0 ⊕ H , where dimH0 < ∞ (hence A is a finite dimensional operator). Then T has
a proper Følner sequence if and only if T has a proper Følner sequence.

Proof. The implication ‘‘⇐’’ follows from Proposition 2.4. To prove the implication ‘‘⇒’’ suppose that T has a proper Følner
sequence and put d := dimH0 < ∞. For any ε and any N > d there exists a P ∈ Pfin(H) such that rank P ≥ N and
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ϕ(T , P) < ε. Now, for each such P there exists also aP ∈ Pfin( H) such that 0 ⊕P ≤ P and rankP + d ≥ rank P . (Take asP ,
e.g., the orthogonal projection onto PH ∩ (0 ⊕ H).) Using Lemma 3.5 we get

ϕ
T ,P = ϕ


T , 0 ⊕P ≤ ϕ(T , P)+

ϕ(T , P)− ϕ

T , 0 ⊕P

≤ ϕ(T , P)+
4∥T∥ ∥P − (0 ⊕P)∥2

∥P∥2

≤ ϕ(T , P)+
4∥T∥ d

1
2

∥P∥2
< 2ε,

where for the last inequality we have chosen P so that ∥P∥2 >
4∥T∥d

1
2

ε
. By Proposition 2.2(ii) it follows thatT has also a

proper Følner sequence. �

Proposition 3.7. Let T ∈ L(H) and suppose that ϕ(T , P) ≠ 0 for all P ∈ Pfin(H). If there is a Følner sequence of projections
{Pn}n ⊂ Pfin(H) of a constant rank, then T has a proper Følner sequence.

Proof. Let {Pn}n be a sequence of projections such that the rank m := rank Pn is constant and non-zero. We can represent
them as Pn = fnf ∗

n , where fn:Cm
→ H are isometries. Moreover, by weak compactness of the unit ball in H there is a

contraction g:Cm
→ H , ∥g∥ ≤ 1, such that (passing possibly to a subsequence)

fn
WOT
−→ g. (3.1)

First we prove that g = 0. For this, suppose that g ≠ 0 and we will show that this leads to a contradiction. If g ≠ 0 there
exists some k, with 1 ≤ k ≤ m, and an isometry g0:Ck

→ H such that Ran g = Ran g0. Notice that

(I − Pn)TPn =

Tfn − fn(f ∗

n Tfn)

f ∗

n .

Put αn = f ∗
n Tfn:Cm

→ Cm and

hn = Tfn − fnαn:Cm
→ H, (3.2)

so that

(I − Pn)TPn = hnf ∗

n .

Since projections Pn have constant rank and ϕ(T , Pn) → 0 it follows that

∥(I − Pn)TPn∥ → 0 as n → ∞.

Thus ∥hn∥ → 0. Passing possibly to a subsequence, we can assume that there is a limit limn→∞ αn = α ∈ L(Cm). By (3.2),
fnαn = Tfn − hn, so by (3.1), we get

fnαn
WOT
−→ Tg as n → ∞.

By applying (3.1) once again, it follows that gα = Tg . In particular, Ran (Tg) ⊂ Ran g . Notice that Pg0 := g0g∗

0 ≠ 0 is the
orthogonal projection onto Ran g0. Since Ran g = Ran g0, we arrive at the equality (I − Pg0)TPg0 = 0. In the same way, we
can prove that (I − Pg0)T

∗Pg0 = 0 (for the same isometry g0). Hence ϕ

T , Pg0


= 0, which contradicts the assumption.

Therefore we must have g = 0, that is, fn
WOT
−→ 0 as n → ∞. Hence |⟨Pna, b⟩| ≤ ∥f ∗

n a∥∥f
∗
n b∥ → 0 for any a, b ∈ H , that is,

Pn
WOT
−→ 0, hence Pn

SOT
−→ 0.

To show that T has a proper Følner sequence let ε > 0 and N ∈ N. Consider also a positive δ < min

ε
4N ,

1
3N3


. From the

assumption ϕ(T , Pn) → 0 and Lemma 3.3 we can choose projections Pn1 , Pn2 , . . . , PnN from the sequence {Pn}n that satisfy

ϕ(T , Pnj) < δ and ∥PnjPnk∥ < δ

for all indices j ≠ k, 1 ≤ j, k ≤ N . To simplify notation we will write Pj instead of Pnj . Put P := (P1 ∨ · · · ∨ PN). Since
(I −P)(I −Pj) = (I −P)we have that ∥(I −P)TPj∥ ≤ ∥(I −Pj)TPj∥ < δ for all j = 1, . . . ,N . Hence ∥(I −P)T


j Pj

∥ < Nδ.

