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Hardy and Rellich Type Inequalities on Complete

Manifolds

Changyu Xia

Abstract

We prove some Hardy and Rellich type inequalities on complete non-compact
Riemannian manifolds supporting a weight function which is not very far from
the distance function in the Euclidean space.

1 Introduction

The classical Hardy inequality states that
∫

Rn

|∇u|2dx ≥
(

n− 2
2

)2 ∫

Rn

|u|2
|x|2 dx,

where u ∈ C∞
0 (Rn) and n ≥ 3. An extension of the Hardy’s inequality is the

following Rellich inequality :
∫

Rn

|∆u|2dx ≥
(

n(n− 4)
4

)2 ∫

Rn

|u|2
|x|4 dx,

for all u ∈ C∞
0 (Rn) and n ≥ 5. The constants

(
n−2

2

)2 and
(

n(n−4)
4

)2
in the above

inequalities are sharp, that is
(

n− 2
2

)2

= inf
06=φ∈C∞0 (Rn)

∫
Rn |∇u|2dx
∫

Rn
|u|2
|x|2dx

and (
n(n− 4)

4

)2

= inf
06=φ∈C∞0 (Rn)

∫
Rn |∆u|2dx
∫

Rn
|u|2
|x|4dx

.

2000 Mathematics Subject Classification 53C20, 53C21, 57R70, 31C12.
Key words and phrases: Hardy and Rellich inequalities, complete manifolds, non-negative Ricci

curvature.

1

xiarellichjmaarevised.tex



For a bounded domain Ω ⊂ Rn, a much stronger version of Hardy inequality was
obtained by Brézis and Vázquez [5]. More recently, Tertikas and Zographopoulos
[21] obtained corresponding stronger version of Rellich’s inequality as well as of the
similar Rellich type inquality

∫

Rn

|∆u|2dx ≥
(

n(n− 4)
4

)2 ∫

Rn

|u|2
|x|4 dx, ∀u ∈ C∞

0 (Rn), n ≥ 3,

when Rn is replaced by a bounded domain Ω ⊂ Rn.
In recent years, there are a very large number of papers dedicated to applications

and generalizations of the Hardy, Rellich, Sobolev and Caffarelli-Kohn-Nirenberg in-
equalities in various contexts, e.g. in [1-3, 10-15], and the reference therein. In an
interesting paper, Carron [7] studied weighted L2-Hardy inequalities and obtained,
among other results, the following inequality on a complete non-compact Rieman-
nian manifold M :

∫

M
ρα|∇φ|2 ≥

(
C + α− 1

2

)2 ∫

M
ρα−2φ2 (1.1)

where α ∈ R, C + α − 1 > 0, φ ∈ C∞
0 (M \ ρ−1{0}) and the weight function ρ

is nonnegative and satisfies |∇ρ| = 1 and ∆ρ ≥ C
ρ in the sense of distribution,

being ∆ the Laplace operator on M . Under the same geometric assumptions on the
weight function ρ Kombe and Özaydin obtained in [16] an Lp version of (1.1) (where
1 < p < ∞ and C + 1 + α− p > 0):

∫

M
ρα|∇φ|p ≥

(
C + 1 + α− p

p

)p ∫

M
ρα−p|φ|p, (1.2)

as well as a Rellich-type inequality (where α < 2, C + α− 3 > 0):
∫

M
ρα(∆φ)2 ≥ (C + α− 3)2(C − α + 1)2

16

∫

M
ρα−4φ2. (1.3)

Other kind of Hardy, Rellich, Heisenberg-Pauli-Weyl and Caffarelli-Kohn-Nirenberg
type inequalities on complete non-compact manifolds have been also proved, e. g., in
[4, 6, 8, 9, 17, 19, 22, 23], etc. Typical examples of manifolds supporting the above
weight function ρ are n-dimensional Hadamard manifolds. In fact, the distance
function r starting from any point in such a manifold satisfies |∇r| = 1, ∆r ≥ n−1

r
in the sense of distribution [20]. In this paper, we prove similar kind of Hardy,
Rellich type inequalities for complete non-compact Riemannian manifolds which
support a nonnegative weight function ρ satisfying |∇ρ| = 1, ∆ρ ≤ C/ρ in the sense
of distribution. Complete open manifolds of dimension n with nonnegative Ricci
curvature are examples of our study since the distance function ρ starting from any
point on these manifolds satisfies |∇ρ| = 1, ∆ρ ≤ n−1