Finally, Lemma 3.4 implies that


j Pj ≥
1
2P .

We denote the inverse of


j Pj on PH by Q . Then ∥Q∥ ≤ 2 and P =


j Pj

Q . This gives that ∥(I − P)TP∥ < 2Nδ. In

the same way we show that ∥PT (I − P)∥ < 2Nδ, and, therefore, ϕ(T , P) < 4Nδ < ε and by Lemma 3.4, rank P ≥ N . From
Proposition 2.2 we conclude that T has a proper Følner sequence. �

With the preceding material we can now prove the main result of this section:
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Proof of Theorem 3.2. If T ∈ L(H) has an orthogonal sum representation T = A ⊕ T on H = H0 ⊕ H , where
dimH0 < ∞ andT is strongly non-Følner, then Proposition 3.6 implies that T has no proper Følner sequence.

To prove the other implication of the theorem suppose that T has no proper Følner sequence. By Proposition 2.2, there
exist some ε′ > 0 andM ∈ N such that

∀P ∈ Pfin(H), rank P > M H⇒ ϕ(T , P) ≥ ε′.

In particular, it follows that if T decomposes as T = A⊕T , where A ∈ L(H0), withH0 finite dimensional, then dimH0 ≤ M .
Consider a decomposition T = A ⊕T , where A:H0 → H0,T : H → H , and ℓ := dimH0 is the largest possible. (The case
where ℓ = 0 is not excluded.) We prove next thatT is a strongly non-Følner operator: by Proposition 3.6 and since ℓ ≤ M ,
we have thatT has no proper Følner sequence. Therefore there exist ε1 > 0 and s ∈ N such that

∀P ∈ Pfin( H), rankP > s H⇒ ϕ(T ,P) ≥ ε1. (3.3)

On the other hand, since ℓ is the largest possible, it follows thatP ∈ Pfin( H) withP ≠ 0 H⇒ ϕ(T ,P) ≠ 0. (3.4)

We claim that (3.4) implies that

∃ ε2 > 0 ∀P ∈ Pfin( H) 0 < rankP ≤ s H⇒ ϕ(T ,P) ≥ ε2. (3.5)

Then, putting ε = min{ε1, ε2}, we will conclude thatT is strongly non-Følner (cf. Definition 3.1). So it remains to deduce
assertion (3.5).

Assume that (3.5) does not hold. Then there is some m, with 1 ≤ m ≤ s, and a sequence of projections {Pn}n ⊂ Pfin( H)
of rankm that is a Følner sequence, i.e., we have

lim
n→∞

ϕ(T , Pn) = 0. (3.6)

From (3.4) and Proposition 3.7 applied to the operatorT weconclude thatT has a proper Følner sequence. But this contradicts
(3.3) and, therefore, (3.5) must hold. �

4. Relation between proper Følner sequences and finite operators

We show in this section a useful characterization of finite operators that involves proper Følner sequences. Recall the
definitions and results stated at the end of Section 2.

Theorem 4.1. Let T ∈ L(H). Then, T is a finite operator if and only if T is finite block reducible or T has a proper Følner sequence.

Proof. (i) If T is finite block reducible, the T is a finite operator (cf. [42]). Moreover, if T has a proper Følner sequence, then
the C*-algebra C∗(T ,1) has the same proper Følner sequence and, by Proposition 2.6, it also has an amenable trace. Then,
by Williams’ theorem (see also Theorem 4 in [42]) we conclude that T is finite.

(ii) To prove the other implication, assume T is a finite operator. We consider several cases. If there exists a (non-zero)
P ∈ Pfin(H) such that ϕ(T , P) = 0, then since ϕ(T , P) =

∥[T ,P]∥2
∥P∥2

we must have [T , P] = 0. This shows that T is finite block
reducible. Consider next the situation where ϕ(T , P) ≠ 0 for all P ∈ Pfin(H). Since T is finite we can use again Theorem 4
in [42] to conclude that C∗(T ,1) has an amenable trace. Applying Proposition 2.6 (see also Theorem 1.1 in [6]) we conclude
that there exists a Følner sequence of non-zero finite rank projections {Pn}n, i.e., we have

lim
n→∞

ϕ(T , Pn) = 0.

(Note that Pn is not necessarily a proper Følner sequence in the sense of Definition 1.1; cf. Remark 2.10.) Two cases may
appear: if dim PnH ≤ m for somem ∈ N, then choose a subsequencewith constant rank and by Proposition 3.7 we conclude
that T has a proper Følner sequence. If dim PnH is not bounded, then from Remark 2.3(i) we also have that T has a proper
Følner sequence. �

From Theorem 4.1 and taking into account the classification of operators described in Table 1 of the Introductionwe have
the following result.

Corollary 4.2. Let T ∈ L(H). Then

(i) T is a finite operator if and only if T is in one of the following mutually disjoint classes: W0+, W0−, W1+.
(ii) T is not a finite operator (i.e., it is of class S) if and only if T is strongly non-Følner.
(iii) The class of strongly non-Følner operators is open and dense in L(H).
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Proof. The characterization of finite operators and its complement stated in (i) and (ii) follows from Theorem 4.1 and
Williams’ theorem at the end of Section 2. To prove part (iii) we use that the class of finite operators is closed and nowhere
dense (cf. [26]). Therefore the set of strongly non-Følner operators is an open and dense subset of L(H). �

Remark 4.3. In fact, the assertion that the class of strongly non-Følner operators is open in the norm topology follows
easily from our definition of this class. Indeed, let T be strongly non-Følner operator, so that there is an ε > 0 such that
ϕ(T , P) ≥ ε for all P ∈ Pfin(H). It is easy to see that |ϕ(T , P) − ϕ(T ′, P)| ≤ 2∥T − T ′

∥ for any operator T ′. Hence any
operator T ′ with ∥T − T ′

∥ < ε/2 is strongly non-Følner. So an application of Corollary 4.2 gives an alternative proof of the
result by Williams [42] that the set of finite operators is closed.

5. Classes of non-normal operators with a proper Følner sequence

In the present sectionwe single out several classes of operators such that any operator in these classes has a proper Følner
sequence. The unilateral shift is a basic example that shows the difference between the notions of proper Følner sequences
and quasidiagonality. It is a well-known fact that the unilateral shift S is not a quasidiagonal operator. (This was shown by
Halmos in [24]; in fact, in this reference it is shown that S is not even quasitriangular.) In the setting of abstract C*-algebras
it can also be shown that a C*-algebra containing a proper (i.e. non-unitary) isometry is not quasidiagonal (see, e.g., [8,10]).

On the other hand, S has a canonical proper Følner sequence. Indeed, let S be defined on H := ℓ2(N0) by Sei := ei+1,
where {ei | i = 0, 1, 2, . . .} is the canonical basis of ℓ2(N0). Then it is very easy to see that orthogonal projections Pn onto
span{ei | i = 0, 1, 2, . . . , n} form a proper Følner sequence for S. We will see later in this section that, in fact, any isometry
has a proper Følner sequence.

We recall some standard definitions. An operator T ∈ L(H) is called hyponormal if its self-commutator [A∗, A] is nonneg-
ative. T is called essentially hyponormal if the image in the Calkin algebra L(H)/K(H) of [T ∗, T ] is a nonnegative element,
that is, if [T ∗, T ] is a sum of a nonnegative and a compact selfadjoint operator. Next, T is said to be essentially normal if [T ∗, T ]

is compact (that is, [T ∗, T ] is zero as an element of the Calkin algebra). Finally, T is called quasinormal if T and T ∗T com-
mute. Any isometry is quasinormal, any quasinormal operator is subnormal and any subnormal operator is hyponormal, see
[16, Chapter II].

Theorem 5.1. Any essentially hyponormal operator T ∈ L(H) has a proper Følner sequence.

Proof. Let T be essentially hyponormal. By Williams [42, Theorem 5] and the discussion that follows this theorem, T is a
finite operator. Consider all finite-dimensional reducing subspaces H0 of T (including the zero one).

There are two possibilities.
(1) Suppose that among these subspaces there is one of largest dimension, say, H0, and T = T0 ⊕ T1 with respect to

the corresponding decomposition H = H0 ⊕ H⊥

0 . Then T1 is essentially hyponormal and not finite block reducible. By
Theorem 4.1, T1 has a proper Følner sequence. Therefore T also has a proper Følner sequence.

(2) Now suppose that, to the opposite, the dimensions of these subspaces can be arbitrarily large. Then we deduce from
Proposition 2.2 that in this case, too, T has a proper Følner sequence. �

Corollary 5.2. Every essentially normal operator (that is, an operator T such that [T ∗, T ] ∈ K(H)) has a proper Følner sequence.
Every hyponormal operator (in particular, any subnormal, any quasinormal and any isometry) also has a proper Følner sequence.