ρ in the sense of distribution
[20].
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2 Hardy and Rellich Inequalities on Complete Mani-
folds

In this section, we will prove several Hardy and Rellich type inequalities on complete
non-compact Riemannian manifolds. Our first result is the following

Theorem 2.1. Let M be an n(≥ 2)-dimensional complete noncompact Rie-
mannian manifold. Let ρ be a nonnegative function on M such that |∇ρ| = 1 and
∆ρ ≤ V + C/ρ in the sense of distribution where V is a continuous function on M
and C is a constant. Then for any p ∈ R, q > 1 + C and all compactly supported
smooth function φ ∈ C∞

0 (M \ ρ−1{0}), the following inequality holds

(q − C − 1)
∫

M

|φ|p
ρq

≤ |p|
∫

M

|φ|p−1

ρq−1
|∇φ|+

∫

M

V |φ|p
ρq−1

. (2.1)

Proof. For a vector field X on M , we denote by div X the divergence of X.
Observe that

div
(
|φ|p

( ∇ρ

ρq−1

))
= p|φ|p−1

〈
∇|φ|, ∇ρ

ρq−1

〉
+ |φ|pdiv

( ∇ρ

ρq−1

)
(2.2)

≤ p|φ|p−1

〈
∇|φ|, ∇ρ

ρq−1

〉
+ |φ|p (C − q + 1)

ρq
+

V |φ|p
ρq−1

.

Integrating (2.2) on M , we get

(q − C − 1)
∫

M

|φ|p
ρq

≤ |p|
∫

M

|φ|p−1

ρq−1
|∇φ|+

∫

M

V |φ|p
ρq−1

. (2.3)

This proves (2.1).

In the special case that V = 0 in the above theorem, we have

Corollary 1.1. Let M be an n(≥ 2)-dimensional complete noncompact Rie-
mannian manifold. Let ρ be a nonnegative function on M such that |∇ρ| = 1 and
∆ρ ≤ C/ρ in the sense of distribution where C is a constant. Then the following
inequality holds

∫

M

|φ|p
ρq

≤
(

p

q − C − 1

)q (∫

M
|φ|p

) p−q
p
(∫

M
|∇φ|p

) q
p

(2.4)

for all compactly supported smooth function φ ∈ C∞
0 (M \ ρ−1{0}),max{1, 1 + C} <

q ≤ p < +∞.
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Proof. From (2.1), we have

(q −C − 1)
∫

M

|φ|p
ρq

≤ p

∫

M

|φ|p−1

ρq−1
|∇φ|. (2.5)

It follows from Hölder’s inequality that

∫

M

|φ|p−1

ρq−1
|∇φ| ≤

(∫

M
|∇φ|p

) 1
p

(∫

M

|φ|p

ρ
(q−1)p

p−1

) p−1
p

(2.6)

≤
(∫

M
|∇φ|p

) 1
p
(∫

M

|φ|p
ρq

) q−1
q
(∫

M
|φ|p

)(
1− p(q−1)

q(p−1)

)
p−1

p

.

One can then easily obtain (2.4) by substituting (2.6) into (2.5). This completes the
proof of Corollary 2.1.

The following result is a counterpart to (1.2) for manifolds admitting a nonneg-
ative weight function ρ with |∇ρ| = 1 and ∆ρ ≤ C/ρ in the sense of distribution.

Theorem 2.2. Let M be a complete noncompact Riemannian manifold of di-
mension n ≥ 2 and let ρ be a nonnegative function on M such that |∇ρ| = 1
and ∆ρ ≤ V + C/ρ in the sense of distribution where V is a continuous func-
tion on M and C is a constant. Then for all compactly supported smooth function
φ ∈ C∞

0 (M \ ρ−1{0}), 1 < p < +∞ and p− α− C − 1 > 0, we have
∫

M
ρα|∇φ|p ≥

(
p−C − 1− α

p

)p ∫

M
ρα−p|φ|p (2.7)

−
(

p− C − 1− α

p

)p−1 ∫

M
V ρα−p+1|φ|p.