Remark 5.3. For some of the above operator classes, one can give alternative direct proofs.

(i) Any isometry V ∈ L(H) has a proper Følner sequence. Indeed, without loss of generality we may assume that V is
not unitary. By Wold’s decomposition theorem (cf. [18, Section V.2]) we have that V ∼= S ⊕ A, where ∼= means unitary
equivalence, S is the unilateral shift and A =


⊕

n
i=0 S


⊕U for some cardinal number n and unitary U . Since we showed

above that S has a canonical proper Følner sequence we can apply Proposition 2.4 and the proof is concluded.
(ii) Any quasinormal operator has a proper Følner sequence. To see that, notice first that by Brown’s theorem (see

[16, Theorem II.3.2]), any quasinormal operator is unitarily equivalent toN⊕(A⊗S), whereN is normal,A is nonnegative
and S is the unilateral shift. Next, as we mentioned already, S has an explicit proper Følner sequence and since A
is selfadjoint it has a proper Følner sequence too. By Proposition 2.5, A ⊗ S has a proper Følner sequence. Finally,
Proposition 2.4 implies that N ⊕ (A ⊗ S) has a proper Følner sequence.

(iii) One can also give an alternative proof of the fact that any essentially normal operator has a proper Følner sequence by
applying the Brown–Douglas–Fillmore theory (see [9,19]) and a model for essentially normal operators, similar to that
given on p. 122 of the cited work.

The next result refers to the existence of a proper Følner sequence for the class of Toeplitz operators on the d-dimensional
torus. Denote the unit torus by T = {z ∈ C | |z| = 1}. We also recall that, given a function F ∈ L∞(Td), the Toeplitz operator
TF on the classical Hardy space H2(Td) is defined by TFg = P+(F · g), g ∈ H2(Td), where P+ stands for the orthogonal
projection from L2(Td) onto H2(Td). Note that even for d = 1, there are Toeplitz operators which are not essentially normal
(for instance, Tθ for any non-rational inner function θ ). Using the same idea, it is easy to give an example of a Toeplitz
operator TF on H2 such that neither TF nor T ∗

F is essentially hyponormal.
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It is an easy consequence of Proposition 2.5 andWeierstraß’ theorem that any Toeplitz operator with continuous symbol
on Td has a proper Følner sequence. The following more general result is also true. Its proof is similar to the one given in
Example 7.17 of [22], where only the case d = 1 was considered. For convenience of the reader we give a brief sketch of the
proof.

Proposition 5.4. Any Toeplitz operator TF on H2(Td) with any symbol F in L∞(Td) has a proper Følner sequence.

Proof. It is enough to consider the proof for d = 2 and other cases follow similarly. For any F ∈ L∞(T2) we consider its
decomposition

F =


k1,k2∈Z

ak1k2 ek1k2 and ∥F∥
2

=


k1,k2∈Z

|ak1k2 |
2 < ∞ (5.1)

where {ek1k2} is the canonical basis of L2(T2) : ek1k2(z1, z2) = zk11 zk22 . Denote by PN the orthogonal projection onto span
{ek1k2 | k1, k2 = 0, . . . ,N − 1} and note that ∥PN∥

2
2 = N2. If we choose bN to be the smallest integer greater or equal than

√
N , we have

1
N2

∥(1 − PN) TF PN∥
2
2 ≤

1
N2


l1,l2=0,...,N−1
k1≥N,k2≥0

ak1−l1,k2−l2

2 +
1
N2


l1,l2=0,...,N−1
k1≥0,k2≥N

ak1−l1,k2−l2

2 =: A1 + A2.

Next, putting sj = kj − lj, we get

A1 ≤
1
N

 
s1≥1,s2∈Z

as1s2 2 + · · · +


s1≥N,s2∈Z

as1s2 2


≤
1
N


(N − bN)


s1>bN ,s2∈Z

as1s2 2 + bN


s1≥1,s2∈Z

as1s2 2


≤


s1>bN ,s2∈Z

as1s2 2 +
bN
N

∥F∥
2

−→
N→∞

0

(see (5.1)). Similarly, A2 → 0 as N → ∞. We get that 1
N2 ∥(1 − PN) TF PN∥

2
2 → 0. In the same way one proves that

1
N2 ∥PN TF (1 − PN)∥2

2 → 0 as N → ∞. �

In particular, it follows that any Toeplitz operator on H2(Td) is finite.
For completeness wemention that all band-limited operators and uniform limits of them have a proper Følner sequence.

Recall that a linear operator A on H is band-limited with respect to an orthonormal basis {en}∞n=1 or {en}∞n=−∞
in H if there

is N ∈ N such that the matrix elements of A satisfy ⟨Aej, ek⟩ = 0 for |j − k| > N (see, e.g., [3,5,34]). This class of operators
includes all (bounded) unilateral and bilateral weighted shifts.

Notice that not every weighted shift is essentially normal and not every weighted shift is quasidiagonal. A complete
description of quasidiagonal weighted shifts was given in [36] (see also [31] for a generalization).

It is easy to see that band-limited operators can be generalized to what we can call ‘‘acute wedge’’ operators.
By definition, A has this propertywith respect to an orthonormal basis {en}∞n=1 (or {en}

∞
n=−∞

) inH if there exists a function
g(n) such that lim|n|→∞

g(n)
|n|1/2

= 0 and ⟨Aej, ek⟩ = 0 for all j, k such that |j − k| > g(j).

6. Examples of strongly non-Følner operators

Returning to Table 1 of the Introduction, it easy to give examples of operators of class W0+. Next, it is immediate to see
that the unilateral shift is an example of an operator in the class W1+. In this Section, we will recall several examples of
operators of class S (that is, strongly non-Følner operators) and will give a new example. We remark that for any strongly
non-Følner operator T and any operator T0 acting on a non-zero finite dimensional Hilbert space, the orthogonal sum T0 ⊕ T
is an example of an operator in W0−.

Halmos constructed in [25, Theorem 5] two operators A, B ∈ L(H), H infinite dimensional such that W ([A, B]) is a
vertical line segment in the open right half plane. It follows thatA andB cannot be finite, hence both are examples of operators
which are strongly non-Følner. In fact, this result was a motivational example for Williams’ article [42].

It is also worth mentioning that Corollary 4 in [11] gives an example of a strongly non-Følner operator generating a type
II1 factor.
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Now let us give one more example. We will use the amenable trace that appears in Proposition 2.6 as an obstruction.
Recall the definition of the Cuntz algebra On (cf. [17,18]). It is the universal C*-algebra generated by n ≥ 2 non-unitary
isometries S1, . . . , Sn with the property that their final projections add up to the identity, i.e.

n
k=1

SkS∗

k = 1. (6.1)

This condition implies in particular that the range projections are pairwise orthogonal, i.e.,

S∗

l Sk = δlk1. (6.2)

It is easy to realize the Cuntz algebra on the Hilbert space ℓ2 of square summable sequences.

Proposition 6.1. The Cuntz algebra On, n ≥ 2, is singly generated and its generator is strongly non-Følner.

Proof. By Corollary 4 (or Theorem 9) in [32] any Cuntz algebra On, n ≥ 2, has a single generator Cn, i.e., On = C∗(Cn). We
assert that Cn is strongly non-Følner. Indeed, assume that, to the contrary, it is not; then by Corollary 4.2(ii), Cn is finite. By
Corollary 2.9, it would follow that On = C∗(Cn) has an amenable trace τ . But this gives a contradiction since applying τ to
the Eqs. (6.1) and (6.2) we obtain n = 1. �

Corollary 6.2. There exist invertible and contractible strongly non-Følner operators.

Proof. From the previous examples of strongly non-Følner operators we can easily construct invertible or contractible
strongly non-Følner operators. Just note that for any two complex constants λ ≠ 0 and µ, an operator T is strongly non-
Følner if and only if the operator λT + µ1 is. �

It is also easy to see that for any operator T that has no Følner sequence, there is no orthogonal basis {en}∞n=1 (nor {en}
∞
n=−∞

)
in H such that T is an ‘‘acute wedge’’ operator with respect to this basis (see the end of Section 5 for a definition). In [29],
we will discuss these operators in more detail.

The above results allow one to present the classification of Table 1 in the following, more detailed way. Let T ∈ L(H),
and put

ℓ(T ) := sup
R⊂H

dim R,

where the supremum is taken over all finite dimensional reducing subspaces R of T (including the zero one).
In the case when ℓ(T ) is finite, there exists a unique reducing subspace H0 of T of dimension ℓ(T ) (because R1 + R2 is a

reducing subspace of T whenever R1 and R2 are). In this case, T decomposes as T = T0 ⊕ T1 with respect to the orthogonal
sum representation H = H0 ⊕ H⊥

0 . If 0 ≤ ℓ(T ) < ∞, put

ε(T ) := inf
P∈Pfin(H

⊥
0 )
ϕ(T1, P).