Proof. Let γ = (p − α − C − 1)/p; then γ > 0. Let φ = ργf where f ∈
C∞

0 (M \ ρ−1(0)). When a, b ∈ Rn, it holds that [18]

|a + b|p ≥ |a|p + p|a|p−2a · b +
|b|p

2p−1 − 1
for p ≥ 2, (2.8)

and

|a + b|p ≥ |a|p + p|a|p−2a · b +
c(p)|b|2

(|a|+ |b|)2−p
, for 1 < p < 2, where c(p) > 0. (2.9)
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Therefore, we have

ρα|∇φ|p = ρα|∇(ργf)| (2.10)
= ρα|γργ−1f∇ρ + ργ∇f |
≥ γpργp−p+α|f |p + pγp−1ρα+γp+1−p|f |p−2f〈∇ρ,∇f〉

= γpργp−p+α|f |p +
γp−1

α + γp− p + 2
〈∇ρα+γp+2−p,∇|f |p〉, when C 6= 1.

Similarly,

ρα|∇φ|p ≥ γpργp−p+α|f |p + γp−1〈∇ ln ρ,∇|f |p〉when C = 1. (2.11)

In case C 6= 1, we integrate (2.10) on M and use the divergence theorem to get
∫

M
ρα|∇φ|p (2.12)

≥ γp

∫

M
ργp−p+α|f |p − γp−1

α + γp− p + 2

∫

M
∆(ρα+γp+2−p)|f |p

≥ γp

∫

M
ργp−p+α|f |p − γp−1

∫

M
(α + γp + C + 1− p + ρV )ρα+γp−p|f |p

= γp

∫

M
ρα+γp−p|f |p − γp−1

∫

M
V ρα+γp−p+1|f |p

=
(

p− C − 1− α

p

)p ∫

M
ρα−p|φ|p −

(
p− C − 1− α

p

)p−1 ∫

M
V ρα−p+1|φ|p.

On the other hand, when C = 1, we can integrate (2.11) on M to obtain
∫

M
ρα|∇φ|p ≥ γp

∫

M
ρα+γp−p|f |p − γp−1

∫

M
|f |p∆ ln ρ (2.13)

≥ γp

∫

M
ρα+γp−p|f |p − γp−1

∫

M
V |f |pρ−1

=
(

p− 2− α

p

)p ∫

M
ρα−p|φ|p −

(
p− 2− α

p

)p−1 ∫

M
V ρα−p+1|φ|p.

This shows that when C = 1, the inequality (2.7) is also true. The proof of Theorem
2.2 is complete.

We now prove an improved Hardy inequality.

Theorem 2.3. Let M be an n-dimensional complete noncompact Riemannian
manifold and let ρ be a nonnegative function on M such that |∇ρ| = 1 and ∆ρ ≤ C/ρ
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in the sense of distribution where C is a constant. Let Ω be a bounded domain with
smooth boundary in M, 1 < q < 2, q − C − 1 − qα/2 > 0, C + α < 1, 0 < k <
min{1, q(1−C − α)/(q −C − 1− qα/2)}, φ ∈ C∞

0 (Ω \ ρ−1{0}). Then the following
inequality is valid

∫

Ω
ρα|∇φ|2 ≥ c1(q)|Ω|1−q/2

(
(1 + (q − 1)kq − qkq−1)

∫

Ω
|∇φ|qρqα/2

)2/q

(2.14)

+
k(q − C − 1− qα

2 )
(
q(1− C − α)− k

(
q − C − 1− qα

2

))

q2

∫

Ω
ρα−2φ2,

where c1(q) is a positive constant depending only on q and |Ω| is the volume of Ω.

Remark. It is easy to see that 1+(q−1)kq−qkq−1 > 0 when 0 < k < 1 < q < 2.

Proof of Theorem 2.3. Let β > 0. We have from the divergence theorem that
∫

Ω

(
|∇φ|2 − 〈∇(

φ2

ρβ
),∇ρβ〉

)
ρα (2.15)

=
∫

Ω
ρα|∇φ|2 +

∫

Ω

φ2

ρβ
div(ρα∇ρβ)

≤
∫

Ω
ρα|∇φ|2 + β(α + β + C − 1)

∫

Ω
ρα−2φ2 + β

∫

Ω
V ρα−1φ2.

It is easy to see that

|∇φ|2 − 〈∇(
φ2

ρβ
),∇ρβ〉 =

∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
2

, (2.16)

and so
∫

Ω

(
|∇φ|2 − 〈∇(

φ2

ρβ
),∇ρβ〉

)
ρα =

∫

Ω

∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
2

ρα (2.17)

≥ |Ω|1−2/q

(∫

Ω

∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
q

ρqα/2

)2/q

.

Now we use the following elementary inequality

c(q)|w2|q ≥ |w1 + w2|q − |w1|q − q|w1|q−2〈w1, w2〉, 1 < q < 2, w1, w2 ∈ Rn,
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where c(q) > 0, Schwarz and Young’s inequalities to obtain for any δ ∈ (0, 1) that

c(q)
∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
q

(2.18)

≥ |∇φ|q + (q − 1)
∣∣∣∣

φ

ρβ
∇ρβ

∣∣∣∣
q

− q

∣∣∣∣
φ

ρβ
∇ρβ

∣∣∣∣
q−2

· 〈 φ

ρβ
∇ρβ,∇φ〉

≥ |∇φ|q + (q − 1)
∣∣∣∣

φ

ρβ
∇ρβ

∣∣∣∣
q

− q

∣∣∣∣
φ

ρβ
∇ρβ

∣∣∣∣
q−1

· |∇φ|

≥ |∇φ|q + (q − 1)
∣∣∣∣

φ

ρβ
∇ρβ

∣∣∣∣
q

− q

(
(q − 1)

δq

∣∣∣∣
φ

ρβ
∇ρβ

∣∣∣∣
q

+
δq−1|∇φ|q

q

)

= (1− δq−1)|∇φ|q + (q − 1)
(

1− 1
δ

) ∣∣∣∣
φ

ρβ
∇ρβ

∣∣∣∣
q

= (1− δq−1)|∇φ|q + (q − 1)
(

1− 1
δ

)
βq|φ|q

ρq
.

Multiplying (2.18) by ρqα/2 and integrating on Ω we have by using (2.7) that

c(q)
∫

Ω

∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
q

ρqα/2 (2.19)

≥
∫

Ω

(
(1− δq−1)|∇φ|q + (q − 1)

(
1− 1

δ

)
βq|φ|q

ρq

)
ρqα/2

≥
∫

Ω

(
(1− δq−1) + (q − 1)

(
1− 1

δ

)(
βq

q − C − 1− qα
2

)q)
|∇φ|qρqα/2.

Taking β =
k(q−C−1− qα

2 )
q , δ = k, we have

c(q)
∫

Ω

∣∣∣∣∇φ− φ

ρβ
∇ρβ

∣∣∣∣
q

≥
(
1 + (q − 1)kq − qkq−1

) ∫

Ω
|∇φ|qρqα/2. (2.20)

Also, we deduce from (2.15) that
∫

Ω
ρα|∇φ|2 (2.21)

≥
∫

Ω

(
|∇φ|2 − 〈∇(

φ2

ρβ
),∇ρβ〉

)
ρα + β(−β − α− C + 1)

∫

Ω
ρα−2φ2

=
∫

Ω

(
|∇φ|2 − 〈∇(

φ2

ρβ
),∇ρβ〉

)
ρα

+
k(q − C − 1− qα

2 )
(
q(1− C − α)− k

(
q − C − 1− qα

2

))

q2

∫

Ω
ρα−2φ2.
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One then gets (2.14) by combining (2.17), (2.20) and (2.21). This completes the
proof of Theorem 1.3.

Our next result is a Rellich-type inequality which involves both first and second
order derivatives.