Then we have the following cases.
Case 1: 0 ≤ ℓ(T ) < ∞. For these operators, Table 1 now looks as follows (see Table 2):

Table 2
Classification of operators in case 1.

Operators with a proper
Følner sequence (ε(T ) = 0)

Operators with no proper
Følner sequence (ε(T ) > 0)

Finite block reducible (0 < ℓ(T ) < ∞) W0+ W0−
Non finite block reducible (ℓ(T ) = 0) W1+ S

Case 2: ℓ(T ) = ∞. In this case, ε(T ) is not defined. These are exactly block diagonal operators, which are operators that
can be decomposed into an infinite orthogonal sum of finite dimensional operators (see, e.g., [10, Chapter 16] or [40]). All
these operators belong to W0+.

Acknowledgments

The first author wants to thank Chris Phillips for useful conversations during his visit to CRM in January 2011. The
authors are also indebted to Chris Phillips for pointing to them Corollary 4 (or Theorem 9) in [32], which immediately led to
Proposition 6.1.

Part of thisworkwas donewhile one of the authors (F. Lledó)was visiting the Centre de RecercaMatemàtica in Barcelona.
F. Lledó was partly supported by the projects MTM2009-12740-C03-01 and MTM2012-36372-C03-01 of the Spanish Min-
istry of Science and Innovation (MICINN), also supported by FEDER. D. Yakubovich acknowledges the support by theMICINN
and FEDER projectsMTM2008-06621-C02-01 andMTM2011-28149-C02-1. Both authors were also supported by the ICMAT
Severo Ochoa project SEV-2011-0087 of the Ministry of Economy and Competition of Spain.



F. Lledó, D.V. Yakubovich / J. Math. Anal. Appl. 403 (2013) 464–476 475

Appendix. Single generators for C*-algebras

In the questions we are discussing, singly generated C*-algebras of operators have some relevance. See, e.g., the proof
of Proposition 6.1, where it was crucial that the Cuntz algebra is singly generated. Moreover, from Theorem 5.1 and
Proposition 2.1(i), any C∗-algebra generated by an essentially normal operator has a proper Følner sequence. However,
we do not know in general whether any separable C*-subalgebra A of L(H) such that [T , S] ∈ K(H) for all T , S ∈ A
(or, equivalently, all operators in A are essentially normal) has a proper Følner sequence. C*-algebras singly generated by
an essentially normal operator were considered, e.g., in [20,21]. For a nice introduction to the single generator problem we
refer to [37, Section 1] (see also [30,13]).

Here we will prove the following variation of a result in [32] which might be useful when addressing questions about
Følner sequences for operators: roughly, every separable C*-algebraA of operators can be embedded into a singly generated
C*-algebra acting on a larger Hilbert space. Notice that the word ‘‘separable’’ here refers to separability of the metric,
associated to the operator norm. It is clear that a C*-subalgebra of L(H) is separable if and only if it is countably generated.
In general if A is unital its image under the embedding need not be a unital C*-subalgebra of the larger algebra.

Proposition A.1. Let A be a unital C*-subalgebra of L(H). Then the following two assertions are equivalent.

(i) A is separable.
(ii) There exists a separable Hilbert spaceR = H ⊕H ′, and a singly generated C*-subalgebraB ⊂ L(R) such that A⊕0 ⊂ B,

where A ⊕ 0 = {A ⊕ 0 ∈ L(R) | A ∈ A}.

Proof. The implication (ii) H⇒ (i) is obvious. To show the reverse implication denote by K(h) the C∗-algebra of compact
operators on a separable Hilbert space h. Put B = A ⊗ K(h) ⊂ L(H ⊗ h) (since K(h) is nuclear, there is no ambiguity
in the definition of the tensor product of these operator algebras; see, e.g., [27, vol. 2, Chapter 11]). Let p ∈ K(h) be a rank
one orthogonal projection onto the subspace ⟨e⟩ generated by a unit vector e ∈ h. The map Φ(a) := a ⊗ p is an isometric
∗-isomorphism from A to A⊗K(h) and define R := H ⊗ h. It is clear thatΦ(A) has the form A⊕ 0 in the decomposition
R = (H ⊗ ⟨e⟩)⊕


H ⊗ ⟨e⟩⊥


. Finally, by Theorem 8 in [32], B is singly generated. �
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