Theorem 2.4. Let M be a complete noncompact Riemannian manifold of di-
mension n ≥ 2 and let ρ be a nonnegative function on M such that |∇ρ| = 1 and
∆ρ ≤ C/ρ in the sense of distribution where C < 1. Then for all compactly supported
smooth function φ ∈ C∞

0 (M \ ρ−1{0}), 2 < α < 3−C, we have
∫

M
ρα(∆φ)2 ≥ 2(α− 2)(3 − α− C)

∫

M
ρα−2|∇φ|2. (2.22)

Proof. It is easy to see that

∆ρα−2 ≤ (α− 2)(C + α− 3)ρα−4. (2.23)

Multiplying the above inequality by φ2 and integrating on M , we obtain

(α − 2)(C + α− 3)
∫

M
ρα−4φ2 ≥

∫

M
ρα−2∆φ2 (2.24)

=
∫

M
ρα−2(2|∇φ|2 + 2φ∆φ).

That is,

−2
∫

M
(φ∆φ)ρα−2 ≥ 2

∫

M
ρα−2|∇φ|2 − (α− 2)(C + α− 3)

∫

M
ρα−4φ2.

Since

−2
∫

M
(φ∆φ)ρα−2 ≤ (α− 2)(3 − C − α)

∫

M
ρα−4φ2

+
1

(α− 2)(3− C − α)

∫

M
ρα(∆φ)2,

we know that (2.22) is true.

The following is an improved Rellich inequality which is similar to the inequality
(1.3).

Theorem 2.5. (Improved Rellich Inequality) Let M be a complete noncom-
pact Riemannian manifold of dimension n > 1. Let ρ be a nonnegative func-
tion on M such that |∇ρ| = 1 and ∆ρ ≤ C/ρ in the sense of distribution. Let
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1 < q < 2 < α < 3 − C, 2q − C − 1 − qα/2 > 0. Then there are positive con-
stants C1(q, α,C), C2(q, α,C) depending only on q, α,C, such that for any φ ∈
C∞

0 (M \ ρ−1{0}), the following inequality holds

∫

M
ρα|∆φ|2 ≥ C1(q, α,C)|S(φ)|1−q/2

(∫

M
|∇φ|qρq(α−2)/2dv

)2/q

(2.25)

+C2(q, α,C)
∫

M
ρα−4φ2,

where |S(φ)| is the volume of the set S(φ) =: {x ∈ M : φ(x) 6= 0}.

Proof. Using the same discussions as in the proof of Theorem 2.4, we have

−2
∫

M
(φ∆φ)ρα−2 ≥ 2

∫

M
ρα−2|∇φ|2 − (α− 2)(C + α− 3)

∫

M
ρα−4φ2. (2.26)

Observe that

−2
∫

M
(φ∆φ)ρα−2 ≤ ǫ

∫

M
ρα−4φ2 +

1
ǫ

∫

M
ρα(∆φ)2, (2.27)

where ǫ > 0. For any k ∈ (0, min{1, q(3 −C − α)/(2q − C − 1− qα/2)}), it follows
from the improved Hardy inequality (2.14) that

2
∫

M
ρα−2|∇φ|2 (2.28)

≥ 2k(2q − C − 1− qα/2)(q(3 − C − α)− k(2q − C − 1− qα/2))
q2

∫

M
ρα−4φ2

+c1(q)|S(φ)|1−q/2

(
(1 + (q − 1)kq − qkq−1)

∫

M
|∇φ|qρq(α−2)/2

)2/q

,

where c1(q) is a positive constant depending only on q. Substituting (2.26) and
(2.28) into (2.27), we get

1
ǫ

∫

M
ρα(∆φ)2 (2.29)

≥
(

2k(2q − C − 1− qα/2)(q(3 − C − α) − k(2q − C − 1− qα/2))
q2

− ǫ

)∫

M
ρα−4φ2

+c1(q)|Ω|1−q/2

(
(1 + (q − 1)kq − qkq−1)

∫

M
|∇φ|qρq(α−2)/2dv

)2/q

+(α− 2)(3 − C − α)
∫

M
ρα−4φ2.

9



Taking

ǫ =
k(2q − C − 1− qα/2)(q(3 − C − α) − k(2q − C − 1− qα/2))

2q2
+

(α− 2)(3 − C − α)
2

,

we get (2.25). This completes the proof of Theorem 2.4.

Our final result in this paper is as follows.

Theorem 2.6. Let M be a complete noncompact Riemannian manifold of di-
mension n > 1. Let ρ be a nonnegative function on M such that |∇ρ| = 1 and
∆ρ ≤ C/ρ in the sense of distribution where C > 0. Then the following inequality
holds

∫

M
ρα+p|〈∇ρ,∇φ〉|p ≥

( |C + α + 1|
p

)p ∫

M
ρα|φ|p (2.30)

for all φ ∈ C∞
0 (M \ ρ−1{0}), 1 < p < ∞, and C + α < −1.

Proof. We have from the hypothesis that

div(ρ∇ρ) ≤ 1 + C. (2.31)

Multiplying (2.31) by ρα|φ|p and integrating on M gives

(C + 1)
∫

M
ρα|φ|p ≥

∫

M
div(ρ∇ρ)ρα|φ|p (2.32)

= −
∫

M
〈ρ∇ρ,∇(ρα|φ|p)〉

= −α

∫

M
ρα|φ|p + p

∫

M
|φ|p−2φρα+1〈∇ρ,∇φ〉.

Observe that −(C+α+1) > 0. We obtain from (2.32) and the Hölder’s and Young’s
inequalities that

|C + α + 1|
∫

M
ρα|φ|p (2.33)

≤ p

∣∣∣∣
∫

M
|φ|p−2φρα+1〈∇ρ,∇φ〉

∣∣∣∣

≤ p

(∫

M
ρα|φ|p

)(p−1)/p (∫

M
ρα+p|〈∇ρ,∇φ〉|p

)1/p

≤ (p − 1)ǫ−p/(p−1)

∫

M
ρα|φ|p + ǫp

∫

M
ρα+p|〈∇ρ,∇φ〉|p

10



for any ǫ > 0. Hence
∫

M
ρα+p|〈∇ρ,∇φ〉|p ≥ ǫ−p

(
|C + α + 1| − (p− 1)ǫ−p/(p−1)

)∫

M
ρα|φ|p. (2.34)

The inequality (2.30) follows from (2.34) by taking

ǫ =
(

p

|C + α + 1|

) p−1
p

,

This completes the proof of Theorem 2.6.

Acknowledgements. The author is very grateful to the referee and Professor
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[7] G. Carron, Inégalités de Hardy sur les variétés riemanniennes non-compactes,
J. Math. Pures Appl. (9) 76 (1997), 883-891.

[8] F. Catrina and D. G. Costa, Sharp weighted-norm inequalities for functions
with compact support in RN \ {0}, J. Diff. Equa. 246 (2009), 164-182.

[9] D.G. Costa, Some new and short proofs for a class of Caffarelli-Kohn-
Nirenberg type inequalities, J. Math. Anal. Appl. 337 (2008) 311-317.

11



[10] C. Cowan, Optimal Hardy inequalities for general elliptic operators with
improvements. Commun. Pure Appl. Anal. 9 (2010), 109-140.

[11] E. B. Davies, and A. M. Hinz, Explicit constants for Rellich inequalities in
Lp(Ω), Math. Z. 227 (1998), no. 3, 511-523.

[12] G. B. Folland and A. Sitaram, The Uncertainty Principle: A Mathematical
Survey, J. Fourier Anal. Appl. 3 (1997), 207-238.

[13] E. Fabes, C. Kenig and R. Serapioni, The local regularity of solutions of
degenerate elliptic equations, Comm. in P.D.E., 7 (1982), 77-116.

[14] N. Ghoussoub, A. Moradifam. On the best possible remaining term in the
Hardy inequality, Proc. Natl. Acad. Sci. USA 105 (2008), 13746-13751.

[15] N. Ghoussoub, A. Moradifam. Bessel pairs and optimal Hardy and Hardy-
Rellich inequalities, Math. Ann. 349 (2011), 1-57.
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